The Influence of Different Non-Conventional Yeasts on the Odour-Active Compounds of Produced Beers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Yeast Propagation
2.3. Hopped Wort Preparation and Fermentation
2.4. Fermentation Kinetics and Basic Parameters of the Obtained Beers
2.5. Sugars and Organic Acid Analysis
2.6. Main Volatile Compounds (HS-SPME-GC-FID) and Odour-Active Volatile Components (HS-SPME-GC-O)
2.7. Minor Volatile Compounds Using HS-SPME-GC-MS
2.8. Sensory Analysis (QDA)
2.9. Statistical Analyses
3. Results and Discussion
3.1. Fermentation Kinetics and Basic Parameters of the Obtained Beers
3.2. Key Aroma Compounds of Hopped Wort
Compound | LRI 1 | Ion [m/z] | Threshold 2 [µg/L] | Concentration [µg/L] | OAV 3 | Aroma descriptor 4 |
---|---|---|---|---|---|---|
3-Methylbutanal | 634 | 44 | 0.2 | 9.7 | 48.3 | Bready, fruity [R] |
2-Methylbutanal x | 650 | 44 | 12.5 | 5.0 | 0.4 | |
2,3-Pentanedione | 675 | 43 | 900 | 1.6 | 0.0 | Sweet, cheesy, bready [A] |
Dimethyl disulfide | 734 | 94 | 0.16 | 1.4 | 8.8 | Sulfurous, earthy, mushroom [E] |
Furfural | 815 | 96 | 250 | 2.5 | 0.0 | |
3-Methylbutanoic acid | 831 | 60 | 22 | 2.9 | 0.1 | Earthy, mushroom, cheesy [E] |
Methional | 894 | 48 | 0.2 | 6.5 | 32.5 | Boiled potatoes [V] |
5,5-Dimethyl-2(5H)-furanone x | 908 | 97 | 3.4 | Worty [R] | ||
Benzaldehyde | 926 | 77 | 350 | 1.2 | 0.0 | |
Dimethyl trisulfide | 945 | 126 | 0.005 | 0.9 | 178.8 | Sulfurous, cooked onion [V] |
Hexanoic acid | 963 | 60 | 3000 | 2.9 | 0.0 | |
Octanal | 979 | 43 | 0.7 | 3.6 | 5.2 | Aldehydic, solvent [C] |
β-Myrcene | 1000 | 93 | 13 | 0.8 | 0.1 | |
Benzeneacetaldehyde | 1029 | 91 | 4 | 23.9 | 6.0 | Green, sweet, cocoa [FR] |
2-Ethyl-1-hexanol x | 1045 | 57 | 270000 | 3.8 | 0.0 | |
Acetophenone | 1042 | 105 | 65 | 4.5 | 0.1 | |
1-Octanol | 1068 | 56 | 110 | 0.8 | 0.0 | |
cis-Linaloloxide | 1078 | 59 | 7 | 0.9 | 0.1 | |
Maltol | 1080 | 126 | 35000 | 8.6 | 0.0 | Sweet, caramellic, bready [R] |
Nonanal | 1085 | 57 | 1 | 2.8 | 2.8 | |
Linalool | 1087 | 71 | 6 | 1.4 | 0.2 | Floral, earl grey, sweet [FL] |
1-Nonanol | 1156 | 56 | 50 | 1.0 | 0.0 | |
Octanoic acid | 1153 | 60 | 3000 | 3.1 | 0.0 | |
α-Terpineol | 1179 | 93 | 330 | 0.4 | 0.0 | |
Decanal | 1185 | 82 | 0.1 | 2.0 | 20.0 | Sweet, aldehydic, floral [FL] |
Geraniol | 1243 | 69 | 4 | 4.5 | 1.1 | Sweet, floral [FL] |
Decanol | 1252 | 55 | 400 | 3.2 | 0.0 | |
Methyl geranate | 1305 | 69 | 21 | 27.2 | 1.3 | Hoppy, sweet, floral [H] |
γ-Nonalactone x | 1323 | 85 | 30 | 3.1 | 0.1 | |
n-Decanoic acid | 1338 | 60 | 10000 | 0.9 | 0.0 | |
Vanillin x | 1371 | 151 | 20 | 2.1 | 0.1 | Sweet, vanilla, creamy [H] |
Damascenone | 1373 | 121 | 0.002 | 3.9 | 1949 | Fruity, plum [FR] |
Dodecanal | 1392 | 82 | 2 | 1.0 | 0.5 | |
γ-Decalactone | 1424 | 85 | 11 | 3.1 | 0.3 | |
Caryophyllene | 1437 | 93 | 64 | 9.8 | 0.2 | |
1-Dodecanol | 1463 | 55 | 1000 | 14.9 | 0.0 | |
Humulene | 1484 | 93 | 50 | 4.0 | 0.0 | |
α-Farnesene | 1503 | 93 | 87 | 21.0 | 0.2 | Hoppy, citrus, floral [H] |
3.3. Key Aroma Compounds of Beers Produced with Non-Conventional Yeasts
3.4. Sensory Evaluation of Beers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, X.; Qin, Q.; Li, C.; Zhao, X.; Song, F.; An, M.; Chen, Y.; Wang, X.; Huang, W.; Zhan, J.; et al. Application of non-Saccharomyces yeasts with high beta-glucosidase activity to enhance terpene-related floral flavor in craft beer. Food Chem. 2023, 404, 134726. [Google Scholar] [CrossRef] [PubMed]
- Lodolo, E.J.; Kock, J.L.F.; Axcell, B.C.; Brooks, M. The yeast Saccharomyces cerevisiae—The main character in beer brewing. FEMS Yeast Res. 2008, 8, 1018–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, E.J.; Teixeira, J.A.; Brayik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gschaedler, A. Contribution of non-conventional yeasts in alcoholic beverages. Curr. Opin. Food 2017, 13, 73–77. [Google Scholar] [CrossRef]
- Perez-Torrado, R.; Barrio, E.; Querol, A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids. Crit. Rev. Food Sci. Nutr. 2017, 58, 1780–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, G.A.; Carlsen, S.; Arneborg, N.; Saerens, S.M.G.; Laulund, S.; Knudsen, G.M. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int. J. Food Microbiol. 2022, 383, 109951. [Google Scholar] [CrossRef]
- Rossouw, D.; Naes, T.; Bauer, F.F. Linking gene regulation and the exo-metabolome: A comparative transcription approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genom. 2008, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.-M.; Van Landschoot, A.; De Yuyst, L.; Vandamme, P. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 2014, 4, e95384. [Google Scholar] [CrossRef]
- Michel, M.; Kopecka, J.; Meier-Dornberg, T.; Zamkov, M.; Jacob, F.; Hutzler, M. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 2016, 33, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.M. Pichia anomala: Cell physiology and biotechnology relative to other yeasts. Anton. Leeuwenhoek 2011, 99, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Branyik, T.; Silva, D.P.; Baszczynski, M.; Lehnert, R.; Silva, J.B.A. A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Saison, D.; De Schutter, D.P.; Vanbeneden, N.; Daenen, L.; Delvaux, F.; Delvaux, F.R. Decrease of aged beer aroma by the reducing activity of brewing yeast. J. Agric. Food Chem. 2010, 58, 3107–3115. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef]
- Plutowska, B.; Wardencki, W. Application of gas chromatography–olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages—A review. Food Chem. 2008, 107, 449–463. [Google Scholar] [CrossRef]
- Deibler, K.D.; Llesca, F.M.; Lavin, E.H.; Acree, T.E. Calibration of gas chromatography intel splitting for gas chromatography olfactometry dilution analysis. Flavour Fragr. J. 2004, 19, 518–521. [Google Scholar] [CrossRef]
- Vene, K.; Seisonen, S.; Koppel, K.; Leitner, E.; Paalme, T. A method for GC-olfactometry panel training. Chem. Percept. 2013, 6, 179–189. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P. How different fermentation type affects volatile composition of plum jerkums. Appl. Sci. 2021, 11, 4658. [Google Scholar] [CrossRef]
- Kenechukwu, A. Review: Beer production. SSRN 2018. [Google Scholar] [CrossRef]
- Maicas, S. The role of yeast in fermentation process. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Wickerhamomyces. In The Yeasts: A Taxonomic Study; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Oxford, UK, 2011; pp. 899–917. [Google Scholar]
- Lee, Y.-J.; Choi, Y.-R.; Lee, S.-Y.; Park, J.-T.; Shim, J.-H.; Park, K.-H.; Kim, J.-W. Screening wild yeast strains for alcohol; fermentation from various fruits. Mycobiology 2011, 39, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Crauwels, S.; Steensels, J.; Aerts, G.; Willems, K.A.; Verstrepen, K.J.; Lievens, B. Brettanomyces bruxellensis, Essential contributor in spontaneous beer fermentations providing novel opportunities for the brewing industry. BrewingScience 2015, 68, 110–121. [Google Scholar]
- Martin, V.; Valera, M.J.; Medina, K.; Boido, E.; Carrau, F. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—A review. Fermentation 2018, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Sannino, C.; Mezzasoma, A.; Buzzini, P.; Turchetti, B. Non-conventional yeasts for producing alternative beers. In Non-Conventional Yeasts: From Basic Research to Application; Springer: Cham, Switzerland, 2019; pp. 361–388. [Google Scholar]
- Cadenas, R.; Caballero, I.; Nimubona, D.; Blanco, C.A. Brewing with starchy adjuncts: Its influence on the sensory and nutritional properties of beer. Foods. 2021, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yu, M.; Wu, S. Sensory lexicon and aroma volatiles analysis of brewing malt. Sci. Food. 2022, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Piornos, J.A.; Balagiannis, D.P.; Methven, L.; Koussissi, E.; Brouwer, E.; Parker, J.K. Elucidating the odor-active aroma compounds in alcohol free beer and their contribution to the worty flavor. J. Agric. Food Chem. 2020, 68, 10088–10096. [Google Scholar] [CrossRef]
- Ditrych, M.; Filipowska, W.; De Rouck, G.; Jaskulksa-Gojris, B.; Aerts, G.; Anderson, M.L.; De Cooman, L. Investigating the evolution of free staling aldehydes throughout the wort production process. BrewingScience 2019, 72, 10–17. [Google Scholar]
- Andres-Iglesias, C.; Nespor, J.; Karabin, M.; Montero, O. Comparison of carbonyl profiles from Czech and Spanish lagers: Traditional and moderns technology. Food Sci. Technol. 2016, 66, 390–397. [Google Scholar] [CrossRef]
- Huang, Y.; Tippmann, J.; Becker, T. A kinetic study on the formation of 2- and 3-methylbutanal. J. Food Process Eng. 2017, 40, e12375. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0849330343. [Google Scholar]
- Tusha, K.; Nešpor, J.; Jelínek, L.; Vodičková, H.; Kinčl, T.; Dostálek, P. Effect of czech hop varieties on aroma of dry-hopped lager beer. Foods 2022, 11, 2520. [Google Scholar] [CrossRef]
- Guedes de Pinho, P.; Silva Ferreira, A.C. Role of strecker aldehydes on beer flavour stability. In Developments in Food Science; Elsevier: Amsterdam, The Netherlands, 2006; pp. 529–532. [Google Scholar] [CrossRef]
- Lehnhardt, F.; Becker, T.; Gastl, M. Flavor stability assessment of lager beer: What we can learn by comparing established methods. Eur. Food Res. Technol. 2020, 246, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Verstrepen, K.J.; Derdelinckx, G.; Dufour, J.; Winderrikx, J.; Thevelein, J.M.; Pretorius, I.S.; Delvaux, F.R. Flavour-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 2003, 96, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Drosou, F.; Anastasakou, K.; Tataridis, P.; Dourtoglou, V.; Oreopoulou, V. Evaluation of commercial strains of Torulaspora delbrueckii in beer production. J. Am. Soc. Brew. Chem. 2022, 1–10. [Google Scholar] [CrossRef]
- Błaszczyk, U.; Satora, P.; Noga, Ł. Mixed cultures of Saccharomyces kudravzevii and S. cerevisiae modify the fermentation process and improve the aroma profile of semi-sweet white wines. Molecules 2022, 27, 7478. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.; King, J.; Dickinson, R. Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res. 2003, 3, 53–62. [Google Scholar]
- Takoi, K.; Koie, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer. J. Agric. Food Chem. 2003, 58, 5050–5058. [Google Scholar] [CrossRef]
- Lloyd, N.D.R.; Capone, D.L.; Ugliano, M.; Taylor, D.K.; Skouroumounis, G.K.; Sefton, M.A.; Elsey, G.M. Formation of damascenone under both commercial and model fermentation conditions. J. Agric. Food Chem. 2011, 59, 1338–1343. [Google Scholar] [CrossRef]
- Koslitz, S.; Renaud, L.; Kohler, M.; Wüst, M. Stereoselective formation of the varietal aroma compound rose oxide during alcoholic fermentation. J. Agric. Food Chem. 2008, 56, 1371–1375. [Google Scholar] [CrossRef]
- Carrau, F.M.; Medina, K.; Boido, E.; Farina, L.; Gaggero, C.; Dellacassa, E.; Versini, G.; Henschke, P.A. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol. Lett. 2005, 243, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, D.; Pereira, A.C.; Marques, J.C. Assessment of staling aldehydes in lager beer under maritime transport and storage conditions. Molecules 2022, 27, 600. [Google Scholar] [CrossRef]
- Hotchko, R.A.; Shellhammer, T.H. Influence of ethyl esters, oxygenated terpenes, and aliphatic γ- and δ-lactones (c9–12) on beer fruit aroma. J. Am. Soc. Brew. Chem. 2017, 75, 27–34. [Google Scholar] [CrossRef]
- Burmeister, M.S.; Drummond, C.J.; Pfisterer, E.A.; Hysert, W.; Sin, Y.O.; Sime, K.J.; Hawthorne, D.B. Measurement of volatile sulfur compounds in beer using gas chromatography with a sulfur chemiluminescence detector. ASBC 1992, 50, 53–58. [Google Scholar] [CrossRef]
- Jurgens, A.; Suk-Ling, W.; Shuttleworth, A.; Johnson, S.D. Chemical mimicry of insect oviposition sites: A global analysis of convergence in angiosperms. Ecol. Lett. 2013, 16, 1157–1167. [Google Scholar] [CrossRef]
- Williams, R.S.; Gracey, D.E.F. Beyond dimethyl sulfide: The significance to flavor of thioesters and polysulfidies in canadian beers. J. Am. Soc. Brew. Chem. 1982, 40, 68–71. [Google Scholar] [CrossRef]
- Prentice, R.D.M.; McKernan, G.; Bryce, J.H. A source of dimethyl disulfide and dimethyl trisulfide in grain spirit produced with a coffey still. J. Am. Soc. Brew. Chem. 1998, 56, 99–103. [Google Scholar] [CrossRef]
- Peppard, T.L. Dimethyl trisulphide, its mechanism of formation in hop oil and effect on beer flavour. J. Inst. Brew. 1978, 84, 337–340. [Google Scholar] [CrossRef]
- Gijs, L.; Perpete, P.; Timmermans, A.; Collin, S. 3-methylthiopropionaldehyde as precursors of dimethyl trisulfide in aged beers. J. Agric. Food Chem. 2000, 48, 6196–6199. [Google Scholar] [CrossRef] [PubMed]
- Lermusieau, G.; Noel, S.; Liegeois, C.; Collin, S. Nonoxidative mechanism for development of trans-2-nonenal in beer. J. Am. Soc. Brew. Chem. 1999, 57, 29–33. [Google Scholar]
- Vanbeneden, N.; Saison, D.; Delvaux, F.; Delvaux, F.R. Decrease of 4-vinylguaiacol during beer aging and formation of apocynol and vanillin in beer. J. Agric. Food Chem. 2008, 56, 11983–11988. [Google Scholar] [CrossRef]
- Cui, Y.; Cao, X.; Li, S.; Thamm, L.; Zhou, G. Enhancing the concentration of 4-vinylguaiacol in top-fermented beers—A review. J. Am. Soc. Brew. Chem. 2010, 68, 77–82. [Google Scholar] [CrossRef]
- Menoncin, M.; Bonatto, D. Molecular and biochemical aspects of Brettanomyces in brewing. J. Inst. Brew. 2019, 125, 402–411. [Google Scholar] [CrossRef]
- Martínez-Rivas, F.J.; Blanco-Portales, R.; Moyano, E.; Alseekh, S.; Caballero, J.L.; Schwab, W.; Fernie, A.R.; Muñoz-Blanco, J.; Molina-Hidalgo, F.J. Strawberry fruit FanCXE1 carboxylesterase is involved in the catabolism of volatile esters during the ripening process. Hortic. Res. 2022, 9, uhac095. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Biomass [g/L] | Ethanol [% vol.] | Maltose [g/L] | Saccharose [g/L] | Fructose [g/L] | Glucose [g/L] | Glycerol [g/L] | Lactic Acid [mg/L] | Acetic Acid [mg/L] | Succinic Acid [mg/L] |
---|---|---|---|---|---|---|---|---|---|---|
Wort | - | - | 82.8 d (±2.7) | 10.5 e (±1.2) | 3.0 b (±1.3) | 8.7 e (±1.5) | 0.0 a (±0.0) | 0.0 a (±0.0) | 0.0 a (±0.0) | 0.0 a (±0.0) |
Saccharomyces cerevisiae Safbrew T-58 | 1.23 e (±0.12) | 4.72 c (±0.02) | 4.9 b (±0.4) | 0.0 a (±0.0) | 5.5 c (±0.1) | 2.9 c (±0.1) | 8.4 de (±0.4) | 118.0 def (±6.0) | 264.0 cd (±26.0) | 0.0 a (±0.0) |
Saccharomyces paradoxus (CBS 7302) | 1.25 e (±0.04) | 3.51 b (±1.65) | 8.3 bc (±1.1) | 3.2 c (±0.1) | 0.a (±0.0) | 2.2 bc (±0.1) | 8.6 de (±0.9) | 110.0 cde (±22.0) | 167.3 b (±30.5) | 72.3 cd (±26.5) |
Saccharomyces kudriavzevii (CBS 3774) | 0.93 b (±0.01) | 5.97 d (±0.07) | 1.1 a (±0.1) | 0.0 a (±0.0) | 0.0 a (±0.0) | 0.2 a (±0.2) | 4.3 b (±0.3) | 78.3 b (±6.5) | 227.0 c (±21.0) | 16.0 ab (±27.7) |
Wickehamomyces anomalus (CBS 5759) | 0.76 a (±0.01) | 4.26 bc (±0.04) | 5.5 bc (±0.2) | 1.7 b (±0.9) | 0.8 a (±0.7) | 10.0 f (±0.4) | 8.4 de (±1.0) | 93.0 bc (±6.0) | 344.0 f (±10.0) | 106.0 d (±29.0) |
Dekkera bruxellensis (CBS 3429) | 1.03 c (±0.01) | 4.60 bc (±0.03) | 1.2 a (±0.1) | 0.0 a (±0.0) | 0.0 a (±0.0) | 1.2 b (±0.0) | 8.8 de (±0.8) | 140.3 f (±5.5) | 1356.3 g (±58.5) | 30.0 ab (±11.0) |
Hanseniaspora uvarum (CBS 2768) | 1.21 e (±0.00) | 4.31 bc (±0.03) | 1.2 a (±0.1) | 0.0 a (±0.0) | 0.0 a (±0.0) | 1.4 b (±0.0) | 7.8 d (±0.5) | 127.3 ef (±8.5) | 296.0 de (±7.0) | 53.3 bc (±20.5) |
Zygosaccharomyces bailii (CBS 749) | 0.91 b (±0.01) | 1.73 a (±0.03) | 81.8 d (±4.1) | 4.5 d (±0.7) | 0.0 a (±0.0) | 6.2 d (±0.1) | 6.6 c (±0.3) | 134.3 f (±6.5) | 316.3 ef (±9.5) | 48.0 bc (±8.0) |
Torulospora delbrueckii (CBS D10) | 1.12 d (±0.03) | 4.36 bc (±0.06) | 1.3 a (±0.1) | 4.1 cd (±0.7) | 5.1 c (±0.3) | 6.5 d (±0.2) | 9.3 e (±0.5) | 101.0 cd (±24.5) | 224.0 c (±4.0) | 221.3 e (±22.5) |
1 Sig | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
[µg/L] | m/z | LRI 2 | Threshold 3 | Saccharomyces cerevisiae Safbrew T-58 | Saccharomyces paradoxus CBS 7302 | Saccharomyces kudriavzevii CBS 3774 | Wickehamomyces anomalus CBS 5759 | Dekkera bruxellensis CBS 3429 | Hanseniaspora uvarum CBS 2768 | Zygosaccharomyces bailii CBS 749 | Torulospora delbrueckii D10 | Sig 1 | GC-O Descriptors 4 | Detector |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||||||||
1-Propanol | 31 | 546 | 9000 | 8864 a | 9042 a | 12175 b | 9187 a | 10600 a | 10108 ab | 7028 a | 9366 a | * | FID MS | |
2-Methyl-1-Propanol | 43 | 607 | 8300 | 7428 b | 6895 b | 6557 a | 10441 b | 6646 a | 5894 a | 5350 a | 5425 a | * | bready, floral, solvent [R] | FID MS |
3-Methyl-1-Butanol | 55 | 722 | 1000 | 1520 a | 1199 a | 1110 b | 1382 b | 1350 d | 1401 b | 894 c | 1399 b | *** | bready, alcoholic, fruity [R] | FID MS |
2-Methyl-1-Butanol | 56 | 725 | 15.9 | 136 cd | 98 bc | 166 d | 133 cd | 162 d | 134 cd | 58 a | 74 ab | *** | MS | |
4-Methyl-1-Pentanol x | 56 | 819 | 820 | 0.4 bc | 0.3 a | 0.5 cd | 0.6 d | 0.4 bc | 0.5 cd | 0.8 e | 0.3 ab | *** | sweet fruity nutty [FR] | MS |
3-Methyl-1-Hexanol x | 43 | 919 | 1.1 bc | 2.2 d | 1.2 bc | 5.5 e | 1.6 c | 1.0 b | 0.0 a | 0.0 a | *** | sweet fruity solvent [FR] | MS | |
2-Ethyl-1-Hexanol x | 57 | 1010 | 270000 | 28 a | 14 a | 58 ab | 80 b | 16 a | 18 a | 28 a | 42 ab | * | MS | |
1-Octanol | 56 | 1057 | 110 | 12.9 bcd | 4.2 ab | 15.1 cd | 17.2 d | 9.3 b | 10.5 bc | 11.6 bc | 9.9 b | *** | herbal solvent wood [H] | MS |
β-Phenylethanol | 91 | 1070 | 1000 | 7825 b | 8978 b | 9981 b | 10934 b | 14088 a | 15600 a | 2208 c | 1860 c | *** | rose petals {FL] | FID MS |
1-Nonanol | 56 | 1155 | 50 | 0.0 a | 0.0 a | 3.6 c | 2.2 b | 0.0 a | 0.3 a | 4.0 c | 0.0 a | *** | floral rose clean [FL] | MS |
Decanol | 70 | 1255 | 400 | 11 b | 15 b | 14 b | 12 b | 14 b | 17 b | 2 a | 2 a | *** | fatty waxy floral [FL] | MS |
2-Methoxy-4-Vinylphenol | 135 | 1291 | 3 | 31.4 bc | 29.9 bc | 22.2 b | 35.5 c | 109.8 d | 3.5 a | 26.9 bc | 34.3 c | *** | spicy smoky woody [H] | MS |
1-Dodecanol | 55 | 1460 | 1000 | 27 | 22 | 30 | 38 | 25 | 20 | 39 | 10 | ns | MS | |
1-Tetradecanol | 43 | 1665 | 5000 | 1.1 bcd | 0.7 ab | 1.6 cd | 1.7 d | 0.4 a | 1.4 bcd | 1.2 bcd | 0.9 abc | * | MS | |
Esters | ||||||||||||||
Ethyl Acetate | 43 | 597 | 5000 | 9188 a | 10444 a | 13427 a | 2304 a | 3471 a | 17070 b | 4151 a | 15012 a | * | floral, solvent [FL] | FID MS |
Ethyl Propanoate | 29 | 691 | 10 | 1.0 ab | 4.1 c | 2.2 ab | 0.8 a | 1.7 ab | 1.6 ab | 2.7 bc | 1.6 ab | * | sweet, fruity, pineapple [FR] | MS |
2-Methylpropyl Acetate | 43 | 755 | 66 | 1.3 ab | 1.1 ab | 1.7 bc | 0.6 ab | 2.7 c | 0.6 ab | 0.0 a | 1.5 bc | ** | sweet fruity banana [FR] | MS |
Ethyl Butanoate | 71 | 784 | 1 | 21.6 a | 31.7 a | 51.5 b | 47.6 b | 21.5 a | 42.8 b | 24.8 a | 22.9 a | ** | fruity pineapple [FR] | FID MS |
Ethyl Lactate | 45 | 791 | 14000 | 0.5 a | 0.0 a | 5.6 b | 0.6 a | 0.0 a | 0.2 a | 0.6 a | 0.0 a | * | sweet fruity malty [FR] | MS |
Ethyl 2-Methylbutyrate | 57 | 836 | 0.3 | 235 a | 72 b | 67 b | 317 c | 86 b | 104 b | 201 a | 287 c | *** | fruity apple red fruits [FR] | FID MS |
3-Methylbutyl Acetate | 43 | 861 | 13 | 121 b | 147 b | 216 a | 124 b | 223 a | 122 b | 16 c | 382 d | *** | fruity solvent honey [FR] | FID MS |
Ethyl Pentanoate | 29 | 882 | 1.5 | 34.4 c | 1.2 a | 5.3 b | 2.2 a | 1.8 a | 4.7 b | 2.2 a | 4.6 b | *** | sweet fruity apple [FR] | MS |
Ethyl 2,4-Hexadienoate x | 95 | 899 | 2.7 b | 6.6 d | 6.7 d | 2.4 b | 4.6 c | 10.3 e | 0.0 a | 2.1 b | *** | sweet fruity ethereal [FR] | MS | |
Ethyl 4-Methylpentanoate | 88 | 946 | 0.75 | 7.7 a | 10.2 bc | 9.3 b | 13.2 d | 12.7 d | 17.8 e | 10.7 c | 8.8 ab | *** | red apple red fruits [FR] | FID MS |
Ethyl Hexanoate | 88 | 980 | 1 | 7.2 b | 11.1 c | 18.0 a | 8.3 bc | 10.0 bc | 21.6 d | 3.6 e | 14.7 f | *** | red apple [FR] | FID MS |
Hexyl Acetate | 43 | 989 | 2 | 0.1 ab | 0.1 ab | 0.0 a | 0.0 a | 0.2 b | 0.0 a | 0.0 a | 0.5 c | *** | MS | |
2-Phenylethyl Formate x | 104 | 1112 | 0.0 a | 0.0 a | 1.8 b | 3.6 c | 0.0 a | 3.6 c | 2.0 c | 0.0 a | *** | rose herbal [FL] | MS | |
Ethyl Octanoate | 88 | 1179 | 70 | 31.6 b | 32.3 b | 53.5 c | 70.5 a | 68.6 a | 10.2 d | 12.3 d | 34.5 b | *** | sweet fruity winey [FR] | FID MS |
β-Phenylethyl Acetate | 104 | 1218 | 250 | 171 a | 111 a | 322 b | 221 a | 120 a | 118 a | 2 c | 614 d | *** | rose honey sweet [FL] | FID MS |
Ethyl Dihydrocinnamate | 104 | 1324 | 0.07 | 1.50 | 2.39 | 2.87 | 3.44 | 4.00 | 4.62 | 3.04 | 3.62 | *** | plum honey rummy {FR] | MS |
Ethyl Decanoate | 88 | 1380 | 200 | 2816 a | 2251 a | 2782 a | 2659 a | 266 b | 2705 a | 12 c | 4937 d | ** | sweet fruity brandy {FR] | FID MS |
3-Methylbutyl Octanoate | 70 | 1438 | 2000 | 7.74 | 7.4 c | 14.6 d | 7.6 c | 1.7 ab | 8.6 c | 0.1 a | 5.0 bc | *** | MS | |
2-Methylbutyl Octanoate x | 127 | 1444 | 1.4 b | 1.4 b | 2.0 b | 1.1 ab | 1.0 ab | 1.4 b | 0.2 a | 3.3 c | *** | MS | ||
Propyl Decanoate x | 61 | 1497 | 1.1 de | 0.5 b | 1.2 de | 1.4 e | 0.0 a | 0.9 cd | 0.0 a | 0.6 bc | *** | MS | ||
Ethyl Dodecanoate | 88 | 1576 | 1500 | 133 c | 33 ab | 150 c | 84 bc | 15 a | 117 c | 8 a | 259 d | *** | MS | |
3-Methylbutyl Decanoate | 70 | 1650 | 3000 | 14 c | 8 b | 18 c | 16 c | 2 a | 16 c | 0 a | 7 b | *** | MS | |
2-Methylbutyl Decanoate x | 119 | 1655 | 1.2 c | 1.6 c | 1.2 c | 1.3 c | 0.1 ab | 1.3 c | 0.0 a | 0.6 b | *** | MS |
Compound | LRI 1 | Saccharomyces cerevisiae Safbrew T-58 | Saccharomyces paradoxus CBS 7302 | Saccharomyces kudriavzevii CBS 3774 | Wickehamomyces anomalus CBS 5759 | Dekkera bruxellensis CBS 3429 | Hanseniaspora uvarum CBS 2768 | Zygosaccharomyces bailii CBS 749 | Torulospora delbrueckii D10 |
---|---|---|---|---|---|---|---|---|---|
Ethyl Acetate | 598 | 0 | 0 | 0 | 0 | 0 | 1 | 0.6 | 0.8 |
2-methyl-1-propanol | 608 | 0.6 | 0.6 | 0 | 0.8 | 0 | 0 | 0.8 | 0 |
Ethyl propanoate | 691 | 0 | 1 | 0.6 | 0 | 0.6 | 0 | 0.8 | 0 |
3-methyl-1-butanol | 723 | 1.4 | 1 | 1 | 0.6 | 0.8 | 1.4 | 1.8 | 1.4 |
Dimethyl disulfide | 743 | 0 | 0.8 | 0 | 1 | 1.2 | 0 | 0 | 0 |
Isobutyl acetate | 755 | 1.2 | 0.6 | 0.6 | 2 | 1 | 1 | 0 | 0.6 |
Ethyl butanoate | 784 | 0.6 | 0.8 | 1.2 | 1.2 | 0 | 1 | 0.8 | 0.6 |
Ethyl lactate | 794 | 0.6 | 0 | 0 | 1 | 0.6 | 0 | 0 | 0 |
4-methyl-1-pentanol | 819 | 0.6 | 0 | 1.2 | 0.6 | 1.2 | 0 | 0 | 0 |
Ethyl 2-methylbutyrate | 835 | 2 | 0.6 | 0 | 2.2 | 0.8 | 1.2 | 2 | 1.6 |
3-Methylbutyl acetate | 856 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0.6 |
Methional | 866 | 0 | 0.8 | 0.6 | 0.8 | 1.8 | 0.8 | 2.6 | 0.6 |
Ethyl pentanoate | 882 | 1.6 | 0 | 0.6 | 0 | 0 | 0.6 | 0 | 0.6 |
Ethyl 2,4-hexadienoate | 900 | 0 | 0.6 | 0.6 | 0 | 0 | 0.8 | 0 | 0 |
3-Methyl-1-hexanol | 918 | 0 | 0.8 | 0 | 1.4 | 0 | 0 | 0 | 0 |
Dimethyl trisulfide | 933 | 0 | 0 | 0.8 | 1 | 0.8 | 0.6 | 0 | 0 |
Ethyl 4-methylpentanoate | 944 | 0.6 | 1.2 | 1 | 1.8 | 1.8 | 2.4 | 1.8 | 1 |
Ethyl hexanoate | 976 | 1.8 | 1.8 | 2.4 | 1.2 | 2 | 2.4 | 1.2 | 2 |
Benzeneacetaldehyde | 1005 | 0.6 | 0 | 0 | 1 | 0.6 | 0.6 | 1 | 0 |
Acetophenone | 1040 | 0 | 0 | 0.8 | 0 | 0 | 0.6 | 1.4 | 0 |
1-Octanol | 1060 | 0.8 | 0 | 1 | 0.8 | 0 | 0.6 | 0.6 | 0.6 |
Nonanal | 1072 | 0.6 | 1.4 | 0.6 | 1 | 0.6 | 0.6 | 0.6 | 1.2 |
Phenylethyl Alcohol | 1085 | 1.6 | 2 | 2.4 | 2.6 | 2.6 | 2.8 | 2.2 | 1.6 |
cis-Rose oxide | 1095 | 0.8 | 0 | 0.6 | 1 | 1.6 | 0 | 1.2 | 0.6 |
2-Phenylethyl formate | 1112 | 0 | 0 | 0.8 | 1.2 | 1.2 | 0 | 0.6 | 0 |
1-Nonanol | 1159 | 0 | 0 | 0.8 | 0 | 0 | 0 | 1.2 | 0 |
Ethyl octanoate | 1174 | 1 | 1 | 1 | 1.8 | 1.2 | 0.6 | 1.2 | 1 |
Decanal | 1183 | 1 | 1 | 0.8 | 0.6 | 0.8 | 0.8 | 0 | 1 |
Citronellol | 1207 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
2-Phenylethyl acetate | 1218 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1.2 |
Geraniol | 1235 | 0 | 0 | 1 | 1.2 | 0.6 | 0 | 0 | 0 |
Decanol | 1255 | 0 | 1.6 | 0.6 | 0 | 0 | 1.4 | 0 | 0 |
2-Methoxy-4-vinylphenol | 1291 | 0.6 | 0 | 0 | 0.8 | 1.2 | 0 | 0 | 0.6 |
Ethyl dihydrocinnamate | 1324 | 1.4 | 1.4 | 1.6 | 2 | 2.2 | 2.4 | 1.8 | 2 |
Damascenone | 1373 | 0.6 | 1.6 | 1.4 | 1.8 | 1.8 | 0.6 | 1.6 | 0.6 |
Ethyl decanoate | 1380 | 1 | 1.2 | 1.2 | 1.2 | 0.6 | 1 | 0 | 1.4 |
Dodecanal | 1392 | 0.8 | 1 | 1 | 0.6 | 1.2 | 0.8 | 1 | 1 |
γ-Decalactone | 1443 | 0.6 | 0 | 0.6 | 0 | 0 | 0 | 0 | 0.6 |
β-Ionone | 1483 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 |
Nerolidol | 1562 | 0.8 | 0.6 | 0 | 1 | 0 | 0 | 0 | 0 |
[µg/L] | m/z | LRI 2 | Threshold 3 | S. cerevisiae Safbrew T-58 | S. paradoxus CBS7302 | S. kudriavzevii CBS3774 | Wickerhammomyces anomalus CBS5759 | Hanseniaspora uvarum CBS2768 | Dekkera bruxellensis CBS3429 | Zygosaccharomyces bailii CBS729 | Torulaspora delbrueckii D10 | Sig.1 | GC-O descriptors 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Terpenes | |||||||||||||
Cis-Linaloloxide | 59 | 1062 | 7 | 0.00 a | 0.08 c | 0.04 b | 0.20 d | 0.09 c | 0.06 bc | 0.08 c | 0.00 a | *** | |
Linalool | 71 | 1087 | 6 | 0.07 a | 0.05 a | 0.44 c | 0.35 bc | 0.27 b | 0.00 a | 0.37 bc | 0.00 a | *** | |
Cis Rose Oxide | 139 | 1095 | 0.5 | 0.73 b | 0.00 a | 0.66 b | 0.70 b | 0.94 c | 0.00 b | 0.64 b | 0.67 b | *** | red rose geranium [FL] |
Citronellol | 69 | 1207 | 8 | 6.7 ab | 5.5 a | 5.4 a | 11.3 b | 5.3 a | 7.8 ab | 11.8 b | 3.1 a | * | floral citrus [FL] |
Geraniol | 69 | 1235 | 4 | 2.1 ab | 1.6 a | 7.4 d | 8.2 e | 7.5 de | 2.4 b | 4.8 c | 1.7 ab | *** | sweet floral citrus [FL] |
Citronellol Acetate x | 43 | 1333 | 3.1 d | 2.0 bcd | 2.4 cd | 0.7 ab | 1.6 abc | 0.5 a | 1.7 abc | 1.4 abc | ** | ||
Hydrocinnamyl Acetate x | 118 | 1337 | 1.2 bc | 1.1 bc | 1.4 c | 1.1 bc | 1.4 c | 0.8 b | 0.0 a | 2.2 d | *** | ||
β-Damascenone | 69 | 1376 | 0.002 | 7.1 a | 19.1 d | 15.5 c | 13.7 bc | 11.4 b | 8.4 a | 12.7 bc | 8.4 a | *** | sweet fruity plum [FR] |
Verdyl Acetate x | 66 | 1407 | 7.4 | 3.8 | 4.7 | 7.4 | 3.7 | 6.5 | 4.1 | 3.0 | ns | ||
Caryophyllene | 93 | 1437 | 64 | 1.9 a | 2.5 a | 1.4 a | 1.9 a | 2.6 ab | 1.6 a | 4.1 b | 1.6 a | * | |
β-Farnesene | 41 | 1458 | 2.8 a | 2.6 a | 5.9 b | 2.7 a | 2.8 a | 2.0 a | 3.4 a | 2.8 a | * | ||
β-Ionone | 177 | 1473 | 7 | 0.0 a | 0.2 b | 1.4 d | 0.3 c | 0.2 bc | 0.0 a | 0.0 a | 0.0 a | *** | woody powdery floral [W] |
α-Farnesene | 41 | 1503 | 87 | 1.0 a | 1.0 a | 2.6 b | 0.6 a | 0.9 a | 0.8 a | 0.8 a | 1.0 a | *** | |
Nerolidol | 69 | 1562 | 10 | 5.8 d | 6.4 d | 2.7 bc | 10.4 e | 3.8 c | 3.5 c | 1.4 a | 2.1 ab | *** | woody floral citrus [W] |
2,3-Dihydrofarnesol x | 69 | 1696 | 5.2 abc | 10.9 cde | 9.0 cde | 14.4 e | 6.4 bcd | 11.9 de | 1.0 ab | 0.2 a | *** | ||
Farnesol x | 69 | 1715 | 60000 | 2.9 a | 2.4 a | 11.0 b | 2.9 a | 1.0 a | 3.2 a | 1.6 a | 2.5 a | *** | |
Carbonyl compounds | |||||||||||||
Acetaldehyde | 29 | 538 | 5000 | 709 a | 1292 b | 2428 c | 1051 b | 1139 b | 643 a | 1126 b | 3862 d | *** | |
3-Methylbutanal | 44 | 634 | 0.2 | 0.7 | 0.4 | 0.7 | 0.6 | 0.6 | 0.8 | 0.6 | 1.0 | ns | |
2-Methylbutanal | 41 | 650 | 12.5 | 0.4 | 1.0 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 1.4 | ns | |
Benzeneacetaldehyde | 91 | 1005 | 4 | 4.8 bc | 0.8 a | 1.0 a | 4.6 b | 4.6 b | 4.3 b | 5.3 c | 1.0 a | *** | green floral honey [FL] |
Acetophenone x | 105 | 1040 | 65 | 0.0 a | 0.0 a | 0.6 c | 0.9 d | 0.0 a | 0.0 a | 0.0 a | 0.2 b | *** | sweet pungent chemical [C] |
Nonanal | 57 | 1083 | 1 | 3.5 | 2.8 | 4.5 | 3.7 | 3.6 | 3.9 | 4.0 | 4.1 | ns | sweet floral [FL] |
Decanal | 43 | 1183 | 0.1 | 2.8 abc | 4.6 bc | 2.0 ab | 2.4 ab | 2.3 ab | 2.1 ab | 1.6 a | 5.2 c | * | aldehydic citrus floral [FL] |
Dodecanal | 57 | 1392 | 2 | 4.0 | 4.7 | 3.5 | 3.2 | 4.2 | 2.5 | 3.3 | 2.8 | ns | citrus green floral [FL] |
Sulphur compounds | |||||||||||||
Dimethyl disulfide | 94 | 734 | 0.16 | 0.0 a | 0.6 bc | 0.3 abc | 0.9 c | 1.9 d | 0.2 ab | 0.5 abc | 0.5 abc | *** | sulfurous vegetable onion [V] |
Methional | 48 | 866 | 0.2 | 0.6 a | 0.9 ab | 1.8 def | 1.6 cde | 2.0 ef | 1.2 bc | 2.2 f | 1.4 bcd | *** | boiled potatoes [V] |
Dimethyl trisulfide | 126 | 933 | 0.005 | 0.14 a | 0.14 a | 0.17 a | 0.34 b | 0.22 a | 0.17 a | 0.15 a | 0.16 a | ** | sulfurous cooked onion [V] |
Benzothiazole | 135 | 1196 | 80 | 1.44 ab | 1.15 a | 2.03 ab | 4.66 c | 1.09 a | 7.30 d | 3.59 bc | 1.93 ab | *** | |
Furan compounds | |||||||||||||
2-Furanmethanol | 98 | 832 | 2000 | 0.6 cd | 0.4 bcd | 0.0 a | 0.7 de | 0.3 bc | 0.1 ab | 1.0 e | 0.4 bc | *** | |
Carboxylic acids | |||||||||||||
Hexanoic acid | 60 | 967 | 3000 | 16.9 b | 13.6 b | 31.3 | 14.6 b | 16.0 b | 16.8 b | 4.5 a | 1.5 a | *** | |
Octanoic acid | 60 | 1157 | 3000 | 191 c | 127 b | 87 b | 126 b | 128 b | 186 c | 16 a | 98 b | *** | |
n-Decanoic acid | 60 | 1341 | 10000 | 1471 cd | 836 bc | 1635 d | 864 bc | 451 ab | 1382 cd | 114 a | 630 ab | *** | |
Dodecanoic acid | 60 | 1545 | 10000 | 11 abc | 7 ab | 17 bc | 13 abc | 6 ab | 19 bc | 2 a | 23 c | * | |
Lactones | |||||||||||||
γ-Nonalactone x | 85 | 1326 | 30 | 9.8 ab | 15.2 b | 11.1 ab | 11.8 ab | 10.5 ab | 10.8 ab | 22.6 c | 9.1 a | *** | |
γ-Decalactone | 85 | 1443 | 11 | 8.3 bc | 4.6 a | 9.4 c | 6.7 b | 4.1 a | 3.9 a | 4.5 a | 7.1 b | *** | fresh fruity sweet [FR] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satora, P.; Pater, A. The Influence of Different Non-Conventional Yeasts on the Odour-Active Compounds of Produced Beers. Appl. Sci. 2023, 13, 2872. https://doi.org/10.3390/app13052872
Satora P, Pater A. The Influence of Different Non-Conventional Yeasts on the Odour-Active Compounds of Produced Beers. Applied Sciences. 2023; 13(5):2872. https://doi.org/10.3390/app13052872
Chicago/Turabian StyleSatora, Paweł, and Aneta Pater. 2023. "The Influence of Different Non-Conventional Yeasts on the Odour-Active Compounds of Produced Beers" Applied Sciences 13, no. 5: 2872. https://doi.org/10.3390/app13052872
APA StyleSatora, P., & Pater, A. (2023). The Influence of Different Non-Conventional Yeasts on the Odour-Active Compounds of Produced Beers. Applied Sciences, 13(5), 2872. https://doi.org/10.3390/app13052872