The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Participants
2.2. Research Materials
2.3. Test Method
2.3.1. Body Composition Detection
2.3.2. Speed and Agility Test
2.3.3. Explosive Strength Test
2.4. Control Variable
2.5. Statistical Analysis
3. Results
3.1. Participant Normality, Homogeneity, and Background Variable Analysis
3.2. Pre- and Post-Test Results of Participants’ Speed and Agility
3.3. Pre- and Post-Tests of Participants’ Explosive Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbieri, D.; Zaccagni, L.; Babić, V.; Rakovac, M.; Mišigoj-Duraković, M.; Gualdi, E. Body composition and size in sprint athletes. J. Sport Med. Phys. Fit. 2017, 57, 1142–1146. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation: A Systematic Review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The effect of strength training on performance in endurance athletes. Sport Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.; Nimphius, S.; Stone, M. The Importance of Muscular Strength in Athletic Performance. Sport Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Garcia de Alcaraz, A.; Chaabene, H.; Moran, J.; Negra, Y.; Granacher, U. Effects of Plyometric Jump Training on Physical Fitness in Amateur and Professional Volleyball: A Meta-Analysis. Front Physiol. 2021, 12, 636140. [Google Scholar] [CrossRef] [PubMed]
- Sáez de Villarreal, E.; Molina, J.G.; de Castro-Maqueda, G.; Gutiérrez-Manzanedo, J.V. Effects of Plyometric, Strength and Change of Direction Training on High-School Basketball Player’s Physical Fitness. J. Hum. Kinet. 2021, 78, 175–186. [Google Scholar] [CrossRef]
- Stojanovic, M.D.; Ostojic, S.M.; Calleja-González, J.; Milosevic, Z.; Mikic, M. Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. J. Sport Med. Phys. Fit. 2012, 52, 375–381. [Google Scholar]
- Mancha-Triguero, D.; García-Rubio, J.; Calleja-González, J.; Ibáñez, S.J. Physical fitness in basketball players: A systematic review. J. Sport Med. Phys. Fit. 2019, 59, 1513–1525. [Google Scholar] [CrossRef]
- Mancha-Triguero, D.; García-Rubio, J.; Antúnez, A.; Ibáñez, S.J. Physical and Physiological Profiles of Aerobic and Anaerobic Capacities in Young Basketball Players. Int. J. Environ. Res. Public Health 2020, 17, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Abdelkrim, N.; Castagna, C.; Jabri, I.; Battikh, T.; El Fazaa, S.; El Ati, J. Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. J. Strength Cond. Res. 2010, 24, 2330–2342. [Google Scholar] [CrossRef]
- Crisafulli, A.; Melis, F.; Tocco, F.; Laconi, P.; Lai, C.; Concu, A. External mechanical work versus oxidative energy consumption ratio during a basketball field test. J. Sport Med. Phys. Fit. 2002, 42, 409–417. [Google Scholar]
- Narazaki, K.; Berg, K.; Stergiou, N.; Chen, B. Physiological demands of competitive basketball. Scand. J. Med. Sci. Sport 2009, 19, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Chaouachi, A.; Rampinini, E.; Chamari, K.; Impellizzeri, F. Aerobic and explosive power performance of elite italian regional-level basketball players. J. Strength Cond. Res. 2009, 23, 1982–1987. [Google Scholar] [CrossRef]
- de Araujo, G.G.; de Barros Manchado-Gobatto, F.; Papoti, M.; Camargo, B.H.; Gobatto, C.A. Anaerobic and aerobic performances in elite basketball players. J. Hum. Kinet. 2014, 42, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Aksović, N.; Bjelica, B.; Milanović, F.; Milanović Lalović, L.; JovanovİĆ, N. Development of Explosive Power in Basketball Players. Turk. J. Kinesiol. 2021, 7, 44–52. [Google Scholar] [CrossRef]
- Bedoya, A.A.; Miltenberger, M.R.; Lopez, R.M. Plyometric Training Effects on Athletic Performance in Youth Soccer Athletes: A Systematic Review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Plyometric Training in Volleyball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef] [Green Version]
- Eraslan, L.; Castelein, B.; Spanhove, V.; Orhan, C.; Duzgun, I.; Cools, A. Effect of Plyometric Training on Sport Performance in Adolescent Overhead Athletes: A Systematic Review. Sport Health 2021, 13, 37–44. [Google Scholar] [CrossRef]
- Hamsa, H.; Khan, M.; Tanwar, T.; Irshad, N.; Numani, S. Acute effects of weighted plyometric exercise on sprint, agility and jump performance in university football players. Phys. Act. Rev. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Oxfeldt, M.; Overgaard, K.; Hvid, L.G.; Dalgas, U. Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta-analyses. Scand. J. Med. Sci. Sport 2019, 29, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Arazi, H.; Young, W.; Sáez de Villarreal, E. The Effects of Plyometric Training on Change of Direction Ability: A Meta Analysis. Int. J. Sport Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of Plyometric Training on Physical Fitness in Team Sport Athletes: A Systematic Review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-delaCruz, M.; Bravo-Sánchez, A.; Esteban-García, P.; Jiménez, F.; Abián-Vicén, J. Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis. Sport Med. Open 2022, 8, 40. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sport Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Thiele, D.; Prieske, O.; Lesinski, M.; Granacher, U. Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers. Front Physiol. 2020, 11, 888. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Stien, N.; Andersen, V.; Scott, S.; Cumming, K.T.; Behm, D.G.; Granacher, U.; Prieske, O. The Effects of Trunk Muscle Training on Physical Fitness and Sport-Specific Performance in Young and Adult Athletes: A Systematic Review and Meta-Analysis. Sport Med. 2022, 52, 1599–1622. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, N.; Nassis, G.P.; Bolatoglou, T.; Geladas, N.D. Physiological and technical characteristics of elite young basketball players. J. Sport Med. Phys. Fit. 2004, 44, 157–163. [Google Scholar]
- Fischetti, F.; Vilardi, A.; Cataldi, S.; Greco, G. Effects of Plyometric Training Program on Speed and Explosive Strength of Lower Limbs in Young Athletes. J. Phys. Educ. Sport 2018, 18, 2476–2482. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 2021, 10, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Atakan, M.M.; Li, Y.; Koşar, Ş.N.; Turnagöl, H.H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef]
- Permana, D.; Kusnanik, N.; Nurhasan, N.; Raharjo, S. A Six-Week Plyometric Training Program Improves Explosive Power and Agility in Professional Athletes of East Java. Phys. Educ. Theory Methodol. 2022, 22, 510–515. [Google Scholar] [CrossRef]
- Arslan, E.; Kilit, B.; Clemente, F.M.; Murawska-Ciałowicz, E.; Soylu, Y.; Sogut, M.; Akca, F.; Gokkaya, M.; Silva, A.F. Effects of Small-Sided Games Training versus High-Intensity Interval Training Approaches in Young Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 2931. [Google Scholar] [CrossRef]
- Deng, N.; Soh, K.G.; Huang, D.; Abdullah, B.; Luo, S.; Rattanakoses, W. Effects of plyometric training on skill and physical performance in healthy tennis players: A systematic review and meta-analysis. Front Physiol. 2022, 13, 1024418. [Google Scholar] [CrossRef] [PubMed]
- Kosova, S.; Beyhan, R.; Koca Kosova, M. The effect of 8-week plyometric training on jump height, agility, speed and asymmetry. Pedagog. Phys. Cult. Sport 2022, 26, 13–18. [Google Scholar] [CrossRef]
- Reichardt, C.S.; Little, T.D. Quasi-Experimentation: A Guide to Design and Analysis; Guilford Press: New York, NY, USA, 2019. [Google Scholar]
- Hernando, C.; Hernando, C.; Martinez-Navarro, I.; Collado-Boira, E.; Panizo, N.; Hernando, B. Estimation of energy consumed by middle-aged recreational marathoners during a marathon using accelerometry-based devices. Sci. Rep. 2020, 10, 1523. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.S.; Davies, B.; Cooper, S.M.; Wong, D.P.; Buchan, D.S.; Kilgore, L. Strength and body composition changes in recreationally strength-trained individuals: Comparison of one versus three sets resistance-training programmes. BioMed Res. Int. 2013, 2013, 615901. [Google Scholar] [CrossRef]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Sun, T.L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthr. 2018, 37, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Z. Normaltest: A SPSS (≥26) Macro for Univariate and Multivariate Normality Test. 2020. Available online: https://www.researchgate.net/publication/344310177_Normaltest_a_SPSS26_macro_for_univariate_and_multivariate_normality_test (accessed on 20 February 2023).
- Wang, Y.; Rodríguez de Gil, P.; Chen, Y.H.; Kromrey, J.D.; Kim, E.S.; Pham, T.; Nguyen, D.; Romano, J.L. Comparing the Performance of Approaches for Testing the Homogeneity of Variance Assumption in One-Factor ANOVA Models. Educ. Psychol. Meas. 2017, 77, 305–329. [Google Scholar] [CrossRef] [Green Version]
- Kelley, K.; Rausch, J.R. Sample size planning for the standardized mean difference: Accuracy in parameter estimation via narrow confidence intervals. Psychol. Methods 2006, 11, 363–385. [Google Scholar] [CrossRef] [Green Version]
- McGraw, K.; Wong, S.P. Forming Inferences About Some Intraclass Correlation Coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Chen, W.H.; Wu, H.J.; Lo, S.L.; Chen, H.; Yang, W.W.; Huang, C.F.; Liu, C. Eight-Week Battle Rope Training Improves Multiple Physical Fitness Dimensions and Shooting Accuracy in Collegiate Basketball Players. J. Strength Cond. Res. 2018, 32, 2715–2724. [Google Scholar] [CrossRef]
- Sánchez-Díaz, S.; Yanci, J.; Raya-González, J.; Scanlan, A.T.; Castillo, D. A Comparison in Physical Fitness Attributes, Physical Activity Behaviors, Nutritional Habits, and Nutritional Knowledge Between Elite Male and Female Youth Basketball Players. Front Psychol. 2021, 12, 685203. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sport 2021, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Sansone, P.; Makivic, B.; Csapo, R.; Hume, P.; Martínez-Rodríguez, A.; Bauer, P. Body Fat of Basketball Players: A Systematic Review and Meta-Analysis. Sport Med. Open 2022, 8, 26. [Google Scholar] [CrossRef]
- Asadi, A. Effects of in-season short-term plyometric training on jumping and agility performance of basketball players. Sport Sci. Health 2013, 9, 61–69. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of Plyometric and Directional Training on Speed and Jump Performance in Elite Youth Soccer Players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ferley, D.D.; Scholten, S.; Vukovich, M.D. Combined Sprint Interval, Plyometric, and Strength Training in Adolescent Soccer Players: Effects on Measures of Speed, Strength, Power, Change of Direction, and Anaerobic Capacity. J. Strength Cond. Res. 2020, 34, 957–968. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Fernandez-Fernandez, J.; Sammoud, S.; Bouguezzi, R.; Prieske, O.; Granacher, U. Short-Term Plyometric Jump Training Improves Repeated-Sprint Ability in Prepuberal Male Soccer Players. J. Strength Cond. Res. 2020, 34, 3241–3249. [Google Scholar] [CrossRef]
- Manouras, N.; Papanikolaou, Z.; Karatrantou, K.; Kouvarakis, P.; Gerodimos, V. The efficacy of vertical vs. horizontal plyometric training on speed, jumping performance and agility in soccer players. Int. J. Sport Sci. Coach. 2016, 11, 702–709. [Google Scholar] [CrossRef]
- Michailidis, Y.; Venegas, P.; Metaxas, T. Effects of Combined Horizontal Plyometric and Change of Direction Training on Anaerobic Parameters in Youth Soccer Players. Sports 2023, 11, 27. [Google Scholar] [CrossRef]
- Kubo, K.; Ishigaki, T.; Ikebukuro, T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol. Rep. 2017, 5, e13374. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of plyometric training on muscle-tendon mechanical properties and behavior of fascicles during jumping. Physiol. Rep. 2021, 9, e15073. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Negra, Y.; Moran, J.; Prieske, O.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U. Plyometric Training Improves Not Only Measures of Linear Speed, Power, and Change-of-Direction Speed But Also Repeated Sprint Ability in Young Female Handball Players. J. Strength Cond. Res. 2021, 35, 2230–2235. [Google Scholar] [CrossRef]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase Characteristics of the Countermovement Jump Force-Time Curve: A Comparison of Athletes by Jumping Ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Almosnino, S.; Pelland, L.; Stevenson, J.M. Retest reliability of force-time variables of neck muscles under isometric conditions. J. Athl. Train. 2010, 45, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, T.B.; Pineda, J.G.; Durham, R.M. Effects of Knee Position on the Reliability and Production of Maximal and Rapid Strength Characteristics During an Isometric Squat Test. J. Appl. Biomech. 2018, 34, 111–117. [Google Scholar] [CrossRef] [PubMed]
- McErlain-Naylor, S.A.; King, M.A.; Pain, M.T.G. Determinants of countermovement jump performance: A kinetic and kinematic analysis. J. Sport Sci. 2014, 32, 1805–1812. [Google Scholar] [CrossRef] [Green Version]
- Chavda, S.; Bromley, T.; Jarvis, P.; Williams, S.; Bishop, C.; Turner, A.N.; Lake, J.P.; Mundy, P.D. Force-Time Characteristics of the Countermovement Jump: Analyzing the Curve in Excel. Strength Cond. J. 2018, 40, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Philpott, L.K.; Forrester, S.E.; van Lopik, K.A.J.; Hayward, S.; Conway, P.P.; West, A.A. Countermovement jump performance in elite male and female sprinters and high jumpers. Proc. Inst. Mech. Eng. Part. P J. Sport Eng. Technol. 2020, 235, 131–138. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Branscombe, L.M.; Scott, L.R.; Zelik, K.E. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE 2019, 14, e0210000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, J.; Thorstensson, A. Ground reaction forces at different speeds of human walking and running. Acta Physiol. Scand. 1989, 136, 217–227. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Nikooyan, A.A. The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 2011, 26, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, R.; Ishii, Y.; Ueda, T.; Kurokawa, T. The Effects of Running Speed on Ground Reaction Forces and Lower Limb Kinematics During Single-Leg Stop Movement. J. Strength Cond. Res. 2016, 30, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lv, C.; Qin, X.; Ji, S.; Dong, D. Effectiveness of plyometric training vs. complex training on the explosive power of lower limbs: A Systematic review. Front. Physiol. 2022, 13, 1061110. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Matusiński, A.; Gołaś, A.; Zając, A.; Nitychoruk, M.; Maszczyk, A. Optimizing the load for peak power and peak velocity development during resisted sprinting. Phys. Activ. Rev. 2021, 9, 128–134. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef] [Green Version]
- Zemková, E. Reliability of a novel method assessing muscle power and velocity during seated trunk rotations. Phys. Act. Rev. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Chelly, M.S.; Hermassi, S.; Shephard, R.J. Effects of In-Season Short-term Plyometric Training Program on Sprint and Jump Performance of Young Male Track Athletes. J. Strength Cond. Res. 2015, 29, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sport Med. 2017, 47, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phase 1 (Weeks 1 to 2) | Phase 2 (Weeks 3 to 5) | Phase 3 (Weeks 6 to 8) |
---|---|---|
10 items, repeated 3 rounds, 4METs | 12 items, repeated 3 rounds, 5METs | 12 items, repeated 3 rounds, 6METs |
|
|
|
Serial Number | Age (Years) | Height (cm) | Weight (kg) | BMI 1 (kg/m2) | SMM 1 (kg) | BFP 1 (%) | |||
---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | Pre-Test | Post-Test | ||||
1 | 23.25 | 174.7 | 83.6 | 27.39 | 25.84 | 41.22 | 43.19 | 21.26 | 18.35 |
2 | 21.61 | 176.7 | 75.6 | 24.21 | 23.67 | 43.72 | 45.28 | 13.75 | 11.86 |
3 | 21.96 | 186.6 | 74.5 | 21.39 | 21.15 | 45.89 | 46.17 | 9.34 | 8.17 |
4 | 20.54 | 185.4 | 85.6 | 24.91 | 23.73 | 61.31 | 62.74 | 14.72 | 12.36 |
5 | 22.53 | 195.5 | 89.5 | 23.42 | 22.06 | 55.13 | 57.55 | 12.19 | 9.75 |
6 | 22.64 | 184.5 | 82.3 | 24.18 | 23.65 | 49.35 | 51.23 | 13.04 | 12.28 |
7 | 23.17 | 185.3 | 75.7 | 22.05 | 21.43 | 41.76 | 43.05 | 10.58 | 9.56 |
8 | 22.53 | 183.7 | 92.3 | 27.35 | 26.12 | 55.33 | 56.92 | 23.78 | 20.59 |
9 | 21.95 | 197.6 | 108.4 | 27.76 | 26.35 | 63.08 | 64.12 | 25.05 | 23.58 |
10 | 22.71 | 192.3 | 102.7 | 27.77 | 26.52 | 60.62 | 61.05 | 26.13 | 24.67 |
11 | 21.92 | 196.4 | 105.5 | 27.35 | 25.71 | 61.37 | 62.19 | 24.21 | 21.55 |
12 | 20.53 | 177.8 | 73.6 | 23.28 | 22.65 | 42.41 | 43.84 | 12.41 | 11.05 |
13 | 21.17 | 176.6 | 76.3 | 24.46 | 23.53 | 44.23 | 46.17 | 13.52 | 12.11 |
14 | 22.38 | 194.5 | 94.4 | 24.95 | 23.82 | 56.64 | 57.22 | 13.85 | 12.53 |
15 | 23.52 | 195.7 | 90.8 | 23.71 | 22.57 | 64.86 | 65.18 | 12.75 | 10.82 |
22.16 ± 0.85 | 187.15 ± 7.17 | 87.66 ± 11.26 | t = 8.61 * (0.000) | t = −7.37 * (0.000) | t = 10.15 * (0.000) |
Serial Number | Height (cm) | Weight (kg) | Speed (20 m Sprint), s | Agility (T-Agility Run), s | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Progress 1 (%) | Grade | Pre-Test | Post-Test | Progress 1 (%) | Grade | |||
1 | 174.7 | 83.6 | 3.31 | 3.17 | 4.23 | 5 | 9.93 | 9.65 | 2.82 | 12 |
2 | 176.7 | 75.6 | 3.01 | 2.96 | 1.66 | 13 | 9.06 | 8.23 | 10.26 | 1 |
3 | 186.6 | 74.5 | 2.98 | 2.94 | 1.34 | 15 | 9.38 | 8.68 | 7.46 | 5 |
4 | 185.4 | 85.6 | 3.29 | 3.15 | 4.26 | 4 | 9.41 | 9.23 | 1.91 | 15 |
5 | 195.5 | 89.5 | 3.49 | 3.38 | 3.15 | 10 | 10.63 | 9.82 | 7.62 | 4 |
6 | 184.5 | 82.3 | 3.32 | 3.21 | 3.31 | 9 | 9.39 | 9.12 | 2.88 | 13 |
7 | 185.3 | 75.7 | 3.03 | 2.97 | 1.65 | 14 | 9.23 | 8.56 | 7.26 | 6 |
8 | 183.7 | 92.3 | 3.73 | 3.54 | 5.09 | 2 | 10.07 | 9.82 | 2.48 | 14 |
9 | 197.6 | 108.4 | 3.86 | 3.71 | 3.89 | 6 | 11.35 | 10.71 | 5.64 | 7 |
10 | 192.3 | 102.7 | 3.82 | 3.68 | 3.63 | 8 | 10.62 | 10.13 | 4.61 | 10 |
11 | 196.4 | 105.5 | 3.75 | 3.61 | 3.73 | 7 | 11.14 | 10.58 | 5.03 | 9 |
12 | 177.8 | 73.6 | 3.01 | 2.93 | 2.66 | 12 | 9.11 | 8.31 | 8.78 | 2 |
13 | 176.6 | 76.3 | 3.04 | 2.95 | 2.96 | 11 | 9.15 | 8.37 | 8.52 | 3 |
14 | 194.5 | 94.4 | 3.58 | 3.42 | 4.67 | 3 | 10.54 | 9.95 | 5.59 | 8 |
15 | 195.7 | 90.8 | 3.61 | 3.38 | 6.37 | 1 | 10.21 | 9.86 | 3.43 | 11 |
t-value (p-value) | t = 8.99 * (0.000) | t = −9.18 * (0.000) |
n | RFD, r | RFD, s | GRF at the Moment of Jumping, N | Duration of Passage, s | Jump Height, m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | Pre-Test | Post-Test | Progression (%) | Pre-Test | Post-Test | Progress (%) | Pre-Test | Post-Test | Progression (%) | |
1 | −0.943 | −0.951 | 0.124 | 0.121 | 1465.92 | 1529.98 | 4.37 | 0.503 | 0.541 | 7.55 | 0.310 | 0.391 | 26.13 |
2 | −0.892 | −0.911 | 0.127 | 0.124 | 1449.63 | 1526.14 | 5.28 | 0.560 | 0.591 | 5.54 | 0.413 | 0.472 | 14.29 |
3 | −0.954 | −0.963 | 0.113 | 0.107 | 1482.67 | 1561.71 | 5.33 | 0.604 | 0.643 | 6.46 | 0.545 | 0.624 | 14.50 |
4 | −0.885 | −0.914 | 0.138 | 0.131 | 1594.54 | 1678.53 | 5.27 | 0.579 | 0.611 | 5.53 | 0.459 | 0.518 | 12.85 |
5 | −0.944 | −0.952 | 0.122 | 0.118 | 1697.94 | 1753.62 | 3.28 | 0.531 | 0.582 | 9.60 | 0.352 | 0.431 | 22.44 |
6 | −0.952 | −0.961 | 0.120 | 0.117 | 1571.91 | 1616.33 | 2.83 | 0.556 | 0.582 | 4.68 | 0.377 | 0.468 | 24.14 |
7 | −0.941 | −0.952 | 0.119 | 0.114 | 1458.97 | 1524.29 | 4.48 | 0.572 | 0.619 | 8.22 | 0.411 | 0.470 | 14.36 |
8 | −0.853 | −0.865 | 0.235 | 0.224 | 1742.56 | 1813.42 | 4.07 | 0.465 | 0.521 | 12.04 | 0.262 | 0.331 | 26.34 |
9 | −0.785 | −0.823 | 0.227 | 0.221 | 2011.03 | 2387.11 | 18.70 | 0.451 | 0.489 | 8.43 | 0.253 | 0.331 | 30.83 |
10 | −0.779 | −0.816 | 0.226 | 0.219 | 1924.12 | 2123.42 | 10.36 | 0.471 | 0.512 | 8.71 | 0.277 | 0.345 | 24.55 |
11 | −0.785 | −0.823 | 0.227 | 0.221 | 1969.78 | 2256.27 | 14.54 | 0.484 | 0.533 | 10.12 | 0.284 | 0.363 | 27.82 |
12 | −0.942 | −0.953 | 0.118 | 0.112 | 1428.53 | 1509.61 | 5.68 | 0.587 | 0.624 | 6.30 | 0.512 | 0.584 | 14.06 |
13 | −0.947 | −0.951 | 0.120 | 0.115 | 1460.95 | 1514.43 | 3.66 | 0.575 | 0.611 | 6.26 | 0.486 | 0.554 | 13.99 |
14 | −0.885 | −0.911 | 0.195 | 0.191 | 1753.61 | 1826.50 | 4.16 | 0.536 | 0.584 | 8.96 | 0.353 | 0.456 | 29.18 |
15 | −0.913 | −0.934 | 0.187 | 0.175 | 1717.82 | 1809.67 | 5.35 | 0.548 | 0.569 | 3.83 | 0.368 | 0.443 | 20.38 |
t = 5.987 * (0.000) | t = 8.513 * (0.000) | t = −4.538 * (0.000) | t = −15.801 * (0.000) | t = −23.926 * (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Huang, W.-Y.; Wu, C.-E. The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes. Appl. Sci. 2023, 13, 3605. https://doi.org/10.3390/app13063605
Huang H, Huang W-Y, Wu C-E. The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes. Applied Sciences. 2023; 13(6):3605. https://doi.org/10.3390/app13063605
Chicago/Turabian StyleHuang, Hsuan, Wei-Yang Huang, and Cheng-En Wu. 2023. "The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes" Applied Sciences 13, no. 6: 3605. https://doi.org/10.3390/app13063605
APA StyleHuang, H., Huang, W.-Y., & Wu, C.-E. (2023). The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes. Applied Sciences, 13(6), 3605. https://doi.org/10.3390/app13063605