LSTM Network-Assisted Binocular Visual-Inertial Person Localization Method under a Moving Base
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Description of Visual-Inertial
2.1.1. Point Feature Representation
2.1.2. IMU Pre-Integration and Residual Measurement Model
2.2. Inertial Measurement Error Model under the Dynamic Base
2.2.1. Coordinate System Normalization
2.2.2. LSTM Network Architecture
2.2.3. Loss Function
2.2.4. Data Collection and Implementation
2.3. Neural Network-Assisted Visual-Inertial Person Localization Method under a Moving Base
2.3.1. Data Pre-Processing and Initialization
2.3.2. Sliding Window Nonlinear Optimization Mechanism for Estimating Poses
3. Results
Experiment and Analysis of Visual-Inertial Personnel Positioning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UWB | Ultra Wide Band |
IMU | Inertial Measurement Unit |
WLAN | Wireless Local Area Network |
PDR | Pedestrian navigation position projection |
ZUPT | Zero Velocity Update |
EKF | Extended Kalman Filter |
SLAM | Simultaneous Localization and Mapping |
MSCKF | Multi-State Constraint Kalman Filter |
SVO | Semidirect Visual Odometry |
VINS | Visual-Inertial SLAM |
ORB | ORiented Brief |
VIO | Visual Inertial Odometry |
RIDI | Robust imu double integration |
RoNIN | Robust Neural Inertial Navigation |
ResNet | Residual Network |
LSTM | Long short-term memory |
MSE | Mean Square Error |
ATE | Absolute Trajectory Error |
RTE | Relative Trajectory Error |
RMSE | Root Mean Square Error |
SFM | Structure From Motion |
References
- Xu, S.; Wang, Y.; Sun, M.; Si, M.; Cao, H. A Real-Time BLE/PDR Integrated System by Using an Improved Robust Filter for Indoor Position. Appl. Sci. 2021, 11, 8170. [Google Scholar] [CrossRef]
- Lee, J.-S.; Huang, S.-M. An Experimental Heuristic Approach to Multi-Pose Pedestrian Dead Reckoning without Using Magnetometers for Indoor Localization. IEEE Sens. J. 2019, 19, 9532–9542. [Google Scholar] [CrossRef]
- Hou, X.; Bergmann, J. A Pedestrian Dead Reckoning Method for Head-Mounted Sensors. Sensors 2020, 20, 6349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Ahamed, M.J. Pseudo-Zero Velocity Re-Detection Double Threshold Zero-Velocity Update (ZUPT) for Inertial Sensor-Based Pedestrian Navigation. IEEE Sens. J. 2021, 21, 13772–13785. [Google Scholar] [CrossRef]
- Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 298–304. [Google Scholar] [CrossRef] [Green Version]
- Mainetti, L.; Patrono, L.; Sergi, I. A survey on indoor positioning systems. In Proceedings of the 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2014; pp. 111–120. [Google Scholar] [CrossRef]
- Qin, T.; Shen, S. Robust initialization of monocular visual-inertial estimation on aerial robots. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4225–4232. [Google Scholar] [CrossRef]
- Servières, M.; Renaudin, V.; Dupuis, A.; Antigny, N. Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. J. Sens. 2021, 2021, 2054828. [Google Scholar] [CrossRef]
- Hu, W.; Lin, Q.; Shao, L.; Lin, J.; Zhang, K.; Qin, H. A Real-Time Map Restoration Algorithm Based on ORB-SLAM3. Appl. Sci. 2022, 12, 7780. [Google Scholar] [CrossRef]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [Green Version]
- Eade, E.; Drummond, T. Scalable Monocular SLAM. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 469–476. [Google Scholar] [CrossRef]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar] [CrossRef]
- Li, M.; Mourikis, A.I. High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 2013, 32, 690–711. [Google Scholar] [CrossRef]
- Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE Trans. Robot. 2016, 33, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Alliez, P.; Bonardi, F.; Bouchafa, S.; Didier, J.-Y.; Hadj-Abdelkader, H.; Munoz, F.I.; Kachurka, V.; Rault, B.; Robin, M.; Roussel, D. Real-Time Multi-SLAM System for Agent Localization and 3D Mapping in Dynamic Scenarios. In Proceedings of the International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24–30 October 2020; pp. 4894–4900. [Google Scholar] [CrossRef]
- Kachurka, V.; Rault, B.; Munoz, F.I.I.; Roussel, D.; Bonardi, F.; Didier, J.-Y.; Hadj-Abdelkader, H.; Bouchafa, S.; Alliez, P.; Robin, M. WeCo-SLAM: Wearable Cooperative SLAM System for Real-Time Indoor Localization Under Challenging Conditions. IEEE Sens. J. 2021, 22, 5122–5132. [Google Scholar] [CrossRef]
- Ruotsalainen, L.; Kirkko-Jaakkola, M.; Rantanen, J.; Mäkelä, M. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation. Sensors 2018, 18, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Peng, A.; Lin, Z.; Zheng, L.; Zheng, H. Pedestrian Dead Reckoning-Assisted Visual Inertial Odometry Integrity Monitoring. Sensors 2019, 19, 5577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, W.; Li, C.; Zhang, M.; Sun, Z.; Yuan, H.; Lin, F.; Li, Q. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments. Sensors 2021, 21, 7428. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yan, D.; Li, T.; Xia, M.; Shi, C. Pedestrian Gait Information Aided Visual Inertial SLAM for Indoor Positioning Using Handheld Smartphones. IEEE Sens. J. 2022, 22, 19845–19857. [Google Scholar] [CrossRef]
- Xiaoji, N.; Yan, W.; Jian, K. A pedestrian POS for indoor Mobile Mapping System based on foot-mounted visual–inertial sensors. Measurement 2022, 199, 111559. [Google Scholar] [CrossRef]
- Chen, C.; Lu, X.; Markham, A.; Trigoni, N. IONet: Learning to Cure the Curse of Drift in Inertial Odometry. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Available online: https://ojs.aaai.org/index.php/AAAI/article/view/12102 (accessed on 14 November 2022).
- Yan, H.; Shan, Q.; Furukawa, Y. RIDI: Robust IMU Double Integration. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 621–636. Available online: https://openaccess.thecvf.com/content_ECCV_2018/html/Hang_Yan_RIDI_Robust_IMU_ECCV_2018_paper.html (accessed on 14 November 2022).
- Herath, S.; Yan, H.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–1 August 2020; pp. 3146–3152. [Google Scholar] [CrossRef]
- Liu, W.; Caruso, D.; Ilg, E.; Dong, J.; Mourikis, A.I.; Daniilidis, K.; Kumar, V.; Engel, J. TLIO: Tight Learned Inertial Odometry. IEEE Robot. Autom. Lett. 2020, 5, 5653–5660. [Google Scholar] [CrossRef]
- Juarez-Salazar, R.; Zheng, J.; Diaz-Ramirez, V.H. Distorted pinhole camera modeling and calibration. Appl. Opt. 2020, 59, 11310–11318. [Google Scholar] [CrossRef]
- Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Graves, A., Ed.; Springer: Berlin, Heidelberg, 2012; pp. 37–45. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035. Available online: https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html (accessed on 17 November 2022).
References | Methods | Test Distance | Accuracy Error | ATE |
---|---|---|---|---|
[18] | incorporates IMU, laser, and visual | 185 m | 0.41% | X |
[19] | incorporates IMU, laser, and visual | 950 m | 0.55% | X |
[20] | Particle filtering method to combine inertial measurement units on monocular camera hinges | 340 m | 0.75% | X |
[21] | selection of the best effect switch between VIO and PDR | 1400 m | 0.61% | X |
[22] | PDR-aided visual-inertial | X | X | 0.635 m |
[23] | a visual-inertial odometry assisted by pedestrian gait information for smartphone-based | 123 m | 0.88% | X |
[24] | fusion of foot-mounted IMU and stereo camera | X | X | 0.227 m |
Model | 01 | 02 | ||
---|---|---|---|---|
ATE | RTE | ATE | RTE | |
Our algorithm | 0.68 | 0.76 | 2.28 | 1.95 |
RONIN-LSTM | 2.65 | 1.05 | 3.23 | 2.22 |
Precision improvement | 74.34% | 27.62% | 29.41% | 12.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Su, Z.; Dai, D. LSTM Network-Assisted Binocular Visual-Inertial Person Localization Method under a Moving Base. Appl. Sci. 2023, 13, 2705. https://doi.org/10.3390/app13042705
Xu Z, Su Z, Dai D. LSTM Network-Assisted Binocular Visual-Inertial Person Localization Method under a Moving Base. Applied Sciences. 2023; 13(4):2705. https://doi.org/10.3390/app13042705
Chicago/Turabian StyleXu, Zheng, Zhong Su, and Dongyue Dai. 2023. "LSTM Network-Assisted Binocular Visual-Inertial Person Localization Method under a Moving Base" Applied Sciences 13, no. 4: 2705. https://doi.org/10.3390/app13042705
APA StyleXu, Z., Su, Z., & Dai, D. (2023). LSTM Network-Assisted Binocular Visual-Inertial Person Localization Method under a Moving Base. Applied Sciences, 13(4), 2705. https://doi.org/10.3390/app13042705