AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry
Abstract
:1. Introduction
1.1. The Changing State of the Livestock Industry
1.2. The Livestock Activity Monitoring
2. Intelligent Monitoring System for the Intelligent Farm
3. Method of IMS
4. Estrus Prediction Using Livestock Activity Data
5. Learning Unique Information for Analysis of Target-Behavioral Characteristics
6. IMS for Livestock Industry
6.1. Field Experiments with IMS
6.2. Experimental Result
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kim, S.-J.; Lee, M.-H.; Yang, G.-H.; Yoe, H. A Study on the Interface Specification between Smart Livestock Big Data Service Provider and Smart Livestock Barn System. J. Korean Inst. Commun. Inf. Sci. 2021, 46, 2429–2438. [Google Scholar] [CrossRef]
- Rho, H.Y.; Hwang, J.B.; Cha, Y.B.; Seo, H.S.; Kim, C.H.; Lee, H.W.; Kim, H.T.; Jeon, S.G. The Effect of Introducing Estrus Detection System on Hanwoo Industry. Korean J. Agric. Manag. Policy 2019, 46, 168–187. [Google Scholar] [CrossRef]
- Kim, D.H.; Chae, J.W.; Cho, H.J. IT-based breeding cattle estrus detection system development trend. Korean Inst. Electr. Eng. 2018, 67, 13–18. [Google Scholar]
- Park, J.; Kim, J.Y.; Kim, J.H.; Bang, J.H.; Jung, S.H.; Sim, C.B. A Study on Smart Korean Catle Livestock Management Platform based on IoT and Machine Learning. J. Korea Multimed. Soc. 2020, 23, 1519–1530. [Google Scholar]
- Kim, G.M. A Case Study on Smart Livestock with Improved Productivity after Information and Communications Technologies Introduction. Int. J. Adv. Cult. Technol. 2021, 9, 177–182. [Google Scholar] [CrossRef]
- Ko, D.M.; Ahn, S.J.; Choi, K.S. Abnormal Motion Detection System for Cows using Motion History Images. In Proceedings of the IEIE Summer Conference, Cheju, Republic of Korea, 22 July 2016. [Google Scholar]
- Higaki, S.; Horihata, K.; Suzuki, C.; Sakurai, R.; Suda, T.; Yoshioka, K. Estrus Detection Using Background Image Subtraction Technique in Tie-Stalled Cows. Animals 2021, 11, 1795. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.N.; Yoo, G.Z.; Kim, C.H.; Jung, J.Y.; Kim, D.H.; Jeon, J.H. Study on behavioral change of estrus in Hanwoo (Korean native cattle). J. Korea Acad. -Ind. Coop. Soc. 2020, 21, 825–832. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C.; Mancino, M.; Cascone, G. Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioral activities from accelerometer data. Comput. Electron. Agric. 2017, 134, 124–134. [Google Scholar] [CrossRef]
- Miura, R.; Yoshioka, K.; Miyamoto, T.; Nogami, H.; Okada, H.; Itoh, T. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle. Anim. Reprod. Sci. 2017, 180, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Benaissa, S.; Uyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors. Comput. Electron. Agric. 2020, 168, 105153. [Google Scholar] [CrossRef]
- Watch. Available online: https://cloud.watch.impress.co.jp/docs/news/1014007.html (accessed on 5 August 2016).
- Yoon, M.; Chang, J.W. Design and Implementation of an Advanced Cattle Shed Management System using a Infrared Wireless Sensor nodes and Surveillance Camera. J. Korea Contents Assoc. 2021, 12, 22–34. [Google Scholar] [CrossRef]
- Chung, Y.; Kim, J.; Choi, D.; Chung, Y.; Park, D.; Kim, S.; Chang, H. Detection of the Head of a Mounting Cow Using Depth Information. In Proceedings of the Korea Information Processing Society Conference, Suwon, Republic of Korea, 22 April 2014. [Google Scholar] [CrossRef]
- Lee, S.J.; Sa, J.W.; Han, S.Y.; Kim, H.G.; Chung, Y.W.; Park, D.H. Calibration of Depth Information for Mounting Detection in a Multi-Kinects Environment. In Proceedings of the Institute of Electronics and Information Engineering Conference, Cheju, Republic of Korea, 2015; pp. 787–790. [Google Scholar]
- Kim, J.H.; Mun, D.H.; Sa, J.W.; Chung, Y.W.; Park, D.H. Detection of Mounting Behavior using Time Series Analysis. In Proceedings of the Korean Society for Internet Information Conference, Seoul, Republic of Korea, 4 November 2016; pp. 81–82. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27 June 2016. [Google Scholar] [CrossRef]
- Guo, H.; Kim, K.Y.; Kim, D.K.; Lee, S.J. Analyzing Activity for Estrus Detection in Korean Native Cattle. J. Knowl. Inf. Technol. Syst. (JKITS) 2015, 10, 193–202. [Google Scholar]
- Oh, S.G.; Park, D.H.; Chang, H.H.; Chung, Y.W. Unusual Behavior Detection of Korean Cows using Motion Vector and SVDD in Video Surveillance System. KIPS Trans. Softw. Data Eng. 2015, 84, 312–320. [Google Scholar]
- Schütz, A.K.; Schöler, V.; Krause, E.T.; Fischer, M.; Müller, T.; Freuling, C.M.; Conraths, F.J.; Stanke, M.; Homeier-Bachmann, T.; Lentz, H.H.K. Application of YOLOv4 for Detection and Motion Monitoring of Red Foxes. Animals 2021, 11, 1723. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Awasthi, A.; Riordan, D.; Walsh, J. Non-Invasive Sensor Technology for the Development of a Dairy Cattle Health Monitoring System. Computers 2016, 5, 23. [Google Scholar] [CrossRef]
- Pratama, Y.P.; Basuki, D.K.; Sukaridhoto, S.; Yusuf, A.A.; Yulianus, H.; Faruq, F.; Putra, F.B. Designing of a Smart Collar for Dairy Cow Behavior Monitoring with Application Monitoring in Microservices and Internet of Things-Based Systems. In Proceedings of the 2019 International Electronics Symposium (IES), Surabaya, Indonesia, 27–28 September 2019; pp. 527–533. [Google Scholar] [CrossRef]
- Alipio, M.; Villena, M.L. Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health 2023, 23, 100369. [Google Scholar] [CrossRef]
- Achour, B.; Belkadi, M.; Saddaoui, R.; Filali, I.; Aoudjit, R.; Laghrouche, M. High-accuracy and energy-efficient wearable device for dairy cows’ localization and activity detection using low-cost IMU/RFID sensors. Microsyst. Technol. 2022, 28, 1241–1251. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Chon, S.-I.; Park, J.-H.; Sivamani, S.; Lee, D.-H.; Choi, S.H. High Precision Classification of Resting and Eating Behaviors of Cattle by Using a Collar-Fitted Triaxial Accelerometer Sensor. Sensors 2022, 22, 5961. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Kim, J. AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry. Appl. Sci. 2023, 13, 2442. https://doi.org/10.3390/app13042442
Cho Y, Kim J. AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry. Applied Sciences. 2023; 13(4):2442. https://doi.org/10.3390/app13042442
Chicago/Turabian StyleCho, Youngjoon, and Jongwon Kim. 2023. "AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry" Applied Sciences 13, no. 4: 2442. https://doi.org/10.3390/app13042442
APA StyleCho, Y., & Kim, J. (2023). AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry. Applied Sciences, 13(4), 2442. https://doi.org/10.3390/app13042442