Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits
Abstract
:1. Introduction
2. Cold Plasma Technology
2.1. Plasma Production
2.2. Cold Plasma Sources
3. Uses of Cold Plasma in Food Industry
3.1. Germination
3.2. Pesticide’s Degradation
3.3. Pest and Mycotoxin Removal
3.4. Food Sterilization
Microorganism | Food Matrice | Plasma Type | Results | References |
---|---|---|---|---|
E. coli and Salmonella | Apples surface | Atmospheric cold plasma DBD | Raising the treatment duration enhanced atmospheric cold plasma’s antibacterial activities towards the bacteria species. | [69] |
S. aureus, E. coli, C. albicans | Orange juice | Dielectric barrier discharge | Staphylococcus aureus, Escherichia coli, and Candida albicans were treated for 12, 8, and 25 s, respectively, and the numbers of each microorganism decreased more than 5 logs. | [70] |
Salmonella | Grape tomatoes | Dielectric barrier discharge | Inactivated Salmonella without altering the color or firmness properties of the grape tomatoes. | [12] |
Z. rouxii | Apple juice | Dielectric barrier discharge | 5-log reduction of viable cells population in 140 s | [71] |
Escherichia coli | Raw chicken breasts | Atmospheric pressure plasma jet | 20 mm and longer treatment time (10 min) in presence of oxygen to the nitrogen gas. | [72] |
S. enterica | Egg | Direct DBD | The composition of carrier gas affected the rate of Salmonella inactivation Plasma treatments did not deteriorate the quality attributes of eggs. | [73] |
Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Aspergillus | Beef jerky | flexible thin-layer plasma system | Up to 2- to 3-log reduction | [74] |
Bacillus atrophaeus, Escherichia coli | Barley and wheat | DBD | reduced by 3.2- and 3.2-log10 CFU/g for B. atrophaeus cells and E. coli respectively | [75] |
Bacillus amyloliquefaciens endospores | Wheat | DBD | 3-log CFU reduction in microbial load | [76] |
Mesophiles | Chicken breast | DBD-ACP—In package | 1.90 log CFU/g reduction in microbial load | [77] |
L. monocytogenes | Strawberries | DBD air plasma | 4.2 of L. monocytogenes | [78] |
Psychrophiles | Raw chicken breast meat | Dielectric discharge | >1.0-log reduction in microbial load | [79] |
Bacillus tequilensis | Black peppercorns | Dielectric barrier discharge | 3.4-log CFU/g 1.7-log spores/g reduction in microbial load | [80] |
Salmonella | Korean Rice Cakes | DBD | Salmonella growth is reduced by 3.9 ± 0.3-log CFU/g. | [81] |
Bacillus cereus | Red pepper powder | DBD | ≥6.0-log reduction | [82] |
Enterococcus faecalis | Fresh pineapple juice | Plasma jet and surface dielectric barrier discharge | 8.2-log reduction | [83] |
Escherichia coli, Listeria monocytogenes, Staphylococcusaureus | Milk | DBD | 98.75–100% fatality rate | [84] |
4. Food Quality and Safety Evaluation
5. Advantages and Disadvantages of Cold Plasma
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nwabor, O.F.; Onyeaka, H.; Miri, T.; Obileke, K.; Anumudu, C.; Hart, A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. Food Eng. Rev. 2022, 14, 535–554. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Combined Compendium of Food Additive Specifications: Analytical methods, Test Procedures and Laboratory Solutions Used by and Referenced in Food Additive Specifications; Food & Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Gunarathne, K.M.; Marikkar, J.M. Food Authentication for Food Safety and Nutritional Security in Sri Lanka. Environment 2022, 86, 87. [Google Scholar]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Plasma in food and agriculture. In Cold Plasma in Food and Agriculture; Academic Press: Cambridge, MA, USA, 2016; pp. 1–16. [Google Scholar]
- Kim, H.J.; Jayasena, D.D.; Yong, H.I.; Jo, C. Quality of cold plasma treated foods of animal origin. Cold Plasma Food Agric. 2016, 273–291. [Google Scholar] [CrossRef]
- Gavahian, M.; Khaneghah, A.M. Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit. Rev. Food Sci. Nutr. 2020, 60, 1581–1592. [Google Scholar] [CrossRef]
- Feizollahi, E.; Misra, N.N.; Roopesh, M.S. Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Crit. Rev. Food Sci. Nutr. 2020, 61, 666–689. [Google Scholar] [CrossRef]
- Hernández-Torres, C.J.; Reyes-Acosta, Y.K.; Chávez-González, M.L.; Dávila-Medina, M.D.; Verma, D.K.; Martínez-Hernández, J.L.; Narro-Céspedes, R.I.; Aguilar, C.N. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J. Biol. Sci. 2022, 29, 1957–1980. [Google Scholar] [CrossRef]
- Sruthi, N.U.; Josna, K.; Pandiselvam, R.; Kothakota, A.; Gavahian, M.; Khaneghah, A.M. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem. 2022, 368, 130809. [Google Scholar] [CrossRef]
- Kumar, D.; Yadav, G.P.; Dalbhagat, C.G.; Mishra, H.N. Effects of cold plasma on food poisoning microbes and food contaminants including toxins and allergens: A review. J. Food Process. Preserv. 2022, 46, e17010. [Google Scholar] [CrossRef]
- Tappi, S.; Ragni, L.; Tylewicz, U.; Romani, S.; Ramazzina, I.; Rocculi, P. Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innov. Food Sci. Emerg. Technol. 2019, 53, 56–62. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Fan, X.; Jin, T.Z. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res. Int. 2018, 108, 378–386. [Google Scholar] [CrossRef]
- Beyrer, M.; Pina-Perez, M.C.; Martinet, D.; Andlauer, W. Cold plasma processing of powdered Spirulina algae for spore inactivation and preservation of bioactive compounds. Food Control 2020, 118, 107378. [Google Scholar] [CrossRef]
- Niemira, B.A.; Gutsol, A. Nonthermal plasma as a novel food processing technology. In Nonthermal Processing Technologies for Food; Zhang, H.Q., Barbosa-Canovas, G., Balasubramaniam, V.M., Dunne, P., Farkas, D., Yuan, J., Eds.; Blackwell Publishing: Ames, IA, USA, 2010; pp. 271–288. [Google Scholar]
- Pankaj, S.K.; Keener, K.M. Cold plasma applications in food packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef] [PubMed]
- Assadi, A.A.; Bouzaza, A.; Lemasle, M.; Wolbert, D. Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor. Chem. Eng. Res. Des. 2015, 93, 640–651. [Google Scholar] [CrossRef]
- Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 2000, 9, 441. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Mandal, R.; Singh, A.; Singh, A.P. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Rathod, N.B.; Kulawik, P.; Ozogul, Y.; Ozogul, F.; Bekhit, A.E.D.A. Recent developments in non-thermal processing for seafood and seafood products: Cold plasma, pulsed electric field and high hydrostatic pressure. Int. J. Food Sci. Technol. 2022, 57, 774–790. [Google Scholar] [CrossRef]
- Birania, S.; Attkan, A.K.; Kumar, S.; Kumar, N.; Singh, V.K. Cold plasma in food processing and preservation: A review. J. Food Process Eng. 2022, 45, e14110. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D. Advances in Cold Plasma Applications for Food Safety and Preservation; Elsevier: Richland, WA, USA, 2020. [Google Scholar]
- Nehra, V.; Kumar, A.; Dwivedi, H.K. Atmospheric non-thermal plasma sources. Int. J. Eng. 2008, 2, 53–68. [Google Scholar]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Ezhilarasi, P.N.; Rajauria, G. Application of cold plasma on food matrices: A review on current and future prospects. J. Food Process. Preserv. 2021, 45, e15070. [Google Scholar] [CrossRef]
- Laroque, D.A.; Seó, S.T.; Valencia, G.A.; Laurindo, J.B.; Carciofi, B.A.M. Cold plasma in food processing: Design, mechanisms, and application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Renu, J. Role of enzymes in seed germination. Int. J. Creat. Res. Thoughts 2018, 6, 2320–2882. [Google Scholar]
- William, E.; Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar]
- Ling, L.; Jiangang, L.; Minchong, S.; Chunlei, Z.; Yuanhua, D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Prasad, P.; Mohan, R.; Verma, M.K.; Kumar, B. Radiofrequency cold plasma treatment enhances seed germination and seedling growth in variety CIM-Saumya of sweet basil (Ocimum basilicum L.). J. Appl. Res. Med. Aromat. Plants 2019, 12, 78–81. [Google Scholar] [CrossRef]
- Kocira, S.; Pérez-Pizá, M.C.; Bohata, A.; Bartos, P.; Szparaga, A. Cold Plasma as a Potential Activator of Plant Biostimulants. Sustainability 2022, 14, 495. [Google Scholar] [CrossRef]
- Jiang, J.; He, X.; Li, L.; Li, J.; Shao, H.; Xu, Q.; Ye, R.; Dong, Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014, 16, 54. [Google Scholar] [CrossRef]
- Ling, L.; Jiafeng, J.; Jiangang, L.; Minchong, S.; Xin, H.; Hanliang, S.; Yuanhua, D. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Shen, M.; Hou, J.; Shao, H.; Dong, Y.; Jiang, J. Improving seed germination and peanut yields by cold plasma treatment. Plasma Sci. Technol. 2016, 18, 1027. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Bourke, P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process. Polym. 2019, 16, 1800148. [Google Scholar] [CrossRef]
- Starič, P.; Mravlje, J.; Mozetič, M.; Zaplotnik, R.; Šetina Batič, B.; Junkar, I.; Vogel Mikuš, K. The Influence of Glow and Afterglow Cold Plasma Treatment on Biochemistry, Morphology, and Physiology of Wheat Seeds. Int. J. Mol. Sci. 2022, 23, 7369. [Google Scholar] [CrossRef] [PubMed]
- Volin, J.C.; Denes, F.S.; Young, R.A.; Park, S.M. Modification of seed germination performance through cold plasma chemistry technology. Crop Sci. 2000, 40, 1706–1718. [Google Scholar] [CrossRef]
- Yang, A.; Park, J.-H.; El-Aty, A.A.; Choi, J.-H.; Oh, J.-H.; Do, J.-A.; Kwon, K.; Shim, K.-H.; Choi, O.-J.; Shim, J.-H. Synergistic effect of washing and cooking on the removal of multi-classes of pesticides from various food samples. Food Control 2012, 28, 99–105. [Google Scholar] [CrossRef]
- Park, J.-Y.; Choi, J.-H.; El-Aty, A.A.; Kim, B.M.; Oh, J.-H.; Do, J.-A.; Kwon, K.S.; Shim, K.-H.; Choi, O.-J.; Shin, S.C.; et al. Simultaneous multiresidue analysis of 41 pesticide residues in cooked foodstuff using QuEChERS: Comparison with classical method. Food Chem. 2011, 128, 241–253. [Google Scholar] [CrossRef]
- Sarangapani, C.; O’Toole, G.; Cullen, P.J.; Bourke, P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [Google Scholar] [CrossRef]
- Sarangapani, C.; Misra, N.N.; Milosavljevic, V.; Bourke, P.; O’Regan, F.; Cullen, P.J. Pesticide degradation in water using atmospheric air cold plasma. J. Water Process Eng. 2016, 9, 225–232. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jellali, S.; Akrout, H.; Assadi, A.A.; Bousselmi, L. Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions. J. Clean. Prod. 2018, 201, 28–38. [Google Scholar] [CrossRef]
- Mousavi, S.; Imani, S.; Dorranian, D.; Larijani, K.; Shojaee, M. Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. J. Plant Prot. Res. 2017, 57, 25–35. [Google Scholar] [CrossRef]
- Kaur, M.; Hüberli, D.; Bayliss, K.L. Cold plasma: Exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop Pasture Sci. 2020, 71, 715–724. [Google Scholar] [CrossRef]
- Sutar, S.A.; Thirumdas, R.; Chaudhari, B.B.; Deshmukh, R.R.; Annapure, U.S. Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. J. Stored Prod. Res. 2021, 92, 101774. [Google Scholar] [CrossRef]
- Ouf, S.A.; Basher, A.H.; Mohamed, A.A. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 2015, 95, 3204–3210. [Google Scholar] [CrossRef]
- Ten Bosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viol, W.; Karlovsky, P. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins 2017, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Ileleji, K.; Stroshine, R.L.; Keener, K.; Jensen, J.L. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017, 10, 1042–1052. [Google Scholar] [CrossRef]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 2016, 8, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.; Thirumdas, R.; Sarangapani, C.; Deshmukh, R.R.; Annapure, U.S. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 2017, 77, 187–191. [Google Scholar] [CrossRef]
- Ren, C.R.; Xiao, J.X.; Wang, S.Q.; Jiang, W.L.; Zhang, Y.; Liu, Z. Effect of peanut components on the degradation of aflatoxin B_1 treated by atmospheric pressure plasma. Sci. Technol. Cereals Oils Foods 2017, 2, 7. [Google Scholar]
- Basaran, P.; Basaran-Akgul, N.; Oksuz, L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008, 25, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Sakudo, A.; Toyokawa, Y.; Misawa, T.; Imanishi, Y. Degradation and detoxification of aflatoxin B1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 2017, 73, 619–626. [Google Scholar] [CrossRef]
- Kriz, P.; Petr, B.; Zbynek, H.; Jaromír, K.; Pavel, O.; Petr, S.; Miroslav, D. Influence of plasma treatment in open air on mycotoxin content and grain nutriments. Plasma Med. 2015, 5, 145–158. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.F.A.; Mahmoud, E.A.; Elaragi, G.M. Non thermal plasma for control of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2014, 59, 215–221. [Google Scholar] [CrossRef]
- Mishenko, A.A.; Malinin, O.A.; Rashkovan, V.M.; Basteev, A.V.; Bazyma, L.A.; Mazalov, Y.P.; Kutovoy, V.A. Complex high-frequency technology for protection of grain against pests. J. Microw. Power Electromagn. Energy 2000, 35, 179–184. [Google Scholar] [CrossRef]
- Shahrzad Mohammadi, S.; Dorranian, D.; Tirgari, S.; Shojaee, M. The effect of non-thermal plasma to control of stored product pests and changes in some characters of wheat materials. J. Biodivers. Environ. Sci. 2015, 7, 150–156. [Google Scholar]
- Ratish Ramanan, K.; Sarumathi, R.; Mahendran, R. Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour. J. Stored Prod. Res. 2018, 77, 126–134. [Google Scholar] [CrossRef]
- Carpen, L.; Chireceanu, C.; Teodorescu, M.; Chiriloaie, A.; Teodoru, A.; Dinescu, G. The effect of argon/oxygen and argon/nitrogen atmospheric plasma jet on stored products pests. Rom. J. Phys. 2019, 64, 503–516. [Google Scholar]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Khezami, L.; Amrane, A.; Assadi, A.A. A comparative study of ceramic nanoparticles synthesized for antibiotic removal: Catalysis characterization and photocatalytic performance modeling. Environ. Sci. Pollut. Res. 2021, 28, 13900–13912. [Google Scholar] [CrossRef]
- Kenfoud, H.; Baaloudj, O.; Nasrallah, N.; Bagtache, R.; Assadi, A.A.; Trari, M. Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals: Degradation and reduction of organic and inorganic pollutants. J. Mater. Sci. Mater. Electron. 2021, 32, 16411–16420. [Google Scholar] [CrossRef]
- Guesmi, A.; Cherif, M.M.; Baaloudj, O.; Kenfoud, H.; Badawi, A.K.; Elfalleh, W.; Hamadi, N.B.; Khezam, L.; Assadi, A.A. Disinfection of corona and myriad viruses in water by non-thermal plasma: A review. Environ. Sci. Pollut. Res. 2022, 29, 55321–55335. [Google Scholar] [CrossRef]
- Han, I.; Mumtaz, S.; Ashokkumar, S.; Yadav, K.D.; Choi, E.H. Review of Developments in Combating COVID-19 by Vaccines, Inhibitors, Radiations, and Nonthermal Plasma. Curr. Issues Mol. Biol. 2022, 44, 5666–5690. [Google Scholar] [CrossRef]
- Afshari, R.; Hosseini, H. Non-thermal plasma as a new food preservation method: Its present and future prospect. J. Paramed. Sci. 2014, 5, 116–120. [Google Scholar]
- Niemira, B.A. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Kilonzo-Nthenge, A.; Liu, S.; Yannam, S.; Patras, A. Atmospheric cold plasma inactivation of salmonella and Escherichia coli on the surface of golden delicious apples. Front. Nutr. 2018, 5, 120. [Google Scholar] [CrossRef]
- Shi, X.M.; Zhang, G.J.; Wu, X.L.; Li, Y.X.; Ma, Y.; Shao, X.J. Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Trans. Plasma Sci. 2011, 39, 1591–1597. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Li, J.; Liu, S.; Zhang, H.; Bai, Y. Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chem. 2018, 254, 201–207. [Google Scholar] [CrossRef]
- Yong, H.I.; Kim, H.J.; Park, S.; Choe, W.; Oh, M.W.; Jo, C. Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli. Foodborne Pathog. Dis. 2014, 11, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, N.; Apostol, L.; Gherendi, F. Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control 2017, 76, 52–61. [Google Scholar] [CrossRef]
- Yong, H.I.; Lee, H.; Park, S.; Park, J.; Choe, W.; Jung, S.; Jo, C. Flexible thin layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat’s physicochemical properties. Meat Sci. 2017, 123, 151–156. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef]
- Butscher, D.; Zimmermann, D.; Schuppler, M.; Rudolf von Rohr, P. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control 2016, 60, 636–645. [Google Scholar] [CrossRef]
- Moutiq, R.; Misra, N.N.; Mendonça, A.; Keener, K. In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Sci. 2020, 159, 107942. [Google Scholar] [CrossRef]
- Ziuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014, 42, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Rothrock MJJr Line, J.E.; Lawrence, K.C.; Gamble, G.R.; Bowker, B.C.; Keener, K.M. Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. Innov. Food Sci. Emerg. Technol. 2020, 66, 102477. [Google Scholar] [CrossRef]
- Bang, I.H.; Kim, Y.E.; Lee, S.Y.; Min, S.C. Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innov. Food Sci. Emerg. Technol. 2020, 63, 102392. [Google Scholar] [CrossRef]
- Kang, J.H.; Bai, J.; Min, S.C. Inactivation of Indigenous Microorganisms and Salmonella in Korean Rice Cakes by In-Package Cold Plasma Treatment. Int. J. Environ. Res. Public Health 2021, 18, 3360. [Google Scholar] [CrossRef]
- Jeon, E.B.; Choi, M.S.; Kim, J.Y.; Park, S.Y. Synergistic effects of mild heating and dielectric barrier discharge plasma on the reduction of Bacillus Cereus in red pepper powder. Foods 2020, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Sohbatzadeh, F.; Yazdanshenas, H.; Soltani, A.-H.; Shabannejad, A. An innovative strategy to rapidly inactivate 8.2-log Enterococcus faecalis in fresh pineapple juice using cold atmospheric plasma. Sci. Rep. 2021, 11, 16010. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Luo, Y.; Zhao, F.; Murad, M.S.; Mu, G. Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization. Plasma Process. Polym. 2021, 18, 1900219. [Google Scholar] [CrossRef]
- Misra, N.N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Misra, N.N. Quality of cold plasma treated plant foods. In Cold Plasma in Food and Agriculture; Academic Press: Cambridge, MA, USA, 2016; pp. 253–271. [Google Scholar]
- Lee, K.H.; Woo, K.S.; Yong, H.I.; Jo, C.; Lee, S.K.; Lee, B.W.; Oh, S.-K.; Lee, Y.-Y.; Lee, B.; Kim, H.-J. Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Sci. Biotechnol. 2018, 27, 661–667. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.H.; Khaneghah, A.M.; Barba, F.J.; Misra, N.N. A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci. Technol. 2018, 77, 32–41. [Google Scholar] [CrossRef]
- Mir, S.A.; Siddiqui, M.W.; Dar, B.N.; Shah, M.A.; Wani, M.H.; Roohinejad, S.; Annor, G.; Mallikarjunan, K.; Chin, C.; Ali, A. Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. J. Appl. Microbiol. 2020, 129, 474–485. [Google Scholar] [CrossRef]
- Won, M.Y.; Lee, S.J.; Min, S.C. Mandarin preservation by microwave-powered cold plasma treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 25–32. [Google Scholar] [CrossRef]
- Amini, M.; Ghoranneviss, M. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT-Food Sci. Technol. 2016, 73, 178–184. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Kljusurić, J.G.; Putnik, P.; Vukušić, T.; Herceg, Z.; Dragović-Uzelac, V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem. 2016, 212, 323–331. [Google Scholar] [CrossRef]
- Herceg, Z.; Kovačević, D.B.; Kljusurić, J.G.; Jambrak, A.R.; Zorić, Z.; Dragović-Uzelac, V. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem. 2016, 190, 665–672. [Google Scholar] [CrossRef]
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Keener, K.M.; Bourke, P.; Mosnier, J.P.; Cullen, P.J. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J. Biosci. Bioeng. 2014, 118, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Patil, S.; Moiseev, T.; Bourke, P.; Mosnier, J.P.; Keener, K.M.; Cullen, P.J. In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 2014, 125, 131–138. [Google Scholar] [CrossRef]
- Berardinelli, A.; Vannini, L.; Ragni, L.; Guerzoni, M.E. Impact of atmospheric plasma generated by a DBD device on quality-related attributes of “Abate Fetel” pear fruit. In Plasma for Bio-Decontamination, Medicine and Food Security; Machala, Z., Hensel, K., Akishev, Y., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 457–467. [Google Scholar]
- Hosseini, S.M.; Hosseinzadeh Samani, B.; Rostami, S.; Lorigooini, Z.; Gavahian, M.; Barba, F.J. Design and characterization of jet cold atmospheric pressure plasma and its effect on Escherichia coli, color, pH and bioactive compounds of sour cherry juice. Int. J. Food Sci. Technol. 2021, 56, 4883–4892. [Google Scholar] [CrossRef]
- Chutia, H.; Mahanta, C.L. Influence of cold plasma voltage and time on quality attributes of tender coconut water (Cocos nucifera L.) and degradation kinetics of its blended beverage. J. Food Process. Preserv. 2021, 45, e15372. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, W.; Zhang, Q.; Gao, G.; Meng, Y. Effect of cold plasma treatment on sterilizing rate and quality of kiwi turbid juice. J. Food Process Eng. 2021, 44, e13711. [Google Scholar] [CrossRef]
- Mehta, D.; Yadav, S.K. Recent Advances in Cold Plasma Technology for Food Processing. Food Eng. Rev. 2022, 14, 555–578. [Google Scholar] [CrossRef]
- Sriraksha, M.S.; Ayenampudi, S.B.; Noor, M.; Raghavendra, S.N.; Chakka, A.K. Cold plasma technology: An insight on its disinfection efficiency of various food systems. Food Sci. Technol. Int. 2022. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, C.; Zou, F.; Sun, Y.; Shang, N.; Wu, W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022, 11, 2818. [Google Scholar] [CrossRef]
- Bora, J.; Khan, T.; Mahnot, N.K. Cold plasma treatment concerning quality and safety of food: A review. Curr. Res. Nutr. Food Sci. J. 2022, 10, 427–446. [Google Scholar] [CrossRef]
- Zhu, Z.; Bassey, A.P.; Huang, T.; Zhang, Y.; Khan, I.A.; Huang, M. The formation, germination, and cold plasma inactivation of bacterial spore. Food Chem. Adv. 2022, 1, 100056. [Google Scholar] [CrossRef]
- Yepez, X.; Illera, A.E.; Baykara, H.; Keener, K. Recent advances and potential applications of atmospheric pressure cold plasma technology for sustainable food processing. Foods 2022, 11, 1833. [Google Scholar] [CrossRef]
- Dong, X.Y.; Yang, Y.L. A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioprocess Technol. 2019, 12, 1409–1421. [Google Scholar] [CrossRef]
- Kaavya, R.; Pandiselvam, R.; Gavahian, M.; Tamanna, R.; Jain, S.; Dakshayani, R.; Khanashyam, A.C.; Shrestha, P.; Kothakota, A.; Prasath, V.A.; et al. Cold plasma: A promising technology for improving the rheological characteristics of food. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Saremnezhad, S.; Soltani, M.; Faraji, A.; Hayaloglu, A.A. Chemical changes of food constituents during cold plasma processing: A review. Food Res. Int. 2021, 147, 110552. [Google Scholar] [CrossRef]
- Baek, K.H.; Heo, Y.S.; Yim, D.G.; Lee, Y.E.; Kang, T.; Kim, H.J.; Jo, C. Influence of atmospheric-pressure cold plasma-induced oxidation on the structure and functional properties of egg white protein. Innov. Food Sci. Emerg. Technol. 2021, 74, 102869. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of cold plasma on food quality: A review. Foods 2018, 7, 4. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids–A review. Future Foods 2021, 4, 100095. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, J.H.; Sun, D.W. Cold plasma-mediated treatments for shelf life extension of fresh produce: A review of recent research developments. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1312–1326. [Google Scholar] [CrossRef]
Mycotoxin | Food Matrix | Plasma Type | Results | References |
---|---|---|---|---|
Fumonisin B2 and ochratoxin A | Date palm fruits | atmospheric pressure argon cold plasma jet | Degradation of the two mycotoxins after 6 min and 7.5 min plasma treatments, respectively | [49] |
Deoxynivalenol, zearalenone, enniatins, fumonisin B1 and T2, Sterigmatocystin, and AAL toxin | Rice extracts | dielectric barrier discharge | The 60 s treatment extensively degraded pure mycotoxins | [50] |
Aflatoxin | Corn | high-voltage plasma | 90% degradation | [51] |
Hazelnuts | DBD | Mycotoxin reduced by 70% | [52] | |
Nuts | atmospheric pressure plasma | Reduces aflatoxin production (90%) Degradation of mycotoxin up to 72% | [53,54] | |
Hazelnuts, peanuts, and pistachio nuts | low-pressure cold plasma | 20 min air plasma treatment reduced 50% of total aflatoxins | [55] | |
AF B1 | Glass coverslip | nitrogen gas plasma generated by a static induction thyristor | The concentration reduced to <1/10th after 15 min | [56] |
DON, D3G T-2 | Barley | low-pressure microwave-generated plasma | 50% reduction | [57] |
Insect Pests | Popular Name | The Type of Plasma Method Employed | Greatest Efficient Treatment Time | Outcomes | Source |
---|---|---|---|---|---|
Plodia interpunctella | Indian meal moth | pulsed plasma jet | 20 p/s | larval mortality 86%, 53% pupal mortality and 46% reduction adult development | [58] |
Sitophilus granarius | Wheat weevil | vacuum and electromagnetic field plasma system | 10 s | 100% insect pest elimination | [59] |
Tribolium confusum, | Confused flour beetle, | DBD | 20 s | 100% elimination achieved | [60] |
Ephestia kuehniella | Mediterranean flour moth | DBD | 15 min | insect pest elimination at 100% at all stages | [61] |
Tribolium castaneum | Red flour beetle | ||||
Tribolium confusum, | Confused flour beetle | plasma jet | 15 min | T. confusum and T. castaneum have an elimination rate of up to 96% and 88%, respectively | [62] |
Tribolium castaneum | Red flour beetle |
Type of Fruit | Plasma Source | Gas Type | Process Parameters | Property | References |
---|---|---|---|---|---|
Mandarin | Cold plasma | Nitrogen | 2·45 GH, 2, 5, 10 min | Significant increase in total phenolic content and antioxidant activity | [90] |
Walnut | Plasma jet | Argon | 12 kHz, 15 kV, 3–11 min | No change in total phenolic content with plasma treatment | [91] |
Chokeberry juice | Cold atmospheric gas phase plasma jet | Argon | 25 kHz, 3 & 5 min | Plasma treated juice showed higher concentrations of hydroxycinnamic acids | [92] |
Pomegranate juice | Cold atmospheric plasma jet | Argon | Treatment time, 3, 5, 7 min | Plasma treatment increases the total phenolic content | [93] |
25 kHz, 2·5 kV voltage | |||||
Fresh-cut kiwifruit | Dielectric barrier discharge | Air | Voltage 2–19 V | Improving color retention and reducing the darkened area formation during storage | [94] |
Blueberries | Plasma jet | Air | Feed gas set at 60 psi, frequency of 47 kHz, power consumption of 549 W, CP for 0, 15, 30, 45, 60, 90 and 120 s | Significant reductions in firmness. Surface color significantly impacted after 120 s for the L* and a* values and 45 s for the b* values | [95] |
Strawberries | Dielectric barrier discharge | Air | 60 kV, 50 Hz | Retaining color and firmness of fruit | [96] |
Cherry tomatoes | Dielectric barrier discharge | Air | 60 kV, 50 Hz, 30, 60, 180, 300 s | Maintained color, firmness, pH and weight | [97] |
Pear | Dielectric barrier discharge | 15 kV, 10–20 min | There are no adverse effects on the quality characteristics of the fruits, such as fruit color, mass, fruit firmness, and fruit soluble solids content | [98] | |
Sour cherry juice | Jet plasma | 10, 15, 20 kV 1–9 min | Insignificant change in color and pH increase in the level of total phenols | [99] | |
Tender coconut water | DBD | 18–28 kV 1–3 min | Increase in the level of total fatty acids decrease in the level of total phenols and ascorbic acid | [100] | |
Kiwi turbid juice | 13, 22, 31 W15, 25, 35 Kv 1–5 min | Increase in the level of flavor and texture decrease in the level of total phenols | [101] |
Field | Cold Plasma Activity | References |
---|---|---|
Safety | Microbial inactivation | [103,104,105] |
Spore inactivation | [106] | |
Toxin and allergens Inactivation | [10,107] | |
Enzyme inactivation | [29] | |
Quality | Preserve nutritional content | [108] |
No sensory altertion | [9] | |
Physical and structural integrity | [109] | |
Compositional integrity | [110] | |
Shelf life | Reduce protein oxidation | [111] |
Reduce lipid oxidation | [112,113] | |
Inhibits microorganisms | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherif, M.M.; Assadi, I.; Khezami, L.; Ben Hamadi, N.; Assadi, A.A.; Elfalleh, W. Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits. Appl. Sci. 2023, 13, 2381. https://doi.org/10.3390/app13042381
Cherif MM, Assadi I, Khezami L, Ben Hamadi N, Assadi AA, Elfalleh W. Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits. Applied Sciences. 2023; 13(4):2381. https://doi.org/10.3390/app13042381
Chicago/Turabian StyleCherif, Mohamed Majdi, Imen Assadi, Lotfi Khezami, Naoufel Ben Hamadi, Aymen Amine Assadi, and Walid Elfalleh. 2023. "Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits" Applied Sciences 13, no. 4: 2381. https://doi.org/10.3390/app13042381
APA StyleCherif, M. M., Assadi, I., Khezami, L., Ben Hamadi, N., Assadi, A. A., & Elfalleh, W. (2023). Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits. Applied Sciences, 13(4), 2381. https://doi.org/10.3390/app13042381