The Travel Time of Floatable Litter of Different Densities Influenced by River Flow Velocity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design Framework
2.2. Selection of Objects Representing FL
2.3. Measuring Physical Characteristics of Floatable Litter: Mass, Volume, Size, and Density
2.3.1. Mass, Volume, and Size of Floatable Litter (FL)
2.3.2. Density of Floatable Litter (FL)
2.4. Measuring River Flow Velocity
2.5. Evaluating Floatable Litter Travel Time Using the Time of Travel (ToT) Method
2.6. Data Analysis
3. Results and Discussion
3.1. Analysis of Floatable Litter Characteristics
3.2. River Flow Velocity as The Medium of Field-Testing
3.3. The Floatable Litter Travel Time with Different River Flow Velocity
3.4. Relationship between Floatable Litter Density and Travel Time
4. Discussion
5. Conclusions
Recommendations for Future Research
- The study of other litter characteristics (e.g., shape, exposed area, type of material) and environmental parameters (e.g., wind speed, turbulence, precipitation) which are the drivers for FL migration should be considered. The linking of all individual studies will give a clearer understanding of FL migration and transportation in rivers.
- Since this study is considered a part of litter flux assessment, the future study of FL migration and transportation should consider quantifying the number of items per given time as well as litter diffusion transported in rivers. These two approaches make up litter flux. The assessment of litter flux is important in creating a clear environmental framework for the process of FL getting into the ocean as a whole.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Geological Survey (USGS). Available online: https://www.usgs.gov/special-topic/water-science-school/science/freshwater-lakes-and-rivers-and-water-cycle?qt-science_center_objects=0#qt-science_center_objects (accessed on 23 November 2020).
- Pharr, L. Birds and Rivers: The Importance of a River Ecosystem. Benton Soil & Water Conservation District. 2020. Available online: https://bentonswcd.org/birds-and-rivers-the-importance-of-a-river-ecosystem/ (accessed on 26 December 2021).
- Malik, N.K.A.; Manaf, L.A. Potential recyclable materials derived from riverine litter at log boom Sungai Batu in Kuala Lumpur. J. Mater. Cycles Waste Manag. 2017, 20, 1063–1072. [Google Scholar] [CrossRef]
- Emmerik, T.; Schwarz, A. Plastic debris in rivers. WIREs Water 2019, 7, e1398. [Google Scholar] [CrossRef] [Green Version]
- Meijer LJ, J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef] [PubMed]
- Borah, D.K.; Bera, M. Watershed-scale Hydrologic and Nonpoint-Source Pollution Models: Review of Applications. Trans. ASAE 2004, 47, 789–803. [Google Scholar] [CrossRef] [Green Version]
- Lebreton LC, M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizzetto, L.; Bussi, G.; Futter, M.N.; Butterfield, D.; Whitehead, P.G. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ. Sci. Process. Impacts 2016, 18, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Arizona. Measuring the Flow of a Stream. The Float Method. 2018. Available online: https://www.youtube.com/watch?v=W1lUdxE5BGU (accessed on 1 August 2021).
- Balas, C.E.; Williams, A.T.; Simmons, S.L.; Ergin, A. A Statistical Riverine Litter Propagation Model. Mar. Pollut. Bull. 2001, 42, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.L. Sources, Pathways and Sinks of Litter within Riverine and Marine Environments; University of South Wales: Newport, UK, 1993. [Google Scholar]
- Bruge, A.; Barreau, C.; Carlot, J.; Collin, H.; Moreno, C.; Maison, P. Monitoring litter inputs from the Adour River (Southwest France) to the marine environment. J. Mar. Sci. Eng. 2018, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Crosti, R.; Arcangeli, A.; Campana, I.; Paraboschi, M.; González-Fernández, D. “Down to the river”: Amount, composition, and economic sector of litter entering the marine compartment, through the Tiber river in the Western Mediterranean Sea. Rend. Lincei Sci. Fis. Nat. 2018, 29, 859–866. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Köck-Schulmeyer, M.; Cabrera, M.; González-Fernández, D.; Hanke, G.; Farré, M.; Barceló, D. Riverine anthropogenic litter load to the Mediterranean Sea near the metropolitan area of Barcelona, Spain. Sci. Total Environ. 2020, 714, 136807. [Google Scholar] [CrossRef] [PubMed]
- Rech, S.; Macaya-Caquilpán, V.; Pantoja, J.F.; Rivadeneira, M.M.; Jofre Madariaga, D.; Thiel, M. Rivers as a source of marine litter—A study from the SE Pacific. Mar. Pollut. Bull. 2014, 82, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Chubarenko, I.; Bagaev, A.; Zobkov, M.; Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 2016, 108, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, N.; Reichardt, A.M.; Waniek, J.J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 2016, 109, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.E.; Ligthart, T.N.; Boukris, E.; van Harmelen, T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Mar. Pollut. Bull. 2019, 143, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, A.; The Editors of Encyclopedia Britannica. Turbulent Flow. Physics. In Encyclopædia Britannica. 2016. Available online: https://www.britannica.com/science/turbulent-flow (accessed on 12 January 2022).
- Ivar do Sul, J.A.; Costa, M.F.; Silva-Cavalcanti, J.S.; Araújo MC, B. Plastic debris retention and exportation by a mangrove forest patch. Mar. Pollut. Bull. 2014, 78, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Ather, S.H. How Are Density, Mass & Volume Related? Sciencing. 2019. Available online: https://sciencing.com/density-mass-volume-related-6399069.html (accessed on 13 September 2021).
- Healthy Land and Water Litter in Our Waterways Archives. 2010. Available online: https://hlw.org.au/download-topic/waterways/litter-in-our-waterways/ (accessed on 26 February 2021).
- Parker, L. Plastic Gets to the Oceans through over 1000 Rivers; Environment. Available online: https://www.nationalgeographic.com/environment/article/plastic-gets-to-oceans-through-over-1000-rivers (accessed on 30 April 2021).
- Constantino, E.; Martins, I.; Salazar Sierra, J.M.; Bessa, F. Abundance and composition of floating marine macro litter on the eastern sector of the Mediterranean Sea. Mar. Pollut. Bull. 2019, 138, 260–265. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Climate Change Indicators: Streamflow. US EPA. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-streamflow (accessed on 1 July 2016).
- Ames, H. Factors Affecting a River’s Velocity. Sciencing. 2018. Available online: https://sciencing.com/factors-affecting-rivers-velocity-8223150.html (accessed on 12 July 2021).
No. | Object | Info | Size | Weight (g) | Form |
---|---|---|---|---|---|
1 | 1.5 L mineral bottle | PETE plastic Brand: Bleu | 1.5 L | 28.44 | |
2 | 0.5 L mineral bottle | PETE plastic Brand: Desa | 0.5 L | 15.47 | |
3 | Body wash bottle | HDPE plastic-type Brand: Guardian moist care | 1 L | 108.89 | |
4 | Plastic bag | LDPE plastic type | 23 × 28 cm | 8.00 | |
5 | Polystyrene food packaging | - | 19.5 × 14.0 × 6.5 cm | 5.60 | |
6 | Crisp packet | Common crisp packaging Brand: Corntoz 50 g pack | 17.5 × 30 cm | 9.14 | |
7 | Aluminum can | Aluminum can material Brand: Nescafe 240 mL can | - | 19.65 | |
8 | Diapers | Organic cotton material, high water-absorbent Brand: Mamy Poko L size | 12 × 21 cm | 48.06 | |
9 | Cloth | 100% cotton, T-shirt, S size | - | 103.90 | |
10 | Cardboard | Paper material Box shape | 10.8 × 10.8 × 26.0 cm | 68.50 | |
11 | Polystyrene foam | Rectangle solid shape | 28.3 × 9.2 × 2.5 cm | 25.72 | |
12 | Cigarette butt | - | - | 1.00 | |
13 | Polymer foam | - | 10.15 × 29.4 × 1.30 cm | 22.46 | |
14 | Paper | Magazine-type A4 size, 90 pages | 21.0 × 29.7 × 0.5 cm | 96.07 | |
15 | Wood board | Thin plywood | 29.2 × 57.5 × 0.3 cm | 277.29 | |
16 | Glass bottle | Brand: VSoy | 300 mL | 173.85 | |
17 | Slipper | Rubber material Size 6 | - | 55.60 | |
18 | Sanitizer bottle | Spray bottle type | 50 mL | 12.17 | |
19 | Face mask 3-ply | Brand: Mr. DIY, Adult size | 16.0 × 8.0 cm | 2.60 | |
20 | Parcel bag | Brand: Ninja Van, M size | 26.0 × 33.0 cm | 12.30 |
No. | Objects | FL Code | Mass (kg) | Volume (m3) | Size (cm) | Density (kg/m3) |
---|---|---|---|---|---|---|
1 | 1.5 mineral bottle | FL1 | 0.03 | 0.0015 | 31.0 × 0.8 | 18.96 |
2 | 0.5 mineral bottle | FL2 | 0.02 | 0.0005 | 21.4 × 6.1 | 30.94 |
3 | Body wash bottle | FL3 | 0.11 | 0.001 | 30.4 × 11.5 | 108.89 |
4 | Plastic bag | FL4 | 0.03 | 0.00002 | 23.0 × 28.0 | 92.4 |
5 | Polystyrene food packaging | FL5 | 0.01 | 0.00118 | 19.5 × 14.0 × 6.5 | 4.76 |
6 | Crisp packet | FL6 | 0.01 | 0.0001 | 17.5 × 30.0 | 91.4 |
7 | Aluminum can | FL7 | 0.02 | 0.00024 | 13.0 × 4.6 | 81.88 |
8 | Diapers | FL8 | 0.05 | 0.00005 | 12.0 × 21.0 | 961.2 |
9 | Cloth | FL9 | 0.1 | 0.00009 | 57.0 × 46.2 | 1154.4 |
10 | Cardboard box | FL10 | 0.07 | 0.00303 | 10.8 × 10.8 × 26.0 | 22.59 |
11 | Polystyrene foam | FL11 | 0.03 | 0.00065 | 28.3 × 9.2 × 2.5 | 39.57 |
12 | Cigarette butt | FL12 | 0 | 6 × 10−6 | 3.5 × 0.8 | 169.49 |
13 | Polymer foam | FL13 | 0.02 | 0.00068 | 10.15 × 29.4 × 1.30 | 33.03 |
14 | Magazine paper | FL14 | 0.16 | 0.00023 | 21.0 × 29.7 × 0.5 | 678.57 |
15 | Wood board | FL15 | 0.28 | 0.00039 | 29.2 × 57.5 × 0.3 | 714.67 |
16 | Glass bottle | FL16 | 0.17 | 0.0003 | 20.0 × 7.5 | 579.5 |
17 | Slipper | FL17 | 0.06 | 0.00023 | 26.0 × 9.5 | 247.11 |
18 | Parcel bag | FL18 | 0.01 | 4.5 × 10−5 | 26.0 × 23.0 | 273.33 |
19 | Sanitizer bottle | FL19 | 0.01 | 0.00005 | 9.5 × 3.5 | 243.4 |
20 | Face mask 3-ply | FL20 | 0 | 1.5 × 10−5 | 16.0 × 8.0 | 173.33 |
Condition | Distance between Two Points (m) | Time Taken for a Bottle to Travel between Two Points (s) | River Flow Velocity (m/s) | River Depth (m) | ||
---|---|---|---|---|---|---|
West Riverbank | Middle of River | East Riverbank | ||||
A | 5 | 14.307 | 0.297 | 0.824 | 0.472 | 0.19 |
B | 5 | 25.5 | 0.167 | 0.61 | 0.305 | 0.152 |
C | 5 | 29.675 | 0.143 | 0.36 | 0.26 | 0.14 |
FL Code | Travel Time A (s) | Travel Time B (s) | Travel Time C (s) |
---|---|---|---|
FL1 | 47.87 | 98.2 | 88.79 |
FL2 | 56.08 | 87.58 | 101.06 |
FL3 | 47.33 | 87.32 | 94.8 |
FL4 | 49.98 | 75 | 89.58 |
FL5 | 51.08 | 82.92 | 89.58 |
FL6 | 50.18 | 122.01 | 94.08 |
FL7 | 50.45 | 108.12 | 101.08 |
FL8 | 46.5 | 115.18 | 62.11 |
FL9 | 82 | 204.9 | 186.75 |
FL10 | 69 | 94.17 | 65.28 |
FL11 | 51.07 | 89.64 | 73.05 |
FL12 | 45.69 | 97.95 | 87.08 |
FL13 | 48.33 | 104.16 | 83.08 |
FL14 | 43.93 | 105.1 | 57.65 |
FL15 | 50.05 | 92.76 | 74.94 |
FL16 | 46.35 | 80.31 | 58.79 |
FL17 | 47.74 | 71.95 | 80.5 |
FL18 | 50.94 | 76.82 | 76.84 |
FL19 | 47.69 | 78.79 | 78.13 |
FL20 | 47.29 | 78.25 | 62.85 |
Condition | N | Mean | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|
A | 20 | 51.48 | 43.93 | 82 | 8.87 |
B | 20 | 97.56 | 71.95 | 204.9 | 28.82 |
C | 20 | 85.3 | 57.65 | 186.75 | 27.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabilah Adzhar, N.F.; Abd Manaf, L.; Azmar, N.A.; Nadhirah Roslan, A.; Bagheri, M.; Yusuf Kpalo, S.; Asma Wan Talaat, W.I.; Beiranvand Pour, A. The Travel Time of Floatable Litter of Different Densities Influenced by River Flow Velocity. Appl. Sci. 2023, 13, 3450. https://doi.org/10.3390/app13063450
Nabilah Adzhar NF, Abd Manaf L, Azmar NA, Nadhirah Roslan A, Bagheri M, Yusuf Kpalo S, Asma Wan Talaat WI, Beiranvand Pour A. The Travel Time of Floatable Litter of Different Densities Influenced by River Flow Velocity. Applied Sciences. 2023; 13(6):3450. https://doi.org/10.3390/app13063450
Chicago/Turabian StyleNabilah Adzhar, Nur Fatin, Latifah Abd Manaf, Noor Azwani Azmar, Aimi Nadhirah Roslan, Milad Bagheri, Sunday Yusuf Kpalo, Wan Izatul Asma Wan Talaat, and Amin Beiranvand Pour. 2023. "The Travel Time of Floatable Litter of Different Densities Influenced by River Flow Velocity" Applied Sciences 13, no. 6: 3450. https://doi.org/10.3390/app13063450
APA StyleNabilah Adzhar, N. F., Abd Manaf, L., Azmar, N. A., Nadhirah Roslan, A., Bagheri, M., Yusuf Kpalo, S., Asma Wan Talaat, W. I., & Beiranvand Pour, A. (2023). The Travel Time of Floatable Litter of Different Densities Influenced by River Flow Velocity. Applied Sciences, 13(6), 3450. https://doi.org/10.3390/app13063450