A Digital Twin-Based State Monitoring Method of Gear Test Bench
Abstract
:1. Introduction
2. Construction of the State Monitoring System of the Gear Test Bench Based on a Digital Twin Model
3. Physical Information Acquisition of Gear Test Bench
3.1. Vibration and Noise Information Acquisition of Gear Test Bench
3.2. Temperature Acquisition of Gear Test Bench
3.3. Operation Torque Information Acquisition of Gear Test Bench
3.4. Vibration Acceleration Signal Acquisition
4. Digital Twin Monitoring System Development
4.1. Geometric Model Construction of Gear Test Bench
4.2. Simulation Environment Creation of Gear Test Bench
4.3. Implementation of Digital Twin Monitoring System
5. Test Verification
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, X.Y.; Zhang, T.F.; Zhao, L.L.; Zhang, L.; Wang, Y.J. Vibration mode of gearbox in test bed of gear with intersecting axis. Appl. Mech. Mater. 2012, 121, 1779–1783. [Google Scholar] [CrossRef]
- Forstinger, M.; Bauer, R.; Hofer, A.; Rossegger, W. Multivariable control of a test bed for differential gears. Control Eng. Pract. 2016, 57, 18–28. [Google Scholar] [CrossRef]
- Wunsch, A.; Tsay, D.M.; Vajna, S.; Schabacker, M. A New Approach for Designing A Gearbox for A New Kind of Independently Controllable Transmissions. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2013), Portland, OR, USA, 4–7 August 2013. V03AT03A008. [Google Scholar]
- Reddy, B.S.; Mahato, K.K. Calculation, design and analysis of two stage single speed gearbox for all terrain vehicle for baja sae. Mater. Today Proc. 2021, 46, 7187–7203. [Google Scholar] [CrossRef]
- Kim, J.T.; Lee, H.S.; Park, J.H.; Woo, J.K.; Choi, I.S.; Kim, Y.K.; Cho, S.J.; Ha, C.S.; Park, Y.J. Maize harvester gearbox design modification for improved fatigue life. Sci. Rep. 2022, 12, 15576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.R.; Wang, L.J.; Du, X.J.; Jin, H.; Zhang, Y.H.; Sun, X.Y.; Zhang, B.Y.; Li, Y.X.; Wei, J.; Zhang, J.L.; et al. Research of Fatigue Life Prediction for Optimization of the Gearbox Design Based on MSC.Patran. Strength Mater. 2021, 53, 636–645. [Google Scholar] [CrossRef]
- Strakosch, F.; Nikoleizig, H.; Derbel, F. Analysis and Evaluation of Vibration Sensors for Predictive Maintenance of Large Gears with an Appropriate Test Bench. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021. [Google Scholar] [CrossRef]
- Lopez de Calle, K.; Ferreiro, S.; Roldan-Paraponiaris, C.; Ulazia, A. A Context-Aware Oil Debris-Based Health Indicator for Wind Turbine Gearbox Condition Monitoring. Energies 2019, 12, 3373. [Google Scholar] [CrossRef] [Green Version]
- Salameh, J.P.; Cauet, S.; Etien, E.; Sakout, A.; Rambault, L. Gearbox condition monitoring in wind turbines: A review. Mech. Syst. Signal Pract. 2018, 111, 251–264. [Google Scholar] [CrossRef]
- Manarikkal, I.; Elasha, F.; Mba, D. Diagnostics and prognostics of planetary gearbox using CWT, auto regression (AR) and K-means algorithm. Appl. Acoust. 2021, 184, 108314. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, B.P.; Deng, L.; Liu, X.L. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox. Measurement 2021, 179, 109491. [Google Scholar] [CrossRef]
- He, Z.Y.; Shao, H.D.; Wang, P.; Lin, J.; Cheng, J.S.; Yang, Y. Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples. Knowl-Based. Syst. 2020, 191, 105313. [Google Scholar] [CrossRef]
- Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis. Mech. Syst. Signal. Pract. 2020, 144, 106861. [Google Scholar] [CrossRef]
- Brethee, K.F.; Ibrahim, G.R.; Mohammed, R.A.; Albarbar, A.H. Diagnosis of Induced Gear Wear in Two-Stage Helical Gearbox Based on Vibration Analysis. In Proceedings of the 2020 13th International Conference on Developments in eSystems Engineering (DESE 2020), Electr Network, 13–17 December 2020; pp. 233–238. [Google Scholar] [CrossRef]
- Cao, W.; Wang, W.J.; Wang, R. Wear Trend Prediction of Gearbox Based on Oil Monitoring Technology. Adv. Mater. Res. 2012, 411, 576–579. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Delgado-Prieto, M.; Osornio-Rios, R.A.; Romero-Troncoso, R.D. Diagnosis methodology for identifying gearbox wear based on statistical time feature reduction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 2711–2722. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, P.; Ognjanovic, M.; Camagic, I.; Jovanovic, M.; Kalaba, D.; Tomic, R.; Grgic, I. Assessment of Probability of Gear Tooth Side Wear of a Planetary Gearbox. Teh. Vjesn. 2020, 27, 506–512. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, H.; Wang, N.; Wang, H.W.; Peng, Z.X. The gearbox wears state monitoring and evaluation based on on-line wear debris features. Wear 2019, 426, 1719–1728. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.R.; Wang, G.Q. A method for calculating gear meshing efficiency by measured data from gear test machine. Measurement 2018, 119, 97–101. [Google Scholar] [CrossRef]
- Wan, X.; Wang, D.; Tse, P.W.; Xu, G.H.; Zhang, Q. A Critical Study of Different Dimensionality Reduction Methods for Gear Crack Degradation Assessment Under Different Operating Conditions. Measurement 2016, 78, 138–150. [Google Scholar] [CrossRef]
- Villa, L.F.; Renones, A.; Peran, J.R.; de Miguel, L.J. Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load. Mech. Syst. Signal. Pract. 2012, 29, 436–446. [Google Scholar] [CrossRef]
- Brovkova, M.; Molodtsov, V.; Bushuev, V. Implementation specifics and application potential of digital twins of technological systems. Int. J. Adv. Manuf. Technol. 2021, 117, 2279–2286. [Google Scholar] [CrossRef]
- Lopez, C.E.B. Real-time event-based platform for the development of digital twin applications. Int. J. Adv. Manuf. Technol. 2021, 116, 835–845. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Paper 2014, 1, 1–7. [Google Scholar]
- Xiao, J.Y.; Fan, K.G. Research on the digital twin for thermal characteristics of motorized spindle. Int. J. Adv. Manuf. Technol. 2022, 119, 5107–5118. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, F.; Cai, J.; Wang, Y.; Guo, H.F.; Zheng, J.S. Digital twin and its applications: A survey. Int. J. Adv. Manuf. Technol. 2022, 123, 4123–4136. [Google Scholar] [CrossRef]
- Xu, J.T.; Guo, T.J. Application and research on digital twin in electronic cam servo motion control system. Int. J. Adv. Manuf. Technol. 2021, 112, 1145–1158. [Google Scholar] [CrossRef]
- Guo, H.F.; Zhu, Y.X.; Zhang, Y.; Ren, Y.P.; Chen, M.S.; Zhang, R. A digital twin-based layout optimization method for discrete manufacturing workshop. Int. J. Adv. Manuf. Technol. 2021, 112, 1307–1318. [Google Scholar] [CrossRef]
- Hu, Z.; Fang, X.; Zhang, J. A digital twin-based framework of manufacturing workshop for marine diesel engine. Int. J. Adv. Manuf. Technol. 2021, 117, 3323–3342. [Google Scholar] [CrossRef]
- Kong, T.X.; Hu, T.L.; Zhou, T.T.; Ye, Y.X. Data construction method for the applications of workshop digital twin system. J. Manuf. Syst. 2021, 58, 323–328. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 935–3953. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.L.; Tao, F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access. 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Qi, Q.L.; Tao, F.; Zuo, Y.; Zhao, D.M. Digital twin service towards smart manufacturing. Procedia CIRP 2018, 72, 237–242. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Q.L.; Duan, J.G.; Liu, D. Digital twin-based testing process management for large and complex equipment components. Int. J. Adv. Manuf. Technol. 2022, 121, 3143–3161. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, W.; Zhang, C.X.; Yang, C.B.; Chu, H.Y. Data Super-Network Fault Prediction Model and Maintenance Strategy for Mechanical Product Based on Digital Twin. IEEE Access. 2019, 7, 177284–177296. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 1067–1080. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Ponciroli, R.; Bruck, P.; Esselman, T.C.; Rigatti, J.A.; Vilim, R.B. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring. Ann. Nucl. Energy 2022, 170, 109002. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital twin driven prognostics and health management for complex equipment. Cirp. Ann. 2018, 67, 169–172. [Google Scholar] [CrossRef]
- Li, Q.W.; Jiang, P.; Li, H. Prognostics and health management of FAST cable-net structure based on digital twin technology. Res. Astron. Astrophys. 2020, 20, 067. [Google Scholar] [CrossRef]
- Krishnan, M.; Venkatesan, S.; Nagendran, V.; Tengenkai, N. Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin. IET Electr. Power. Appl. 2019, 13, 1328–1335. [Google Scholar] [CrossRef]
- He, B.; Liu, L.; Zhang, D. Digital twin-driven remaining useful life prediction for gear performance degradation: A Review. J. Comput. Inf. Sci. Eng. 2021, 21, 030801. [Google Scholar] [CrossRef]
- He, B.; Li, T.; Xiao, J. Digital twin-driven controller tuning method for dynamics. J. Comput. Inf. Sci. Eng. 2021, 21, 031010. [Google Scholar] [CrossRef]
- Yang, X.; Ran, Y.; Zhang, G.B.; Wang, H.W.; Mu, Z.Y.; Zhi, S.G. A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool. Robot. Comput.-Int. Manuf. 2022, 73, 102230. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Z.; Hu, N. Multi-Body Dynamics Modeling and Analysis of Planetary Gearbox Combination Failure Based on Digital Twin. Appl. Sci. 2022, 12, 12290. [Google Scholar] [CrossRef]
- Lee, Y.H.; Fong, Z.H. Study on building digital-twin of face-milled hypoid gear from measured tooth surface topographical data. J. Mech. Design. 2020, 142, 113401. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.H.; Wu, X.Q.; Zhuang, C.B. Digital Twin-Based Dynamic Prediction of Thermomechanical Coupling for Skiving Process. Int. J. Adv. Manuf. Technol. 2022, 1–18. [Google Scholar] [CrossRef]
- Lei, D.C.; Rong, K.B.; Song, B.Y.; Ding, H.; Tang, J.Y. Digital twin modeling for tooth surface grinding considering low-risk transmission performance of non-orthogonal aviation spiral bevel gears. ISA Trans. 2022, 128, 646–663. [Google Scholar] [CrossRef] [PubMed]
- Rong, K.B.; Ding, H.; Kong, X.N.A.; Huang, R.; Tang, J.Y. Digital twin modeling for loaded contact pattern-based grinding of spiral bevel gears. Adv. Eng. Inform. 2021, 49, 101305. [Google Scholar] [CrossRef]
- Yin, P.L.; Han, F.B.; Wang, J.H.; Lu, C.X. Influence of module on measurement uncertainty of gear tooth profile deviation on gear measuring center. Measurement 2021, 182, 109688. [Google Scholar] [CrossRef]
- Xiang, T.M.; Lan, D.D.; Zhang, S.H.; Li, W.X.; Lin, D.Q. Experimental modal test of the spiral bevel gear wheel using the PolyMAX method. J. Mech. Sci. Technol. 2018, 32, 21–28. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Yang, K.; Tang, W. Prediction and test of stable transmission time of spiral bevel gear during a loss-of-lubrication event in helicopter transmission system. Ind. Lubr. Tribo. 2022, 74, 111–117. [Google Scholar] [CrossRef]
Items | Pinion | Gear |
---|---|---|
Number of teeth | 16 | 27 |
Module (mm) | 4.25 | 4.25 |
Mean spiral angle (°) | 35 | 35 |
Normal pressure angle (°) | 20 | 20 |
Shaft angle (°) | 90 | 90 |
Face width (mm) | 17 | 17 |
Hand of spiral (°) | Left | Right |
Outer cone distance (mm) | 66.693 | 66.693 |
Pitch angle (°) | 30.6507 | 59.493 |
Face angle (°) | 35.3501 | 62.2168 |
Root angle (°) | 27.7832 | 54.6499 |
Addendum (mm) | 4.682 | 2.542 |
Dedendum (mm) | 3.342 | 5.482 |
Whole tooth height (mm) | 8.024 | 8.024 |
Bottom (mm) | 0.8 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, S.; Yang, J.; Zhang, H.; Zhao, H. A Digital Twin-Based State Monitoring Method of Gear Test Bench. Appl. Sci. 2023, 13, 3291. https://doi.org/10.3390/app13053291
Li J, Wang S, Yang J, Zhang H, Zhao H. A Digital Twin-Based State Monitoring Method of Gear Test Bench. Applied Sciences. 2023; 13(5):3291. https://doi.org/10.3390/app13053291
Chicago/Turabian StyleLi, Jubo, Songlin Wang, Jianjun Yang, Huijie Zhang, and Hengbo Zhao. 2023. "A Digital Twin-Based State Monitoring Method of Gear Test Bench" Applied Sciences 13, no. 5: 3291. https://doi.org/10.3390/app13053291
APA StyleLi, J., Wang, S., Yang, J., Zhang, H., & Zhao, H. (2023). A Digital Twin-Based State Monitoring Method of Gear Test Bench. Applied Sciences, 13(5), 3291. https://doi.org/10.3390/app13053291