Improved Video Anomaly Detection with Dual Generators and Channel Attention
Abstract
:1. Introduction
- Abnormal human behaviors, i.e., inappropriate behavior in public places, e.g., climbing, filming, or stealing, etc.
- Vehicle abnormality, such as illegal parking, violating traffic rules, etc.
- Abnormal environments, e.g., fire, explosion, building collapse, etc.
- Equipment failure, such as surveillance camera failure, light changes, etc.
- A dual-generator generative adversarial network (DGGAN) is proposed to improve the accuracy of video anomaly detection;
- A noise generator is designed to generate pseudo-anomaly frames to train the model, which improves the ability of the model to perceive unknown anomalies;
- A second-order channel attention module is used to learn feature interdependencies to better utilize the important feature information.
2. Related Work
3. Method
3.1. Overall Framework
3.2. Components
3.2.1. Noise Generator
3.2.2. Reconstruction Generator
3.2.3. Second-Order Channel Attention Module
3.3. Constraint Function
3.4. Abnormal Detection
4. Experiments and Results
4.1. Datasets and Train Details
4.2. Ablation Studies
4.3. Comparison with the State-of-the-Art
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, B.; Xu, D.; Huang, B. Deep-learning-based anomaly detection for lace defect inspection employing videos in production line. Adv. Eng. Inform. 2022, 51, 101471. [Google Scholar] [CrossRef]
- Sun, H.; Chen, M.; Weng, J.; Liu, Z.; Geng, G. Anomaly detection for In-Vehicle network using CNN-LSTM with attention mechanism. IEEE Trans. Veh. Technol. 2021, 70, 10880–10893. [Google Scholar] [CrossRef]
- Georgescu, M.I.; Barbalau, A.; Ionescu, R.T.; Khan, F.S.; Popescu, M.; Shah, M. Anomaly detection in video via self-supervised and multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 12742–12752. [Google Scholar]
- Zhong, J.X.; Li, N.; Kong, W.; Liu, S.; Li, T.H.; Li, G. Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1237–1246. [Google Scholar]
- Liu, W.; Luo, W.; Lian, D.; Gao, S. Future frame prediction for anomaly detection—A new baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6536–6545. [Google Scholar]
- Rodrigues, R.; Bhargava, N.; Velmurugan, R.; Chaudhuri, S. Multi-timescale trajectory prediction for abnormal human activity detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 2626–2634. [Google Scholar]
- Li, N.; Chang, F.; Liu, C. Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes. IEEE Trans. Multimed. 2020, 23, 203–215. [Google Scholar] [CrossRef]
- Georgescu, M.I.; Ionescu, R.T.; Khan, F.S.; Popescu, M.; Shah, M. A background-agnostic framework with adversarial training for abnormal event detection in video. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4505–4523. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Cho, M.; Lee, M.; Lee, S. FastAno: Fast anomaly detection via spatio-temporal patch transformation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 2249–2259. [Google Scholar]
- Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.V.D. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1705–1714. [Google Scholar]
- Park, H.; Noh, J.; Ham, B. Learning memory-guided normality for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14372–14381. [Google Scholar]
- Ionescu, R.T.; Khan, F.S.; Georgescu, M.I.; Shao, L. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7842–7851. [Google Scholar]
- Aldausari, N.; Sowmya, A.; Marcus, N.; Mohammadi, G. Video generative adversarial networks: A review. ACM Comput. Surv. (CSUR) 2022, 55, 1–25. [Google Scholar] [CrossRef]
- Vu, T.H.; Boonaert, J.; Ambellouis, S.; Taleb-Ahmed, A. Multi-Channel Generative Framework and Supervised Learning for Anomaly Detection in Surveillance Videos. Sensors 2021, 21, 3179. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Nie, X.; Li, X.; Zhang, Y.; Yin, Y. Context-related video anomaly detection via generative adversarial network. Pattern Recognit. Lett. 2022, 156, 183–189. [Google Scholar] [CrossRef]
- Xu, J.; Miao, Z.; Xu, W.; Wang, J.; Zhang, Q.; Song, S. Video Anomaly Detection Using Dual Discriminator Based Generative Adversarial Network. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, Pasadena, CA, USA, 13–15 December 2021; pp. 1259–1265. [Google Scholar]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Zhang, S.; Gong, M.; Xie, Y.; Qin, A.; Li, H.; Gao, Y.; Ong, Y.S. Influence-aware Attention Networks for Anomaly Detection in Surveillance Videos. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5427–5437. [Google Scholar] [CrossRef]
- Khorramshahi, P.; Peri, N.; Kumar, A.; Shah, A.; Chellappa, R. Attention Driven Vehicle Re-identification and Unsupervised Anomaly Detection for Traffic Understanding. In Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 239–246. [Google Scholar]
- Feng, J.C.; Hong, F.T.; Zheng, W.S. Mist: Multiple instance self-training framework for video anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14009–14018. [Google Scholar]
- Le, V.T.; Kim, Y.G. Attention-based residual autoencoder for video anomaly detection. Appl. Intell. 2022, 53, 3240–3254. [Google Scholar] [CrossRef]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11065–11074. [Google Scholar]
- Li, P.; Xie, J.; Wang, Q.; Zuo, W. Is second-order information helpful for large-scale visual recognition? In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2070–2078. [Google Scholar]
- Piga, N.A.; Onyshchuk, Y.; Pasquale, G.; Pattacini, U.; Natale, L. ROFT: Real-Time Optical Flow-Aided 6D Object Pose and Velocity Tracking. IEEE Robot. Autom. Lett. 2021, 7, 159–166. [Google Scholar] [CrossRef]
- Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Akçay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Mahadevan, V.; Li, W.; Bhalodia, V.; Vasconcelos, N. Anomaly detection in crowded scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1975–1981. [Google Scholar]
- Lu, C.; Shi, J.; Jia, J. Abnormal event detection at 150 fps in matlab. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2720–2727. [Google Scholar]
- Yan, S.; Smith, J.S.; Lu, W.; Zhang, B. Abnormal event detection from videos using a two-stream recurrent variational autoencoder. IEEE Trans. Cogn. Dev. Syst. 2018, 12, 30–42. [Google Scholar] [CrossRef]
- Zhou, J.T.; Zhang, L.; Fang, Z.; Du, J.; Peng, X.; Xiao, Y. Attention-driven loss for anomaly detection in video surveillance. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 4639–4647. [Google Scholar] [CrossRef]
Modules | AUC(%) | ||||
---|---|---|---|---|---|
NGA | NGB | SOCA | PED1 | PED2 | Avenue |
✗ | ✗ | ✗ | 82.3 | 93.5 | 83.7 |
✔ | ✗ | ✗ | 84.2 | 95.9 | 84.1 |
✗ | ✔ | ✗ | 82.9 | 94.7 | 85.9 |
✔ | ✔ | ✗ | 84.9 | 96.8 | 85.3 |
✔ | ✔ | ✔ | 85.7 | 97.9 | 86.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Hu, Z.; Ji, G. Improved Video Anomaly Detection with Dual Generators and Channel Attention. Appl. Sci. 2023, 13, 2284. https://doi.org/10.3390/app13042284
Qi X, Hu Z, Ji G. Improved Video Anomaly Detection with Dual Generators and Channel Attention. Applied Sciences. 2023; 13(4):2284. https://doi.org/10.3390/app13042284
Chicago/Turabian StyleQi, Xiaosha, Zesheng Hu, and Genlin Ji. 2023. "Improved Video Anomaly Detection with Dual Generators and Channel Attention" Applied Sciences 13, no. 4: 2284. https://doi.org/10.3390/app13042284