Compact High-Tc Superconducting Terahertz Emitter with Tunable Frequency from 0.15 to 1 THz
Abstract
:1. Introduction
2. Sample Preparation and Measurement Techniques
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Welp, U.; Kadowaki, K.; Kleiner, R. Superconducting emitters of THz radiation. Nat. Photonics 2013, 7, 702–710. [Google Scholar] [CrossRef]
- Kakeya, I.; Wang, H. Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: A review on recent progress. Supercond. Sci. Technol. 2016, 29, 073001. [Google Scholar] [CrossRef]
- Kleiner, R.; Steinmeyer, F.; Kunkel, G.; Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 1992, 68, 2394–2397. [Google Scholar] [CrossRef]
- Ozyuzer, L.; Koshelev, A.E.; Kurter, C.; Gopalsami, N.; Li, Q.; Tachiki, M.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; et al. Emission of Coherent THz Radiation from Superconductors. Science 2007, 318, 1291–1293. [Google Scholar] [CrossRef] [Green Version]
- Klemm, R.A.; Davis, A.E.; Wang, Q.X.; Yamamoto, T.; Cerkoney, D.P.; Reid, C.; Koopman, M.L.; Minami, H.; Kashiwagi, T.; Rain, J.R.; et al. Terahertz emission from the intrinsic Josephson junctions of high-symmetry thermally-managed Bi2Sr2CaCu2O8+δ microstrip antennas. IOP Conf. Ser. Mater. Sci. Eng. 2017, 279, 012017. [Google Scholar] [CrossRef]
- Klemm, R.A.; Davis, A.E.; Wang, Q.X. Terahertz Emission from Thermally Managed Square Intrinsic Josephson Junction Microstrip Antennas. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Wieland, R.; Chen, W.; Kizilaslan, O.; Ishida, S.; Han, C.; Tian, W.; Xu, Z.; Qi, Z.; Qing, T.; et al. Resonant Cavity Modes in Bi2Sr2CaCu2O8+x Intrinsic Josephson Junction Stacks. Phys. Rev. Appl. 2019, 11, 044004. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Z.; Kinev, N.V.; Kiselev, O.S.; Lv, Y.; Huang, Y.; Hao, L.; Zhou, X.; Ji, M.; Tu, X.; et al. Terahertz Spectroscopy of Dilute Gases Using Bi2Sr2CaCu2O8+δ Intrinsic Josephson-Junction Stacks. Phys. Rev. Appl. 2017, 8, 054005. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, H.; An, D.; Zhou, X.; Ji, M.; Rudau, F.; Wieland, R.; Hampp, J.S.; Kizilaslan, O.; Yuan, J.; et al. Self-Mixing Spectra of Terahertz Emitters Based on Bi2Sr2CaCu2O8+δ Intrinsic Josephson-Junction Stacks. Phys. Rev. Appl. 2017, 8, 054023. [Google Scholar] [CrossRef]
- Gross, B.; Guénon, S.; Yuan, J.; Li, M.Y.; Li, J.; Ishii, A.; Mints, R.G.; Hatano, T.; Wu, P.H.; Koelle, D.; et al. Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8. Phys. Rev. B 2012, 86, 094524. [Google Scholar] [CrossRef] [Green Version]
- Yamaki, K.; Tsujimoto, M.; Yamamoto, T.; Furukawa, A.; Kashiwagi, T.; Minami, H.; Kadowaki, K. High-power terahertz electromagnetic wave emission from high-T(c) superconducting Bi2Sr2CaCu2O8+δ mesa structures. Opt. Express 2011, 19, 3193–3201. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhu, Q.; Ji, M.; An, D.; Hao, L.; Sun, H.; Ishida, S.; Rudau, F.; Wieland, R.; Li, J.; et al. Three-terminal stand-alone superconducting terahertz emitter. Appl. Phys. Lett. 2015, 107, 122602. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Nakade, K.; Marković, B.; Saiwai, Y.; Minami, H.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; et al. Reflection type of terahertz imaging system using a high-Tc superconducting oscillator. Appl. Phys. Lett. 2014, 104, 022601. [Google Scholar] [CrossRef]
- Benseman, T.M.; Gray, K.E.; Koshelev, A.E.; Kwok, W.-K.; Welp, U.; Minami, H.; Kadowaki, K.; Yamamoto, T. Powerful terahertz emission from Bi2Sr2CaCu2O8+δ mesa arrays. Appl. Phys. Lett. 2013, 103, 022602. [Google Scholar] [CrossRef] [Green Version]
- Klemm, R.A.; Laberge, E.R.; Morley, D.R.; Kashiwagi, T.; Tsujimoto, M.; Kadowaki, K. Cavity mode waves during terahertz radiation from rectangular Bi2Sr2CaCu2O8+δ mesas. J. Physics Condens. Matter 2010, 23, 025701. [Google Scholar] [CrossRef]
- Gross, B.; Yuan, J.; An, D.Y.; Li, M.Y.; Kinev, N.; Zhou, X.J.; Ji, M.; Huang, Y.; Hatano, T.; Mints, R.G.; et al. Modeling the linewidth dependence of coherent terahertz emission from intrinsic Josephson junction stacks in the hot-spot regime. Phys. Rev. B 2013, 88, 014524. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.J.; Yuan, J.; Wu, H.; Gao, Z.S.; Ji, M.; An, D.Y.; Huang, Y.; Rudau, F.; Wieland, R.; Gross, B.; et al. Tuning the Terahertz Emission Power of an Intrinsic Josephson-Junction Stack with a Focused Laser Beam. Phys. Rev. Appl. 2015, 3, 044012. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Nakade, K.; Saiwai, Y.; Minami, H.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; et al. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator. Appl. Phys. Lett. 2014, 104, 082603. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, M.; Yamamoto, T.; Delfanazari, K.; Nakayama, R.; Kitamura, T.; Sawamura, M.; Kashiwagi, T.; Minami, H.; Tachiki, M.; Kadowaki, K.; et al. Broadly Tunable Subterahertz Emission from Internal Branches of the Current-Voltage Characteristics of Superconducting Bi2Sr2CaCu2O8+δ Single Crystals. Phys. Rev. Lett. 2012, 108, 107006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, D.Y.; Yuan, J.; Kinev, N.; Li, M.Y.; Huang, Y.; Ji, M.; Zhang, H.; Sun, Z.L.; Kang, L.; Jin, B.B.; et al. Terahertz emission and detection both based on high-Tc superconductors: Towards an integrated receiver. Appl. Phys. Lett. 2013, 102, 092601. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, M.; Yamaki, K.; Deguchi, K.; Yamamoto, T.; Kashiwagi, T.; Minami, H.; Tachiki, M.; Kadowaki, K.; Klemm, R.A. Geometrical Resonance Conditions for THz Radiation from the Intrinsic Josephson Junctions in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 2010, 105, 037005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Wieland, R.; Xu, Z.; Qi, Z.; Lv, Y.; Huang, Y.; Zhang, H.; Zhou, X.; Li, J.; Wang, Y.; et al. Compact High- Tc Superconducting Terahertz emitter operating up to 86 K. Phys. Rev. Appl. 2018, 10, 024041. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, T.; Yamamoto, T.; Kitamura, T.; Asanuma, K.; Watanabe, C.; Nakade, K.; Yasui, T.; Saiwai, Y.; Shibano, Y.; Kubo, H.; et al. Generation of electromagnetic waves from 0.3 to 1.6 terahertz with a high- Tc superconducting Bi2Sr2CaCu2O8+δ intrinsic Josephson junction emitter. Appl. Phys. Lett. 2015, 106, 092601. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Minami, H.; Delfanazari, K.; Sawamura, M.; Nakayama, R.; Kitamura, T.; Yamamoto, T.; Kashiwagi, T.; Hattori, T.; Kadowaki, K. Terahertz imaging system using high-Tc superconducting oscillation devices. J. Appl. Phys. 2012, 111, 123111. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yuan, J.; Kinev, N.; Li, J.; Gross, B.; Guénon, S.; Ishii, A.; Hirata, K.; Hatano, T.; Koelle, D.; et al. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks in the hot-spot regime. Phys. Rev. B 2012, 86, 060505. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.Y.; Ji, M.; Yuan, J.; An, D.Y.; Li, M.Y.; Zhou, X.J.; Huang, Y.; Sun, H.C.; Zhu, Q.; Rudau, F.; et al. Compact Superconducting Terahertz Source Operating in Liquid Nitrogen. Phys. Rev. Appl. 2015, 3, 024006. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, T.; Sakamoto, K.; Kubo, H.; Shibano, Y.; Enomoto, T.; Kitamura, T.; Asanuma, K.; Yasui, T.; Watanabe, C.; Nakade, K.; et al. A high- Tc intrinsic Josephson junction emitter tunable from 0.5 to 2.4 terahertz. Appl. Phys. Lett. 2015, 107, 082601. [Google Scholar] [CrossRef]
- Ji, M.; Yuan, J.; Gross, B.; Rudau, F.; An, D.Y.; Li, M.Y.; Zhou, X.J.; Huang, Y.; Sun, H.C.; Zhu, Q.; et al. Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks with improved cooling: Coherent emission above 1 THz. Appl. Phys. Lett. 2014, 105, 122602. [Google Scholar] [CrossRef]
- Wang, H.B.; Guénon, S.; Yuan, J.; Iishi, A.; Arisawa, S.; Hatano, T.; Yamashita, T.; Koelle, D.; Kleiner, R. Hot Spots and Waves in Bi2Sr2CaCu2O8 Intrinsic Josephson Junction Stacks: A Study by Low Temperature Scanning Laser Microscopy. Phys. Rev. Lett. 2009, 102, 017006. [Google Scholar] [CrossRef] [Green Version]
- Borodianskyi, E.A.; Krasnov, V.M. Josephson emission with frequency span 1–11 THz from small Bi2Sr2CaCu2O8+δ mesa structures. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kakeya, I.; Wada, T.; Nakamura, R.; Kadowaki, K. Two phase collective modes in a Josephson vortex lattice in the intrinsic Josephson junction Bi2Sr2CaCu2O8+δ. Phys. Rev. B 2005, 72, 014540. [Google Scholar] [CrossRef] [Green Version]
- Rain, J.R.; Cai, P.; Baekey, A.; Reinhard, M.A.; Vasquez, R.I.; Silverman, A.C.; Cain, C.L.; Klemm, R.A. Wave functions for high-symmetry, thin microstrip antennas, and two-dimensional quantum boxes. Phys. Rev. A 2021, 104, 062205. [Google Scholar] [CrossRef]
- Eisele, H.; Naftaly, M.; Fletcher, J.R. A simple interferometer for the characterization of sources at terahertz frequencies. Meas. Sci. Technol. 2007, 18, 2623–2628. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Chen, S.; Wang, Y.-L.; Sun, G.; Chen, J.; Hatano, T.; Koshelets, V.P.; Koelle, D.; Kleiner, R.; Wang, H.; et al. Compact High-Tc Superconducting Terahertz Emitter with Tunable Frequency from 0.15 to 1 THz. Appl. Sci. 2023, 13, 3469. https://doi.org/10.3390/app13063469
Sun H, Chen S, Wang Y-L, Sun G, Chen J, Hatano T, Koshelets VP, Koelle D, Kleiner R, Wang H, et al. Compact High-Tc Superconducting Terahertz Emitter with Tunable Frequency from 0.15 to 1 THz. Applied Sciences. 2023; 13(6):3469. https://doi.org/10.3390/app13063469
Chicago/Turabian StyleSun, Hancong, Shixian Chen, Yong-Lei Wang, Guozhu Sun, Jian Chen, Takeshi Hatano, Valery P. Koshelets, Dieter Koelle, Reinhold Kleiner, Huabing Wang, and et al. 2023. "Compact High-Tc Superconducting Terahertz Emitter with Tunable Frequency from 0.15 to 1 THz" Applied Sciences 13, no. 6: 3469. https://doi.org/10.3390/app13063469
APA StyleSun, H., Chen, S., Wang, Y. -L., Sun, G., Chen, J., Hatano, T., Koshelets, V. P., Koelle, D., Kleiner, R., Wang, H., & Wu, P. (2023). Compact High-Tc Superconducting Terahertz Emitter with Tunable Frequency from 0.15 to 1 THz. Applied Sciences, 13(6), 3469. https://doi.org/10.3390/app13063469