Development of a Generic Numerical Transtibial Model for Limb–Prosthesis System Evaluation
Abstract
:1. Introduction
2. Materials & Methods
2.1. Geometry of the Residual Limb
2.2. Rectification of the Socket
2.3. Material Properties
2.4. Boundary Conditions
2.5. Numerical Simulation and Validation of the Numerical Model
3. Results
3.1. Contact Pressure
3.2. Deformation of the Socket
3.3. Comparison of the Contact Pressure Results
4. Discussion
4.1. Biomechanical Validation
4.2. Numerical Analysis of the Generic Transtibial Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolossváry, E.; Björck, M.; Behrendt, C.-A. Lower Limb Major Amputation Data as a Signal of an East/West Health Divide Across Europe. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 645–646. [Google Scholar] [CrossRef]
- Paterno, L.; Ibrahimi, M.; Gruppioni, E.; Menciassi, A.; Ricotti, L. Sockets for Limb Prostheses: A Review of Existing Technologies and Open Challenges. IEEE Trans. Biomed. Eng. 2018, 65, 1996–2010. [Google Scholar] [CrossRef]
- Krajbich, J.I.; Pinzur, M.S.; Potter, B.K.; Stevens, P.M. (Eds.) Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles, 4th ed.; Lippincott Williams & Wilkins: Rosemont, IL, USA, 2016. [Google Scholar]
- Pezzin, L.E.; Dillingham, T.R.; MacKenzie, E.J.; Ephraim, P.; Rossbach, P. Use and satisfaction with prosthetic limb devices and related services. Arch. Phys. Med. Rehabil. 2004, 85, 723–729. [Google Scholar] [CrossRef]
- Cagle, J. A Computational Tool to Enhance Clinical Selection of Prosthetic Liners for People with Lower Limb Amputation. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2016. [Google Scholar]
- Colombo, G.; Rizzi, C.; Regazzoni, D.; Vitali, A. 3D interactive environment for the design of medical devices. Int. J. Interact. Des. Manuf. 2018, 12, 699–715. [Google Scholar] [CrossRef]
- Meng, Z.; Wong, D.W.-C.; Zhang, M.; Leung, A.K.-L. Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modelling method. Med. Eng. Phys. 2020, 83, 123–129. [Google Scholar] [CrossRef]
- Steer, J.W.; Worsley, P.R.; Browne, M.; Dickinson, A.S. Predictive prosthetic socket design: Part 1—Population-based evaluation of transtibial prosthetic sockets by FEA-driven surrogate modelling. Biomech. Model. Mechanobiol. 2019, 19, 1331–1346. [Google Scholar] [CrossRef] [PubMed]
- Moerman, K.; Sengeh, D.; Herr, H. Automated and Data-driven Computational Design of Patient-Specific Biomechanical Interfaces. Germany, Europe. engrXiv 2016. [Google Scholar] [CrossRef]
- Dickinson, A.S.; Steer, J.W.; Worsley, P.R. Finite element analysis of the amputated lower limb: A systematic review and recommendations. Med. Eng. Phys. 2017, 43, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Silver-Thorn, M.B. Prediction and Experimental Verification of Residual Limb/Prosthetic Socket Interface Pressures for Below-Knee Amputees. Ph.D. Thesis, Northwestern University, Ann Arbor, MI, USA, 1991. [Google Scholar]
- Cerveri, P.; Belfatto, A.; Manzotti, A. Predicting Knee Joint Instability Using a Tibio-Femoral Statistical Shape Model. Front. Bioeng. Biotechnol 2020, 8, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, M.; Abdel Fatah, E.E.; Bowers, L.S.; Scuderi, G. Three-dimensional Morphology of the Knee Reveals Ethnic Differences. Clin. Orthop. Relat. Res 2012, 470, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Silver-Thorn, M.B.; Childress, D.S. Generic, geometric finite element analysis of the transtibial residual limb and prosthetic socket. J. Rehabil. Res. Dev. 1997, 34, 171–186. [Google Scholar]
- Silver-Thorn, M.B.; Childress, D.S. Parametric analysis using the finite element method to investigate prosthetic interface stresses for persons with trans-tibial amputation. J. Rehabil. Res. Dev. 1996, 33, 227–238. [Google Scholar] [PubMed]
- Tanaka, M.; Akazawa, Y.; Nakagawa, A.; Kitayama, I. Identification of pressure distribution at the socket interface of an above-knee prosthesis. Adv. Eng. Softw. 1997, 28, 379–384. [Google Scholar] [CrossRef]
- Tönük, E.; Silver-Thorn, M.B. Nonlinear Elastic Material Property Estimation of Lower Extremity Residual Limb Tissues. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, S.; Yarnitzky, G.; Yizhar, Z.; Kristal, A.; Oppenheim, U.; Siev-Ner, I.; Gefen, A. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: A new tool for prosthetic fitting. Ann. Biomed. Eng. 2007, 35, 120–135. [Google Scholar] [CrossRef]
- Ramalho, A.; Ferraz, M.; Gaspar, M.; Capela, C. Development of a preliminary finite element model to assess the effects of friction on the residual limb of a transfemoral amputee. Mater. Today Proc. 2020, 33, 1859–1863. [Google Scholar] [CrossRef]
- Steer, J.W.; Grudniewski, P.A.; Browne, M.; Worsley, P.R.; Sobey, A.J.; Dickinson, A.S. Predictive prosthetic socket design: Part 2—Generating person-specific candidate designs using multi-objective genetic algorithms. Biomech. Model. Mechanobiol. 2019, 19, 1347–1360. [Google Scholar] [CrossRef]
- Dickinson, A.; Diment, L.; Morris, R.; Pearson, E.; Hannett, D.; Steer, J. Characterising Residual Limb Morphology and Prosthetic Socket Design Based on Expert Clinician Practice. Prosthesis 2021, 3, 280–299. [Google Scholar] [CrossRef]
- Carbone, V.; Fluit, R.; Pellikaan, P.; Van Der Krogt, M.M.; Janssen, D.; Damsgaard, M.; Vigneron, L.; Feilkas, T.; Koopman, H.F.; Verdonschot, N. TLEM 2.0–A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J. Biomech. 2015, 48, 734–741. [Google Scholar] [CrossRef]
- McDowell, M.A.; Fryar, C.D.; Ogden, C.L.; Flegal, K.M. Anthropometric reference data for children and adults: United States, 2003. Natl. Health Stat. Rep. 2008, 10, 5. [Google Scholar]
- Kapandji, I.A. The Physiology of the Joints: Lower Limb; Churchill Livingstone: London, UK, 1987; Volume 2. [Google Scholar]
- Cagle, J.C.; Hafner, B.J.; Taflin, N.; Sanders, J.E. Characterization of prosthetic liner products for people with transtibial amputation. J. Prosthet. Orthot. 2018, 30, 187–199. [Google Scholar] [CrossRef]
- Silver-Thorn, M.B.; Tonuk, E.; Kemp, J. In vivo indentation of lower extremity limb soft tissues. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Atlanta, GA, USA, 13–16 October 1999. [Google Scholar]
- Kallin, S.; Rashid, A.; Salomonsson, K.; Hansbo, P. Comparison of mechanical conditions in a lower leg model with 5 or 6 tissue types while exposed to prosthetic sockets applying finite element analysis. arXiv 2019, arXiv:190713340. [Google Scholar] [CrossRef]
- Cagle, J.C.; Reinhall, P.G.; Allyn, K.J.; McLean, J.; Hinrichs, P.; Hafner, B.J.; Sanders, J.E. A finite element model to assess transtibial prosthetic sockets with elastomeric liners. Med. Biol. Eng. Comput. 2018, 56, 1227–1240. [Google Scholar] [CrossRef]
- Bombek, M.; Vesenjak, U.; Pisek, M.; Vidmar, G.; Knez, S.; Medved, S. Mechanical testing of laminated composite materials for prosthetic sockets. Mater. Technol. 2021, 55, 655–661. [Google Scholar] [CrossRef]
- Lee, W.C.C.; Zhang, M.; Jia, X.; Cheung, J.T.M. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med. Eng. Phys. 2004, 26, 655–662. [Google Scholar] [CrossRef]
- EN ISO 10328:2016 E; Prosthetics—Structural testing of lower -limb prostheses—Requirements and test methods (ISO 10328:2016). European Committee for Standardization: Brussels, Belgium, 2016.
- Zhang, M.; Roberts, C. Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Med. Eng. Phys. 2000, 22, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, S.G.; Sanders, J.E. Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. J. Biomech. 2000, 33, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Chang, C.H.; Hsu, A.T.; Lin, C.C.; Chen, S.I.; Chang, G.L. A proposal for the pre-evaluation protocol of below-knee socket design—Integration pain tolerance with finite element analysis. J. Chin. Inst. Eng. 2003, 26, 853–860. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, M.; Lee, W.C.C. Load transfer mechanics between trans-tibial prosthetic socket and residual limb—Dynamic effects. J. Biomech. 2004, 9, 1371–1377. [Google Scholar] [CrossRef]
- Dumbleton, T.; Buis, A.W.P.; McFadyen, A.; McHugh, B.F.; McKay, G.; Murray, K.D.; Sexton, S. Dynamic interface pressure distributions of two transtibial prosthetic socket concepts. J. Rehabil. Res. Dev. 2009, 46, 405–415. [Google Scholar] [CrossRef]
- Campbell, A.I.; Sexton, S.; Schaschke, C.J.; Kinsman, H.; McLaughlin, B.; Boyle, M. Prosthetic limb sockets from plant-based composite materials. Prosthet. Orthot. Int. 2012, 36, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.; Lee, P.; Ng, P. Structural integrity of polypropylene prosthetic sockets manufactured using the polymer deposition technique. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2002, 216, 359–368. [Google Scholar] [CrossRef]
- van der Stelt, M.; Grobusch, M.P.; Koroma, A.R.; Papenburg, M.; Kebbie, I.; Slump, C.H.; Maal, T.J.; Brouwers, L. Pioneering low-cost 3D-printed transtibial prosthetics to serve a rural population in Sierra Leone—An observational cohort study. E Clin. Med. 2021, 35, 100874. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Regazzoni, D.; Rizzi, C.; Colombo, G. Design and Additive Manufacturing of Lower Limb Prosthetic Socket. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar]
- Neo, L.; Lee, P.; Goh, J. Principal structural testing of trans–tibial prosthetic assemblies: Specimen preparation. Prosthet. Orthot. Int. 2000, 24, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Current, T.; Kogler, G.; Earth, D. Static structural testing of trans-tibial composite sockets. Prosthet. Orthot. Int. 1999, 23, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Design Parameter | Value |
---|---|
Tibia length | 150 mm |
Fibula | cut 10 mm above the tibial end |
Mid-thigh circumference | 533 mm |
Mid-patella circumference | 368 mm |
Calf circumference | 392 mm |
Knee bent angle | 4 deg |
Component | Material Model | References | Parameters |
---|---|---|---|
Soft tissue | Ogden first order | Kallin et al. [27] | MU1 = 0.012 MPa A1 = 14 D1 = 1.67 MPa−1 |
Silicone liner | Yeoh third order | Cagle et al. [28] | C10 = 0.2014 MPa C20 = −0.00115 MPa C30 = 0.00041 MPa D1 = 3 MPa−1 |
Socket | Linear–elastic | Bombek et al. [29] | E = 4991 MPa ν = 0.3 |
Loading Step/Loading Condition | Magnitude [N] | |
---|---|---|
Donning | Solving interference | |
Vertical force (single leg stance) | 850 | |
ISO P5 I (heel strike) | Settling test force | 1024 |
Proof test force | 2240 | |
ISO P5 II (push off) | Settling test force | 920 |
Proof test force | 2013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plesec, V.; Harih, G. Development of a Generic Numerical Transtibial Model for Limb–Prosthesis System Evaluation. Appl. Sci. 2023, 13, 2339. https://doi.org/10.3390/app13042339
Plesec V, Harih G. Development of a Generic Numerical Transtibial Model for Limb–Prosthesis System Evaluation. Applied Sciences. 2023; 13(4):2339. https://doi.org/10.3390/app13042339
Chicago/Turabian StylePlesec, Vasja, and Gregor Harih. 2023. "Development of a Generic Numerical Transtibial Model for Limb–Prosthesis System Evaluation" Applied Sciences 13, no. 4: 2339. https://doi.org/10.3390/app13042339
APA StylePlesec, V., & Harih, G. (2023). Development of a Generic Numerical Transtibial Model for Limb–Prosthesis System Evaluation. Applied Sciences, 13(4), 2339. https://doi.org/10.3390/app13042339