Combining Statistical, Displacement and Damage Analyses to Study Slow-Moving Landslides Interacting with Roads: Two Case Studies in Southern Italy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Phase I: Statistical Model
2.1.2. Phase II: Combination Model
- D0 (negligible): road pavement deformation and cracks are absent or rarely visible;
- D1(slight): deformation of the road pavement without the occurrence of cracks;
- D2 (moderate): cracks in the road pavement;
- D3 (severe): dislocation of the road pavement compromising its continuity.
2.1.3. Phase III: Classification Model
- “high”, when all the three indicators are positive;
- “medium”, when two indicators are positive;
- “low”, when one indicator is positive;
- “very low”, when all the three indicators are negative.
Combination | Landslide | Susceptibility Index | Velocity | Damage Severity Level | Risk |
---|---|---|---|---|---|
01r | yes | >0 | moving | damaged | high |
02r | yes | >0 | not moving | damaged | medium |
03r | yes | >0 | moving | undamaged | medium |
04r | yes | <0 | moving | damaged | medium |
05r | yes | <0 | not moving | damaged | low |
06r | yes | >0 | not moving | undamaged | low |
07r | yes | <0 | moving | undamaged | low |
08r | yes | <0 | not moving | undamaged | very low |
Combination | Landslide | Susceptibility Index | Velocity | Damage Severity Level | Attention |
---|---|---|---|---|---|
01a | no | >0 | moving | damaged | high |
02a | no | >0 | not moving | damaged | medium |
03a | no | >0 | moving | undamaged | medium |
04a | no | <0 | moving | damaged | medium |
05a | no | <0 | not moving | damaged | low |
06a | no | >0 | not moving | undamaged | low |
07a | no | <0 | moving | undamaged | low |
08a | no | <0 | not moving | undamaged | very low |
2.2. Test Areas and Datasets
3. Results
3.1. Statistical Model
3.2. Combination Model
3.3. Classification Model
Study Area | Road Stretches at Risk [km] | Road Stretches at Attention [km] | ||||||
---|---|---|---|---|---|---|---|---|
H | M | L | VL | H | M | L | VL | |
Vaglio Basilicata | 1.99 (24) | 7.74 (61) | 7.34 (36) | 0.19 (2) | 3.47 (32) | 7.11 (43) | 1.48 (13) | 0.10 (2) |
Trivigno | 1.47 (14) | 8.67 (32) | 1.15 (17) | − (−) | 1.97 (24) | 2.39 (33) | 1.21 (13) | 0.07 (1) |
4. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Infante, D.; Di Martire, D.; Calcaterra, D.; Miele, P.; Scotto di Santolo, A.; Ramondini, M. Integrated Procedure for Monitoring and Assessment of Linear Infrastructures Safety (I-Pro MONALISA) Affected by Slope Instability. Appli. Sci. 2019, 9, 5535. [Google Scholar] [CrossRef] [Green Version]
- Calvello, M.; Pecoraro, G. FraneItalia: A Catalog of Recent Italian Landslides. Geoenviron. Disasters 2018, 5, 13. [Google Scholar] [CrossRef]
- Ferlisi, S.; Peduto, D.; Gullà, G.; Nicodemo, G.; Borrelli, L.; Fornaro, G. The Use of DInSAR Data for the Analysis of Building Damage Induced by Slow-Moving Landslides. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 1835–1839. [Google Scholar]
- Calvello, M.; Peduto, D.; Arena, L. Combined Use of Statistical and DInSAR Data Analyses to Define the State of Activity of Slow-Moving Landslides. Landslides 2017, 14, 473–489. [Google Scholar] [CrossRef]
- Nappo, N.; Peduto, D.; Mavrouli, O.; van Westen, C.J.; Gullà, G. Slow-Moving Landslides Interacting with the Road Network: Analysis of Damage Using Ancillary Data, in Situ Surveys and Multi-Source Monitoring Data. Eng. Geol. 2019, 260, 105244. [Google Scholar] [CrossRef]
- Peduto, D.; Santoro, M.; Aceto, L.; Borrelli, L.; Gullà, G. Full Integration of Geomorphological, Geotechnical, A-DInSAR and Damage Data for Detailed Geometric-Kinematic Features of a Slow-Moving Landslide in Urban Area. Landslides 2021, 18, 807–825. [Google Scholar] [CrossRef]
- Ferlisi, S.; Marchese, A.; Peduto, D. Quantitative Analysis of the Risk to Road Networks Exposed to Slow-Moving Landslides: A Case Study in the Campania Region (Southern Italy). Landslides 2021, 18, 303–319. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.; Bièvre, G. Life and Death of Slow-Moving Landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Fang, K.; Tang, H.; Li, C.; Su, X.; An, P.; Sun, S. Centrifuge Modelling of Landslides and Landslide Hazard Mitigation: A Review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Martino, S.; Bozzano, F.; Caporossi, P.; D’Angiò, D.; Della Seta, M.; Esposito, C.; Fantini, A.; Fiorucci, M.; Giannini, L.M.; Iannucci, R.; et al. Impact of Landslides on Transportation Routes during the 2016–2017 Central Italy Seismic Sequence. Landslides 2019, 16, 1221–1241. [Google Scholar] [CrossRef]
- Novellino, A.; Cesarano, M.; Cappelletti, P.; Di Martire, D.; Di Napoli, M.; Ramondini, M.; Sowter, A.; Calcaterra, D. Slow-Moving Landslide Risk Assessment Combining Machine Learning and InSAR Techniques. CATENA 2021, 203, 105317. [Google Scholar] [CrossRef]
- Bordoni, M.; Persichillo, M.G.; Meisina, C.; Crema, S.; Cavalli, M.; Bartelletti, C.; Galanti, Y.; Barsanti, M.; Giannecchini, R.; D’Amato Avanzi, G. Estimation of the Susceptibility of a Road Network to Shallow Landslides with the Integration of the Sediment Connectivity. Nat. Hazards Earth Syst. Sci. 2018, 18, 1735–1758. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-Based Predictive Models for Regional-Scale Landslide Susceptibility Assessment and Risk Mapping along Road Corridors. Geomat. Nat. Haz. Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef] [Green Version]
- Strauch, R.L.; Raymond, C.L.; Rochefort, R.M.; Hamlet, A.F.; Lauver, C. Adapting Transportation to Climate Change on Federal Lands in Washington State, U.S.A. Clim. Chang. 2015, 130, 185–199. [Google Scholar] [CrossRef]
- Klose, M.; Damm, B.; Terhorst, B. Landslide Cost Modeling for Transportation Infrastructures: A Methodological Approach. Landslides 2015, 12, 321–334. [Google Scholar] [CrossRef]
- Matulla, C.; Hollósi, B.; Andre, K.; Gringinger, J.; Chimani, B.; Namyslo, J.; Fuchs, T.; Auerbach, M.; Herrmann, C.; Sladek, B.; et al. Climate Change Driven Evolution of Hazards to Europe’s Transport Infrastructure throughout the Twenty-First Century. Theory Appl. Climatol. 2018, 133, 227–242. [Google Scholar] [CrossRef]
- Fell, R.; Ho, K.K.S.; Lacasse, S.; Leroi, E. A Framework for Landslide Risk Assessment and Management. In Landslide Risk Management; CRC Press: Boca Raton, FL, USA, 2005; pp. 13–36. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land-Use Planning. Eng. Geol. 2008, 102, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Das, I.; Stein, A.; Kerle, N.; Dadhwal, V.K. Landslide Susceptibility Mapping along Road Corridors in the Indian Himalayas Using Bayesian Logistic Regression Models. Geomorphology 2012, 179, 116–125. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling–Narayanghat Road Section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Winter, M.G.; Shearer, B.; Palmer, D.; Peeling, D.; Harmer, C.; Sharpe, J. The Economic Impact of Landslides and Floods on the Road Network. Procedia Eng. 2016, 143, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Postance, B.; Hillier, J.; Dijkstra, T.; Dixon, N. Extending Natural Hazard Impacts: An Assessment of Landslide Disruptions on a National Road Transportation Network. Environ. Res. Lett. 2017, 12, 014010. [Google Scholar] [CrossRef]
- Pasang, S.; Kubíček, P. Landslide Susceptibility Mapping Using Statistical Methods along the Asian Highway, Bhutan. Geosciences 2020, 10, 430. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, H.; Xie, P.; Hu, D.; Zhang, J.; Zhang, W. Hybrid-Optimized Logistic Regression Model of Landslide Susceptibility along Mountain Highway. Bull. Eng. Geol. Environ. 2021, 80, 7385–7401. [Google Scholar] [CrossRef]
- Lima, P.; Steger, S.; Glade, T.; Murillo-García, F.G. Literature Review and Bibliometric Analysis on Data-Driven Assessment of Landslide Susceptibility. J. Mt. Sci. 2022, 19, 1670–1698. [Google Scholar] [CrossRef]
- Tehrani, F.S.; Calvello, M.; Liu, Z.; Zhang, L.; Lacasse, S. Machine Learning and Landslide Studies: Recent Advances and Applications. Nat. Hazards 2022, 114, 1197–1245. [Google Scholar] [CrossRef]
- Xia, D.; Tang, H.; Sun, S.; Tang, C.; Zhang, B. Landslide Susceptibility Mapping Based on the Germinal Center Optimization Algorithm and Support Vector Classification. Remote Sens. 2022, 14, 2707. [Google Scholar] [CrossRef]
- Ling, S.; Zhao, S.; Huang, J.; Zhang, X. Landslide Susceptibility Assessment Using Statistical and Machine Learning Techniques: A Case Study in the Upper Reaches of the Minjiang River, Southwestern China. Front. Earth Sci. 2022, 10, 986172. [Google Scholar] [CrossRef]
- Calvello, M.; Cascini, L.; Mastroianni, S. Landslide Zoning over Large Areas from a Sample Inventory by Means of Scale-Dependent Terrain Units. Geomorphology 2013, 182, 33–48. [Google Scholar] [CrossRef]
- Catani, F.; Casagli, N.; Ermini, L.; Righini, G.; Menduni, G. Landslide Hazard and Risk Mapping at Catchment Scale in the Arno River Basin. Landslides 2005, 2, 329–342. [Google Scholar] [CrossRef]
- Peng, L.; Xu, S.; Hou, J.; Peng, J. Quantitative Risk Analysis for Landslides: The Case of the Three Gorges Area, China. Landslides 2015, 12, 943–960. [Google Scholar] [CrossRef]
- Mavrouli, O.; Corominas, J.; Ibarbia, I.; Alonso, N.; Jugo, I.; Ruiz, J.; Luzuriaga, S.; Navarro, J.A. Integrated Risk Assessment Due to Slope Instabilities in the Roadway Network of Gipuzkoa, Basque Country. Nat. Hazards Earth Syst. Sci. 2019, 19, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Gullà, G.; Nicodemo, G.; Ferlisi, S.; Borrelli, L.; Peduto, D. Small-Scale Analysis to Rank Municipalities Requiring Slow-Moving Landslide Risk Mitigation Measures: The Case Study of the Calabria Region (Southern Italy). Geoenviron. Disasters 2021, 8, 31. [Google Scholar] [CrossRef]
- Yin, K.L.; Yan, T.Z. Statistical Prediction Models for Slope Instability of Metamorphosed Rocks. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 13 September 1988; Volume 2, pp. 1269–1272. [Google Scholar]
- Ciurleo, M.; Calvello, M.; Cascini, L. Susceptibility Zoning of Shallow Landslides in Fine Grained Soils by Statistical Methods. CATENA 2016, 139, 250–264. [Google Scholar] [CrossRef]
- Cascini, L.; Peduto, D.; Pisciotta, G.; Arena, L.; Ferlisi, S.; Fornaro, G. The Combination of DInSAR and Facility Damage Data for the Updating of Slow-Moving Landslide Inventory Maps at Medium Scale. Nat. Hazards Earth Syst. Sci. 2013, 13, 1527–1549. [Google Scholar] [CrossRef]
- Peduto, D.; Elia, F.; Montuori, R. Probabilistic Analysis of Settlement-Induced Damage to Bridges in the City of Amsterdam (The Netherlands). Transp. Geotech. 2018, 14, 169–182. [Google Scholar] [CrossRef]
- Nicodemo, G.; Peduto, D.; Ferlisi, S.; Gullà, G.; Reale, D.; Fornaro, G. Dinsar Data Integration in Vulnerability Analyses of Buildings Exposed to Slow-Moving Landslides. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6107–6110. [Google Scholar]
- Del Prete, R.; Cammarota, A.; Del Prete, M. La frana del tempio della dea Mefitis nel territorio di Vaglio della Basilicata. G. Geol. Appl. 2006, 3, 152–158. [Google Scholar]
- Urciuoli, G.; Pirone, M.; Comegna, L.; Picarelli, L. Long-Term Investigations on the Pore Pressure Regime in Saturated and Unsaturated Sloping Soils. Eng. Geol. 2016, 212, 98–119. [Google Scholar] [CrossRef]
- Sdao, F.; Simeone, V. Mass Movements Affecting Goddess Mefitis Sanctuary in Rossano Di Vaglio (Basilicata, Southern Italy). J. Cult. Herit. 2007, 8, 77–80. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; pp. 449–452. [Google Scholar]
- Peduto, D.; Giangreco, C.; Venmans, A.A.M. Differential Settlements Affecting Transition Zones between Bridges and Road Embankments on Soft Soils: Numerical Analysis of Maintenance Scenarios by Multi-Source Monitoring Data Assimilation. Transp. Geotech. 2020, 24, 100369. [Google Scholar] [CrossRef]
- Titti, G.; Sarretta, A.; Lombardo, L.; Crema, S.; Pasuto, A.; Borgatti, L. Mapping Susceptibility With Open-Source Tools: A New Plugin for QGIS. Front. Earth Sci. 2022, 10, 229. [Google Scholar] [CrossRef]
Class | V1 [m] | V2 [m] | V3 [°] | V4 [−] | V5 [−] | V6 [−] | V7 [−] | V8 [−] | V9 [−] | V10 [−] |
---|---|---|---|---|---|---|---|---|---|---|
1v | 0 to 0 | 0 to 0 | 0.05 to 5 | 0.05 to 1.52 | −10 to −1.04 | 0 to 61.9 | −13 to −0.022 | 1 to 2.81 | 1.8 to 4.4 | 0.002 to 3 |
2v | 20 to 40 | 20 to 44 | 5.2 to 7 | 1.53 to 2 | −1.03 to −0.53 | 62 to 114.98 | −0.02 to −0.012 | 2.82 to 4.44 | 4.5 to 5 | 3.002 to 5.36 |
3v | 44 to 63 | 56 to 84 | 7.1 to 8 | 2.03 to 2.42 | −0.52 to −0.23 | 114.99 to 159 | −0.01 to −0.0053 | 4.45 to 6.61 | 5.1 to 5.6 | 5.37 to 8.29 |
4v | 72 to 107 | 89 to 128 | 8.5 to 9.8 | 2.43–2.79 | −0.22 to −0.003 | 159.1 to 186 | −0.005 to −4.6 × 10−5 | 6.62 to 9.73 | 5.61 to 6 | 8.3 to 12.63 |
5v | 113 to 156 | 134 to 181 | 9.85 to 11 | 2.8–3.21 | 0.004 to 0.23 | 186.9 to 213 | −4.5 × 10−5 to 0.0052 | 9.74 to 15 | 6.1 to 6.6 | 12.64 to 19.85 |
6v | 160 to 223 | 184 to 244 | 11.3 to 13 | 3.22–3.76 | 0.24 to 0.54 | 213.3 to 242 | 0.0053 to 0.01 | 15.1 to 26.62 | 6.7 to 7.3 | 19.86 to 35.24 |
7v | 226 to 341 | 247 to 354 | 13.2 to 16 | 3.77–4.75 | 0.55 to 1.06 | 242.7 to 282 | 0.011 to 0.021 | 26.63 to 66 | 7.4 to 8.5 | 35.25 to 89.8 |
8v | 342 to 1394 | 356 to 929 | 16.5 to 44 | 4.76–15 | 1.07 to 14.7 | 282.3 to 360 | 0.022 to 3 | 66.5 to 168636 | 8.6 to 26 | 89.9 to 485968 |
Class | V1 [m] | V2 [m] | V3 [°] | V4 [−] | V5 [−] | V6 [−] | V7 [−] | V8 [−] | V9 [−] | V10 [−] |
---|---|---|---|---|---|---|---|---|---|---|
1t | 0 to 0 | 0 to 304 | 0 to 6.9 | 0 to 2.04 | −14 to −1.41 | 0 to 26.86 | −14 to −0.024 | 0 to 0 | 2 to 4 | 0 to 3 |
2t | 20 to 40 | 305 to 679 | 6.9 to 9.3 | 2.05 to 2.66 | −1.4 to −0.74 | 26.87 to 48 | −0.023 to −0.013 | 1 to 1 | 4.1 to 4.6 | 3.6 to 6 |
3t | 44 to 80 | 679.4 to 1075 | 9.3 to 11 | 2.67 to 3.15 | −0.73 to −0.33 | 48.2 to 68.5 | −0.01 to −0.006 | 2 to 2 | 4.7 to 5 | 6.5 to 10 |
4t | 82 to 128 | 1076 to 1488 | 11 to 12.6 | 3.16 to 3.6 | −0.32 to −6.1 × 10−5 | 68.6 to 89 | −0.005 to −1 × 10−6 | 3 to 3 | 5.2 to 5.7 | 10.1 to 15 |
5t | 134 to 196 | 1488 to 1913 | 12.7 to 14.5 | 3.63 to 4.1 | 0 to 0.3 | 89.1 to 115 | 0 to 0.005 | 4 to 5 | 5.8 to 6 | 15.2 to 23 |
6t | 197 to 280 | 1914 to 2469 | 14.5 to 16.8 | 4.2 to 4.92 | 0.32 to 0.73 | 115.1 to 150 | 0.006 to 0.01 | 6 to 8 | 6.4 to 7 | 23.8 to 42 |
7t | 282 to 423 | 2469 to 3257 | 16.9 to 20.8 | 4.93 to 6.1 | 0.74 to 1.44 | 150.7 to 266 | 0.012 to 0.024 | 9 to 21 | 7.2 to 8 | 42.4 to 114 |
8t | 424 to 1164 | 3257 to 4702 | 20.9 to 51 | 6.2 to 19 | 1.45 to 13 | 266.4 to 360 | 0.03 to 20 | 22 to 3290 | 8.5 to 26 | 114 to 224650 |
Wik(i) | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
---|---|---|---|---|---|---|---|---|---|---|
Wi1V | −0.14 | 0.94 | −0.50 | −0.52 | 0.41 | −0.11 | −0.37 | −1.08 | −0.51 | −0.73 |
Wi2V | −0.07 | 0.45 | 0.20 | 0.17 | 0.34 | −0.26 | −0.30 | −0.76 | −0.47 | −0.46 |
Wi3V | −0.05 | −0.04 | 0.24 | 0.26 | 0.15 | 0.10 | −0.28 | −0.51 | −0.44 | −0.36 |
Wi4V | −0.06 | −0.26 | 0.26 | 0.23 | −0.09 | 0.29 | −0.18 | −0.35 | −0.28 | −0.24 |
Wi5V | −0.11 | −0.34 | 0.12 | 0.12 | −0.23 | 0.19 | −0.07 | −0.09 | −0.10 | −0.10 |
Wi6V | −0.08 | −0.26 | 0.03 | 0.03 | −0.24 | −0.08 | 0.06 | 0.21 | 0.07 | 0.08 |
Wi7V | −0.06 | −0.26 | 0.004 | 0.04 | −0.18 | −0.15 | 0.34 | 0.64 | 0.46 | 0.38 |
Wi8V | 0.49 | −0.14 | −0.51 | −0.47 | −0.28 | −0.03 | 0.61 | 1.12 | 0.89 | 0.99 |
Wik(i) | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
---|---|---|---|---|---|---|---|---|---|---|
Wi1T | −0.20 | −0.41 | −0.77 | −0.71 | 0.75 | −0.03 | −0.59 | −0.90 | −0.40 | −1.12 |
Wi2T | 0.09 | 0.17 | 0.002 | −0.06 | 0.43 | 0.03 | −0.42 | −0.51 | −0.46 | −0.51 |
Wi3T | 0.35 | 0.68 | 0.17 | 0.17 | 0.25 | −0.35 | −0.29 | −0.22 | −0.38 | −0.29 |
Wi4T | 0.35 | 0.64 | 0.24 | 0.22 | −0.05 | −0.55 | −0.23 | −0.10 | −0.14 | −0.12 |
Wi5T | 0.32 | 0.55 | 0.23 | 0.20 | −0.33 | −0.24 | −0.09 | 0.07 | 0.01 | 0.07 |
Wi6T | 0.41 | 0.38 | 0.15 | 0.11 | −0.29 | 0.25 | 0.27 | 0.18 | 0.32 | 0.30 |
Wi7T | 0.05 | −0.76 | −0.07 | −0.07 | −0.36 | 0.42 | 0.50 | 0.31 | 0.54 | 0.62 |
Wi8T | −1.66 | −1.32 | 0.03 | 0.13 | −0.37 | 0.50 | 0.89 | 0.88 | 0.54 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecoraro, G.; Nicodemo, G.; Menichini, R.; Luongo, D.; Peduto, D.; Calvello, M. Combining Statistical, Displacement and Damage Analyses to Study Slow-Moving Landslides Interacting with Roads: Two Case Studies in Southern Italy. Appl. Sci. 2023, 13, 3368. https://doi.org/10.3390/app13053368
Pecoraro G, Nicodemo G, Menichini R, Luongo D, Peduto D, Calvello M. Combining Statistical, Displacement and Damage Analyses to Study Slow-Moving Landslides Interacting with Roads: Two Case Studies in Southern Italy. Applied Sciences. 2023; 13(5):3368. https://doi.org/10.3390/app13053368
Chicago/Turabian StylePecoraro, Gaetano, Gianfranco Nicodemo, Rosa Menichini, Davide Luongo, Dario Peduto, and Michele Calvello. 2023. "Combining Statistical, Displacement and Damage Analyses to Study Slow-Moving Landslides Interacting with Roads: Two Case Studies in Southern Italy" Applied Sciences 13, no. 5: 3368. https://doi.org/10.3390/app13053368
APA StylePecoraro, G., Nicodemo, G., Menichini, R., Luongo, D., Peduto, D., & Calvello, M. (2023). Combining Statistical, Displacement and Damage Analyses to Study Slow-Moving Landslides Interacting with Roads: Two Case Studies in Southern Italy. Applied Sciences, 13(5), 3368. https://doi.org/10.3390/app13053368