Study on Dynamic Impact Mechanical Properties of UHPC with High-Content and Directional Reinforced Steel Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design
2.3. Specimen Preparation
2.3.1. Preparation of Fiber-Oriented Reinforced UHPC Specimen
2.3.2. Preparation of Normal UHPC Specimen
3. Dynamic Impact Test Method
4. Result and Discussion
4.1. Single Dynamic Impact Test
4.1.1. Stress–Strain Curve
4.1.2. Dynamic Stress and Dynamic Increase Factor
4.1.3. Peak Strain
4.1.4. Energy Absorption Performance
4.1.5. Failure Pattern
4.2. Multiple Dynamic Impact Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ha, N.S.; Marundrury, S.S.; Pham, T.M.; Pournasiri, E.; Shi, F.; Hao, H. Effect of Grounded Blast Furnace Slag and Rice Husk Ash On Performance of Ultra-High-Performance Concrete (Uhpc) Subjected to Impact Loading. Constr. Build. Mater. 2022, 329, 127213. [Google Scholar] [CrossRef]
- Liu, J.; Wu, C.; Li, J.; Liu, Z.; Xu, S.; Liu, K.; Su, Y.; Fang, J.; Chen, G. Projectile Impact Resistance of Fibre-Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-Uhpc). Constr. Build. Mater. 2021, 290, 123189. [Google Scholar] [CrossRef]
- Habel, K.; Viviani, M.; Denarié, E.; Brühwiler, E. Development of the Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete (Uhpfrc). Cem. Concr. Res. 2006, 36, 1362–1370. [Google Scholar] [CrossRef]
- Tafraoui, A.; Escadeillas, G.; Vidal, T. Durability of the Ultra High Performances Concrete Containing Metakaolin. Constr. Build. Mater. 2016, 112, 980–987. [Google Scholar] [CrossRef]
- Lai, D.; Demartino, C.; Xiao, Y. High-Strain Rate Compressive Behavior of Fiber-Reinforced Rubberized Concrete. Constr. Build. Mater. 2022, 319, 125739. [Google Scholar] [CrossRef]
- Akça, K.R.; İpek, M. Effect of Different Fiber Combinations and Optimisation of an Ultra-High Performance Concrete (Uhpc) Mix Applicable in Structural Elements. Constr. Build. Mater. 2022, 315, 125777. [Google Scholar] [CrossRef]
- Ragalwar, K.; Heard, W.F.; Williams, B.A.; Kumar, D.; Ranade, R. On Enhancing the Mechanical Behavior of Ultra-High Performance Concrete through Multi-Scale Fiber Reinforcement. Cem. Concr. Compos. 2020, 105, 103422. [Google Scholar] [CrossRef]
- Chun, B.; Yoo, D. Hybrid Effect of Macro and Micro Steel Fibers On the Pullout and Tensile Behaviors of Ultra-High-Performance Concrete. Compos. Part B Eng. 2019, 162, 344–360. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Emamian, S.A.; Eskandari-Naddaf, H. Genetic Programming Based Formulation for Compressive and Flexural Strength of Cement Mortar Containing Nano and Micro Silica After Freeze and Thaw Cycles. Constr. Build. Mater. 2020, 241, 118027. [Google Scholar] [CrossRef]
- Kooshkaki, A.; Eskandari-Naddaf, H. Effect of Porosity On Predicting Compressive and Flexural Strength of Cement Mortar Containing Micro and Nano-Silica by Multi-Objective Ann Modeling. Constr. Build. Mater. 2019, 212, 176–191. [Google Scholar] [CrossRef]
- Thongbai-on, N.; Banomyong, D. Flexural Strengths and Porosities of Coated Or Uncoated, High Powder-Liquid and Resin-Modified Glass Ionomer Cements. J. Dental Sci. 2020, 15, 433–436. [Google Scholar] [CrossRef]
- Zhou, B.; Uchida, Y. Relationship Between Fiber Orientation/Distribution and Post-Cracking Behaviour in Ultra-High-Performance Fiber-Reinforced Concrete (Uhpfrc). Cem. Concr. Compos. 2017, 83, 66–75. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Nematzadeh, M. Evaluation of Post-Heating Flexural Behavior of Steel Fiber-Reinforced High-Strength Concrete Beams Reinforced with Frp Bars: Experimental and Analytical Results. Eng. Struct. 2020, 225, 111292. [Google Scholar] [CrossRef]
- Raju, R.A.; Lim, S.; Akiyama, M.; Kageyama, T. Effects of Concrete Flow On the Distribution and Orientation of Fibers and Flexural Behavior of Steel Fiber-Reinforced Self-Compacting Concrete Beams. Constr. Build. Mater. 2020, 262, 119963. [Google Scholar] [CrossRef]
- Ferrara, L.; Ozyurt, N.; di Prisco, M. High Mechanical Performance of Fibre Reinforced Cementitious Composites: The Role of “Casting-Flow Induced” Fibre Orientation. Mater. Struct. 2011, 44, 109–128. [Google Scholar] [CrossRef]
- Kang, M.; Yoo, D.; Gupta, R. Machine Learning-Based Prediction for Compressive and Flexural Strengths of Steel Fiber-Reinforced Concrete. Constr. Build. Mater. 2021, 266, 121117. [Google Scholar] [CrossRef]
- Hambach, M.; Möller, H.; Neumann, T.; Volkmer, D. Portland Cement Paste with Aligned Carbon Fibers Exhibiting Exceptionally High Flexural Strength (>100 Mpa). Cem. Concr. Res. 2016, 89, 80–86. [Google Scholar] [CrossRef]
- Yoo, D.; Banthia, N.; Kang, S.; Yoon, Y. Effect of Fiber Orientation On the Rate-Dependent Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. Compos. Struct. 2016, 157, 62–70. [Google Scholar]
- Huang, H.; Gao, X.; Li, L.; Wang, H. Improvement Effect of Steel Fiber Orientation Control On Mechanical Performance of Uhpc. Constr. Build. Mater. 2018, 188, 709–721. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Qu, S.; Kumar, A.; Shao, X. Improvement of Flexural and Tensile Strength of Layered-Casting Uhpc with Aligned Steel Fibers. Constr. Build. Mater. 2020, 251, 118893. [Google Scholar] [CrossRef]
- Bae, Y.; Pyo, S. Effect of Steel Fiber Content On Structural and Electrical Properties of Ultra High Performance Concrete (Uhpc) Sleepers. Eng. Struct. 2020, 222, 111131. [Google Scholar] [CrossRef]
Material | Specific Surface Area (m2·kg−1) | Density (kg·cm−3) | Mass Fraction % | ||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Fe2O3 | MgO | Al2O3 | CaO | SO3 | LOI | |||
Cement | 367.5 | 3.44 | 20.6 | 4.4 | 2.5 | 5.0 | 65.1 | 1.3 | 1.0 |
Fly ash | 686 | 2.61 | 55.0 | 5.9 | 1.3 | 31.3 | 3.9 | 1.5 | 1.0 |
Silica fume | 2200 | 2.01 | 94.5 | 0.8 | 0.3 | 0.3 | 0.8 | 0.8 | 1.0 |
No. | Cement | Silica Fume | Fly Ash | Quartz Sand | Water | Superplasticizer | Steel Fiber |
---|---|---|---|---|---|---|---|
U-SF0 | 850 | 160 | 250 | 881 | 227 | 22.5 | 0 |
U-SF2 | 850 | 160 | 250 | 829 | 227 | 22.5 | 152 |
U-SF4 | 850 | 160 | 250 | 777 | 227 | 22.5 | 312 |
U-SF6 | 850 | 160 | 250 | 725 | 227 | 22.5 | 470 |
D-SF2 | 850 | 160 | 250 | 829 | 227 | 22.5 | 152 |
D-SF4 | 850 | 160 | 250 | 777 | 227 | 22.5 | 312 |
D-SF6 | 850 | 160 | 250 | 725 | 227 | 22.5 | 470 |
No. | Static Compressive Strength (MPa) | Incidence Bar Speed (m/s) | Strain Rate (s−1) | Peak Strain (%) | Peak Stress (MPa) | DIF | Energy Absorption Property |
---|---|---|---|---|---|---|---|
U-SF0 | 100.83 | 4.7 | 37.72 | 0.508 | 65.6 | 0.65 | 0.45 |
8.1 | 74.94 | 0.362 | 95.0 | 0.94 | 0.74 | ||
10.4 | 103.56 | 0.293 | 121.3 | 1.20 | 1.32 | ||
U-SF2 | 120.13 | 3.4 | 43.81 | 0.390 | 70.0 | 0.58 | 0.53 |
7.7 | 71.19 | 0.364 | 90.4 | 0.75 | 0.86 | ||
10.2 | 94.41 | 0.750 | 123.1 | 1.02 | 1.73 | ||
10.9 | 109.18 | 1.549 | 161.6 | 1.35 | 3.92 | ||
U-SF4 | 146.76 | 3.6 | 37.62 | 0.296 | 44.7 | 0.30 | 0.23 |
7.3 | 82.37 | 0.373 | 79.8 | 0.54 | 0.50 | ||
10.1 | 113.58 | 0.448 | 107.1 | 0.73 | 1.28 | ||
11.9 | 155.12 | 0.872 | 152.9 | 1.04 | 2.52 | ||
12.3 | 189.61 | 2.178 | 195.0 | 1.33 | 4.94 | ||
U-SF6 | 135.76 | 4.3 | 66.24 | 0.453 | 58.4 | 0.43 | 0.27 |
6.9 | 89.69 | 0.839 | 91.3 | 0.67 | 1.09 | ||
9.8 | 117.76 | 1.116 | 138.7 | 1.02 | 2.65 | ||
11.3 | 166.53 | 1.740 | 186.3 | 1.37 | 4.34 | ||
12.5 | 189.85 | 1.852 | 196.4 | 1.45 | 5.42 |
No. | Static Compressive Strength (MPa) | Incidence Bar Speed (m/s) | Strain Rate (s−1) | Peak Strain (%) | Peak Stress (MPa) | DIF | Energy Absorption Property |
---|---|---|---|---|---|---|---|
D-SF2 | 115.36 | 5.4 | 31.18 | 0.306 | 33.2 | 0.29 | 0.12 |
7.4 | 54.59 | 0.531 | 57.3 | 0.50 | 0.43 | ||
9.1 | 96.75 | 0.848 | 89.8 | 0.78 | 0.83 | ||
11.3 | 131.07 | 1.598 | 159.4 | 1.38 | 2.23 | ||
11.8 | 152.97 | 1.898 | 175.9 | 1.52 | 4.23 | ||
D-SF4 | 145.7 | 6.2 | 52.61 | 0.590 | 56.2 | 0.39 | 0.34 |
7.3 | 94.68 | 0.881 | 85.8 | 0.59 | 0.77 | ||
10.2 | 107.42 | 1.167 | 116.7 | 0.80 | 1.43 | ||
11.4 | 133.02 | 1.198 | 137.2 | 0.94 | 2.60 | ||
12.3 | 186.56 | 1.879 | 207.1 | 1.42 | 5.47 | ||
D-SF6 | 130.63 | 5.7 | 45.19 | 0.954 | 46.0 | 0.35 | 0.38 |
8.5 | 76.15 | 0.964 | 84.8 | 0.65 | 0.85 | ||
10.4 | 109.94 | 1.480 | 128.8 | 0.99 | 1.88 | ||
11.8 | 144.67 | 1.309 | 172.7 | 1.32 | 3.51 | ||
12.1 | 191.56 | 1.366 | 192.5 | 1.47 | 4.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Wu, Y.; Li, S.; Feng, Y.; Feng, L. Study on Dynamic Impact Mechanical Properties of UHPC with High-Content and Directional Reinforced Steel Fiber. Appl. Sci. 2023, 13, 3753. https://doi.org/10.3390/app13063753
Sun K, Wu Y, Li S, Feng Y, Feng L. Study on Dynamic Impact Mechanical Properties of UHPC with High-Content and Directional Reinforced Steel Fiber. Applied Sciences. 2023; 13(6):3753. https://doi.org/10.3390/app13063753
Chicago/Turabian StyleSun, Kewei, Ye Wu, Senlin Li, Yan Feng, and Longhai Feng. 2023. "Study on Dynamic Impact Mechanical Properties of UHPC with High-Content and Directional Reinforced Steel Fiber" Applied Sciences 13, no. 6: 3753. https://doi.org/10.3390/app13063753
APA StyleSun, K., Wu, Y., Li, S., Feng, Y., & Feng, L. (2023). Study on Dynamic Impact Mechanical Properties of UHPC with High-Content and Directional Reinforced Steel Fiber. Applied Sciences, 13(6), 3753. https://doi.org/10.3390/app13063753