The Effect of the Texture of Two Energy Bars on the Oral Processing of Cyclists: An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Studied Energy Bars
2.3. Procedures
2.4. Data Collection and Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knechtle, B.; Knechtle, P.; Lepers, R. Participation and Performance Trends in Ultra-Triathlons from 1985 to 2009. Scand. J. Med. Sci. Sport. 2011, 21, e82–e90. [Google Scholar] [CrossRef]
- Saris, W.H.M.; Antoine, J.M.; Brouns, F.; Fogelholm, M.; Gleeson, M.; Hespel, P.; Jeukendrup, A.E.; Maughan, R.J.; Pannemans, D.; Stich, V. PASSCLAIM-Physical Performance and Fitness. Eur. J. Nutr. 2003, 42 (Suppl. S1), i50–i95. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V. Participation trends of ultra endurance events. Sport. Med. Arthrosc. Rev. 2019, 27, 3–7. [Google Scholar] [CrossRef]
- Bravman, J.T.; Dunn, R.H. Cycling. In Sports-Related Fractures, Dislocations and Trauma: Advanced On- and Off-Field Management; Khodaee, M., Waterbrook, A.L., Gammons, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 847–852. [Google Scholar]
- Lucía, A.; Hoyos, J.; Santalla, A.; Earnest, C.; Chicharro, J.L. Tour de France versus Vuelta a Espana: Which Is Harder? Med. Sci. Sport. Exerc. 2003, 35, 872–878. [Google Scholar]
- Gonzalez, J.T.; Fuchs, C.J.; Smith, F.E.; Thelwall, P.E.; Taylor, R.; Stevenson, E.J.; Trenell, M.I.; Cermak, N.M.; van Loon, L.J.C. Ingestion of Glucose or Sucrose Prevents Liver but Not Muscle Glycogen Depletion during Prolonged Endurance-Type Exercise in Trained Cyclists. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E1032–E1039. [Google Scholar] [CrossRef] [PubMed]
- Hearris, M.A.; Hammond, K.M.; Fell, J.M.; Morton, J.P. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients 2018, 10, 298. [Google Scholar] [CrossRef]
- Coggan, A.; Coyle, E. Reversal of Fatigue during Prolonged Exercise by Carbohydrate Infusion or Ingestion. J. Appl. Physiol. 1987, 63, 2388–2395. [Google Scholar] [CrossRef]
- Nybo, L. CNS Fatigue and Prolonged Exercise: Effect of Glucose Supplementation. Med. Sci. Sport. Exerc. 2003, 35, 589–594. [Google Scholar] [CrossRef]
- Coyle, E.F.; Hagberg, J.M.; Hurley, B.F.; Martin, W.H.; Ehsani, A.A.; Holloszy, J.O. Carbohydrate Feeding during Prolonged Strenuous Exercise Can Delay Fatigue. J. Appl. Physiol. 1983, 55, 230–235. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Boon, H.; Gijsen, A.P.; Stegen, J.H.C.H.; Kuipers, H.; van Loon, L.J.C. Carbohydrate Supplementation during Prolonged Cycling Exercise Spares Muscle Glycogen but Does Not Affect Intramyocellular Lipid Use. Pflügers Arch.-Eur. J. Physiol. 2007, 454, 635–647. [Google Scholar] [CrossRef]
- Pfeiffer, B.; Stellingwerff, T.; Hodgson, A.B.; Randell, R.; Pöttgen, K.; Res, P.; Jeukendrup, A.E. Nutritional Intake and Gastrointestinal Problems during Competitive Endurance Events. Med. Sci. Sport. Exerc. 2012, 44, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E. Nutrition for Endurance Sports: Marathon, Triathlon, and Road Cycling. J. Sport. Sci. 2011, 29 (Suppl. S1), 91–99. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Jones, A.M.; Jeukendrup, A.E.; Mooses, M. Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Podlogar, T.; Wallis, G.A. New horizons in carbohydrate research and application for endurance athletes. Sport. Med. 2022, 52 (Suppl. S1), 5–23. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sport. Sci. 2011, 29, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, C.; Galloway, S.D.R. Carbohydrate Intake Practices and Determinants of Food Choices During Training in Recreational, Amateur, and Professional Endurance Athletes: A Survey Analysis. Front. Nutr. 2022, 9, 862396. [Google Scholar] [CrossRef]
- Reynolds, K.M.; Clifford, T.; Mears, S.A.; James, L.J. A Food First Approach to Carbohydrate Supplementation in Endurance Exercise: A Systematic Review. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 296–310. [Google Scholar] [CrossRef]
- Brooke, N.K.; Cosio-Lima, L. Nutrition in Cycling. Phys. Med. Rehabil. Clin. 2022, 33, 159–172. [Google Scholar] [CrossRef]
- Rowlands, D.S.; Houltham, S.D. Multiple-Transportable Carbohydrate Effect on Long-Distance Triathlon Performance. Med. Sci. Sport. Exerc. 2017, 49, 1734–1744. [Google Scholar] [CrossRef]
- Saris, W.H.M.; van Erp-Baart, M.A.; Brouns, F.; Westerterp, K.R.; Ten Hoor, F. Study on Food Intake and Energy Expenditure During Extreme Sustained Exercise: The Tour de France. Int. J. Sport. Med. 1989, 10, S26–S31. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.P.; Burini, R.C.; Jeukendrup, A. Gastrointestinal Complaints during Exercise: Prevalence, Etiology, and Nutritional Recommendations. Sport. Med. 2014, 44, 79–85. [Google Scholar] [CrossRef]
- Rehrer, N.J.; van Kemenade, M.; Meester, W.; Brouns, F.; Saris, W.H. Gastrointestinal Complaints in Relation to Dietary Intake in Triathletes. Int. J. Sport Nutr. Exerc. Metab. 1992, 2, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Cox, G.R. Systematic Review: Carbohydrate Supplementation on Exercise Performance or Capacity of Varying Durations. Appl. Physiol. Nutr. Metab. 2014, 39, 998–1011. [Google Scholar] [CrossRef]
- Fulks, B.A.; Callaghan, K.X.; Tewksbury, C.D.; Gerstner, G.E. Relationships between Chewing Rate, Occlusion, Cephalometric Anatomy, Muscle Activity, and Masticatory Performance. Arch. Oral Biol. 2017, 83, 161–168. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Rosenthal, A. Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. J. Texture Stud. 2019, 50, 369–380. [Google Scholar] [CrossRef]
- Rizo, A.; Jimenez-Pérez, I.; Camacho-García, A.; Fiszman, S.; Pérez-Soriano, P.; Tarrega, A. Impact of Texture TDS and Flavour TDS Tasks and of Chocolate-Chip Biscuit Characteristics on Oral Processing Features. Food Qual. Prefer. 2019, 76, 109–117. [Google Scholar] [CrossRef]
- Steele, C.M.; Alsanei, W.A.; Ayanikalath, S.; Barbon, C.E.A.; Chen, J.; Cichero, J.A.Y.; Coutts, K.; Dantas, R.O.; Duivestein, J.; Giosa, L.; et al. The Influence of Food Texture and Liquid Consistency Modification on Swallowing Physiology and Function: A Systematic Review. Dysphagia 2015, 30, 2–26. [Google Scholar] [CrossRef]
- Le Révérend, B.; Saucy, F.; Moser, M.; Loret, C. Adaptation of Mastication Mechanics and Eating Behaviour to Small Differences in Food Texture. Physiol. Behav. 2016, 165, 136–145. [Google Scholar] [CrossRef]
- Oncescu Moraru, A.; Preoteasa, C.; Preoteasa, E. Masticatory Function Parameters in Patients with Removable Dental Prosthesis. J. Med. Life 2019, 12, 43–48. [Google Scholar] [CrossRef]
- Oberlin-Brown, K.T.; Siegel, R.; Kilding, A.E.; Laursen, P.B. Oral Presence of Carbohydrate and Caffeine in Chewing Gum: Independent and Combined Effects on Endurance Cycling Performance. Int. J. Sport. Physiol. Perform. 2016, 11, 164–171. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; pp. 19–66. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Chartogne, M.; Millour, G.; García-López, J.; Duc, S.; Rodríguez-Marroyo, J.A.; Pernía, R.; Bertucci, W. Acute effects of small changes in antero-posterior shoe-cleat position on physiological and biomechanical variables in road cycling. Sport. Biomech. 2022, 1–12, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Santalla, A.; Earnest, C.P.; Marroyo, J.A.; Lucia, A. The Tour de France: An updated physiological review. Int. J. Sport. Physiol. Perform. 2012, 7, 200–209. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical Bases of Perceived Exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Buck, J.R.; Schafer, R.W. Discrete-Time Signal Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; pp. 184–201. [Google Scholar]
- Martínez-Sanz, J.M.; Fernández Nuñez, A.; Sospedra, I.; Martínez-Rodríguez, A.; Domínguez, R.; González-Jurado, J.A.; Sánchez-Oliver, A.J. Nutrition-related adverse outcomes in endurance sports competitions: A review of incidence and practical recommendations. Int. J. Environ. Res. Public Health 2020, 17, 4082. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sport. Nutr. 2018, 15, 2–57. [Google Scholar]
- Wilson, P.B. ‘I Think I’m Gonna Hurl’: A Narrative Review of the Causes of Nausea and Vomiting in Sport. Sports 2019, 7, 162. [Google Scholar] [CrossRef]
- Foster, K.D.; Grigor, J.M.; Cheong, J.N.; Yoo, M.J.; Bronlund, J.E.; Morgenstern, M.P. The Role of Oral Processing in Dynamic Sensory Perception. J. Food Sci. 2011, 76, R49–R61. [Google Scholar] [CrossRef] [PubMed]
- Van der Bilt, A.; Abbink, J.H. The Influence of Food Consistency on Chewing Rate and Muscular Work. Arch. Oral Biol. 2017, 83, 105–110. [Google Scholar] [CrossRef]
- Stribiţcaia, E.; Evans, C.E.; Gibbons, C.; Blundell, J.; Sarkar, A. Food texture influences on satiety: Systematic review and meta-analysis. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.L.; Wagoner, T.B.; Foegeding, E.A. Designing Foods for Satiety: The Roles of Food Structure and Oral Processing in Satiation and Satiety. Food Struct. 2016, 13, 1–12. [Google Scholar] [CrossRef]
- Miquel-Kergoat, S.; Azais-Braesco, V.; Burton-Freeman, B.; Hetherington, M.M. Effects of Chewing on Appetite, Food Intake and Gut Hormones: A Systematic Review and Meta-Analysis. Physiol. Behav. 2015, 151, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, A.; Takeuchi, K.; Sasaki, H.; Yoshii, T.; Soeda, R.; Ueda, T.; Sakurai, K. Influence of Chewing Time on Salivary Stress Markers. J. Prosthodont. Res. 2014, 58, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Koç, H.; Çakir, E.; Vinyard, C.J.; Essick, G.; Daubert, C.R.; Drake, M.A.; Osborne, J.; Foegeding, E.A. Adaptation of Oral Processing to the Fracture Properties of Soft Solids. J. Texture Stud. 2014, 45, 47–61. [Google Scholar] [CrossRef]
- Peyron, M.-A.; Mioche, L.; Renon, P.; Abouelkaram, S. Masticatory Jaw Movement Recordings: A New Method to Investigate Food Texture. Food Qual. Prefer. 1996, 7, 229–237. [Google Scholar] [CrossRef]
- Wilson, E.M.; Green, J.R. The Development of Jaw Motion for Mastication. Early Hum. Dev. 2009, 85, 303–311. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Drake, M.A. Invited Review: Sensory and Mechanical Properties of Cheese Texture1. J. Dairy Sci. 2007, 90, 1611–1624. [Google Scholar] [CrossRef]
- Takada, K.; Miyawaki, S.; Tatsuta, M. The Effects of Food Consistency on Jaw Movement and Posterior Temporalis and Inferior Orbicularis Oris Muscle Activities during Chewing in Children. Arch. Oral Biol. 1994, 39, 793–805. [Google Scholar] [CrossRef]
- Engelen, L.; Fontijn-Tekamp, A.; van der Bilt, A. The Influence of Product and Oral Characteristics on Swallowing. Arch. Oral Biol. 2005, 50, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, J.B.; Lillford, P.J. The Perception of Food Texture-the Philosophy of the Breakdown Path. J. Texture Stud. 1988, 19, 103–115. [Google Scholar] [CrossRef]
- Van Erp, T.; Hoozemans, M.; Foster, C.; De Koning, J.J. Case Report: Load, Intensity, and Performance Characteristics in Multiple Grand Tours. Med. Sci. Sport. Exerc. 2020, 52, 868–875. [Google Scholar] [CrossRef]
- Zuhdi, M.; Khairi, A.N. Analysis of organoleptic properties and consumer acceptance of frozen noodle products. J. Halal Sci. Res. 2022, 3, 15–19. [Google Scholar] [CrossRef]
- Guillochon, M.; Rowlands, D.S. Solid, Gel, and Liquid Carbohydrate Format Effects on Gut Comfort and Performance. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 247–254. [Google Scholar] [CrossRef]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Academic Press: San Diego, CA, USA, 2002; p. 427. [Google Scholar]
- Szczesniak, A.S. Objective Measurements of Food Texturea. J. Food Sci. 1963, 28, 410–420. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Gender differences in metabolism; nutrition and supplements. J. Sci. Med. Sport 2000, 3, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Wallis, G.A.; Dawson, R.; Achten, J.; Webber, J.; Jeukendrup, A.E. Metabolic response to carbohydrate ingestion during exercise in males and females. Am. J. Physiol.-Endocrinol. Metab. 2006, 290, E708–E715. [Google Scholar] [CrossRef]
- Feron, G.; Salles, C. Food oral processing in humans: Links between physiological parameters, release of flavour stimuli and flavour perception of food. Int. J. Food Stud. 2018, 7, 1–12. [Google Scholar] [CrossRef]
Energy Bar | AP | EX |
---|---|---|
Model | Energy Date | Energy Sport Bar |
Mass | 40 g | 40 g |
Price | EUR 0.8 | EUR 2.5 |
Energetic value | 136 kcal | 142 kcal |
Carbohydrates | 26 g | 27.2 g |
Sugars | 22 g | 11.7 g |
Fat | 2.2 g | 2.3 g |
Protein | 1.3 g | 2.5 g |
Sodium | 60 mg | 100 mg |
Parameter | Description |
---|---|
Duration (s) | Time from when the food was placed in the mouth and chewing began until jaw movement was no longer detected. |
Number of chews (n) | Number of complete chews counted during the chewing duration. |
Mean time (cs) | Average time for each chew. |
Minimum time (cs) | Minimum time for each chew. |
Maximum time (cs) | Maximum time for each chew. |
Average opening (mm) | Mean displacement of the jaw during the phases of opening the mouth. |
Minimum opening (mm) | Minimum displacement of the jaw during the phases of opening the mouth. |
Maximum opening (mm) | Maximum displacement of the jaw during the phases of opening the mouth. |
Average closing (mm) | Mean displacement of the jaw during the phases of closing the mouth. |
Minimum closing (mm) | Minimum displacement of the jaw during the phases of closing the mouth. |
Maximum closing (mm) | Maximum displacement of the jaw during the phases of closing the mouth. |
Speed (mm/s) | Average jaw speed. |
Variable | AP Bar Mean ± SD | EX Bar Mean ± SD | p (ES) |
---|---|---|---|
Duration (s) | 32.71 ± 6.06 * | 39.79 ± 10.57 | p = 0.013 (>0.8) |
Number of chews (n) | 43.30 ± 10.01 ** | 51.80 ± 12.21 | p = 0.009 (0.7) |
Mean time (cs) | 76.50 ± 6.50 | 76.81 ± 6.90 | p > 0.05 |
Minimum time (cs) | 54.02 ± 6.01 | 51.50 ± 3.60 | p > 0.05 |
Maximum time (cs) | 139.25 ± 28.28 | 151.75 ± 24.89 | p > 0.05 |
Average opening (mm) | 13.54 ± 2.66 * | 12.41 ± 2.76 | p = 0.014 (0.4) |
Minimum opening (mm) | 5.55 ± 2.26 * | 4.64 ± 1.92 | p = 0.013 (0.4) |
Maximum opening (mm) | 21.48 ± 2.81 | 21.56 ± 3.76 | p > 0.05 |
Average closing (mm) | 13.73 ± 2.64 ** | 12.51 ± 2.77 | p = 0.009 (0.4) |
Minimum closing (mm) | 5.35 ± 2.47 | 4.77 ± 1.62 | p > 0.05 |
Maximum closing (mm) | 22.08 ± 3.18 | 21.82 ± 3.34 | p > 0.05 |
Speed (mm/s) | 17.90 ± 3.74 | 16.54 ± 5.06 | p > 0.05 |
Variable | AP Bar Mean ± SD | EX Bar Mean ± SD | p (ES) |
---|---|---|---|
Torque (Nm) | 13.04 ± 3.21 | 15.63 ± 1.85 | p > 0.05 |
Speed (km/h) | 24.36 ± 2.18 | 26.16 ± 1.47 | p > 0.05 |
Average power (W) | 127.65 ± 6.72 | 125.47 ± 6.97 | p > 0.05 |
Average cadence (p*m) | 80.36 ± 4.49 | 77.64 ± 1.81 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Perez, I.; Aladro-Gonzalvo, A.R.; Vera Morán, A.; Camacho-García, A.; Encarnación-Martínez, A.; Pérez-Soriano, P. The Effect of the Texture of Two Energy Bars on the Oral Processing of Cyclists: An Exploratory Study. Appl. Sci. 2023, 13, 2362. https://doi.org/10.3390/app13042362
Jimenez-Perez I, Aladro-Gonzalvo AR, Vera Morán A, Camacho-García A, Encarnación-Martínez A, Pérez-Soriano P. The Effect of the Texture of Two Energy Bars on the Oral Processing of Cyclists: An Exploratory Study. Applied Sciences. 2023; 13(4):2362. https://doi.org/10.3390/app13042362
Chicago/Turabian StyleJimenez-Perez, Irene, Arian Ramón Aladro-Gonzalvo, Antonio Vera Morán, Andrés Camacho-García, Alberto Encarnación-Martínez, and Pedro Pérez-Soriano. 2023. "The Effect of the Texture of Two Energy Bars on the Oral Processing of Cyclists: An Exploratory Study" Applied Sciences 13, no. 4: 2362. https://doi.org/10.3390/app13042362
APA StyleJimenez-Perez, I., Aladro-Gonzalvo, A. R., Vera Morán, A., Camacho-García, A., Encarnación-Martínez, A., & Pérez-Soriano, P. (2023). The Effect of the Texture of Two Energy Bars on the Oral Processing of Cyclists: An Exploratory Study. Applied Sciences, 13(4), 2362. https://doi.org/10.3390/app13042362