Optical Waveguide Refractive Index Sensor for Biochemical Sensing
Abstract
:1. Introduction
2. Structural Principle, Detection Mechanism, and Performance Indicators
2.1. Structural Principle of Optical Waveguide Refractive Index Sensing
2.1.1. Refractive Index Sensing Principle of a Microring Structure
2.1.2. Refractive Index Sensing Principle of MZI Structure
2.1.3. Refractive Index Sensing Principle of MMI Structure
2.2. Refractive Index Sensing Mechanism
2.2.1. Microring Sensing Detection Mechanism
2.2.2. MZI Sensor Detection Mechanism
2.2.3. MMI Sensing Detection Mechanism
2.3. Performance Indicators for Refractive Index Sensing
- FSR: This parameter refers to the wavelength difference between two adjacent resonance peaks in the spectrum and can be expressed as follows:
- 2.
- Q: This parameter describes the sharpness of the resonant peak position in the spectrum of the MRR. The higher the Q value, the more sensitive the microring is to wavelength changes, and the better the performance of the sensor. It is expressed as follows:
- 3.
- FWHM: In the transmission spectrum of the microring, the full width at half maximum is the distance between two adjacent wavelengths when the power is reduced to half of the maximum power, which is also referred to as 3 dB bandwidth. This parameter determines the maximum data rate that can be processed and affects the detection lower limit of the sensor. FWHM can be determined using the following expression:
- 4.
- DR: This parameter is the resolution representing the minimum change that can be detected by the refractive index sensor. The output changes only if the change in the substance under test (such as the refractive index) is greater than the resolution. The resolution varies at each level within the sensing range of the sensor. This resolution can be expressed as three times the ratio between the system standard deviation σ and the sensitivity S:
- 5.
- S: Sensitivity and quality factors have an inverse relationship. In optical waveguide refractive index sensing, sensitivity can be expressed as follows:Each component in the formula can be further defined as follows:
- , the sensitivity function is a periodic function, and sensitivity changes periodically during testing;
- , where L is the size of the sensing window; the larger the value of L, the more contact occurs between the sample under test and the sensing arm, the bigger the effective refractive index change of the guided mode, and the higher the sensitivity. Therefore, in terms of design requirements, L should be increased as much as possible to achieve improved sensing effects;
- refers to the change in the effective refractive index of the guided mode on the sensing arm compared with the refractive index of the sample under test, which is primarily defined by the evanescent field strength dictated by the waveguide material and structure. This term can be increased by strengthening the evanescent field of the sensing waveguide.
- 6.
- LOD: this parameter is the minimum offset of the central wavelength of the resonance peak that can be detected by the detector. It is primarily related to the FWHM of the resonant peak, and half of the FWHM (HWHM) is typically taken as the offset of the central wavelength of the smallest resonant peak. LOD can be defined as the ratio of the smallest distinguishable wavelength drift to the detection sensitivity and is expressed as follows:
3. Classification of Optical Waveguide Sensors
3.1. Microring Structured Optical Waveguide Sensor
3.1.1. Silicon-Based Microring Optical Waveguide Sensor
3.1.2. Chalcogenide Microring Optical Waveguide Sensor
3.1.3. Lithium Niobate Compound Microring Optical Waveguide Sensor
3.1.4. Polymer-Based Microring Optical Waveguide Sensor
3.2. MZI-Structured Optical Waveguide Sensor
3.2.1. Silicon-Based MZI Optical Waveguide Sensor
3.2.2. Chalcogenide MZI Optical Waveguide Sensor
3.2.3. Lithium Niobate Compound MZI Optical Waveguide Sensor
3.2.4. Polymer-Based MZI Type Optical Waveguide Sensor
3.2.5. Gallium Arsenide-Based MZI Optical Waveguide Sensor
3.3. Cascaded Structured Optical Waveguide Refractive Index Sensors
3.3.1. MZI Coupled Microring Structure
3.3.2. Double Microring Cascade Structure
3.3.3. Double MZI Structure
3.4. MMI Structured Optical Waveguide Sensor
4. Discussion
4.1. Applications in the Field of Sensing
4.2. Comparison with Other Structures of Sensors
4.2.1. Bragg Grating Structure Biochemical Sensing
4.2.2. Surface Plasmon Resonance Structural Biochemical Sensing
4.3. Material Selection for Optical Waveguide Refractive Index Sensor
5. Summary and Outlook
5.1. Advantages and Disadvantages of the Sensor in Terms of Performance Indicators
5.2. Future Direction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.B.; Xu, Q.B.; Jian, M.M.; Xu, J.; Dong, J.F. Development of Planar Waveguides for Optical Sensing. Laser Optoelectron. Prog. 2009, 5, 24–30. [Google Scholar] [CrossRef]
- Cheng, J.J.; Xie, K. Progress of Waveguide Biochemical Sensors. Laser Optoelectron. Prog. 2005, 11, 17–21. [Google Scholar]
- Lai, W.-C.; Chakravarty, S.; Wang, X.; Lin, C.; Chen, R.T. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett. 2011, 36, 984–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Yue, Y.; Zhu, H.; He, J.J. Optical waveguide sensors based on Vernier effect. In Proceedings of the 2017 IEEE 16th International Conference on Optical Communications and Networks, Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar]
- Wu, Y.D.; An, J.M.; Wang, Y.; Yin, X.J.; Zhang, J.S.; Li, J.G.; Wang, H.J.; Hu, X.W. Bio-chemical Sensing platform based on Integrated Mach-Zehnder Interferometer. In Proceedings of the 2017 IEEE 13th National Optical Fiber Communication and the 14th Integrated Optics Academic Conference, Nanjing, China, 7–10 November 2017; pp. 282–285. [Google Scholar]
- Gavela, A.F.; García, D.G.; Ramirez, J.C.; Lechuga, L.M. Last Advances in Silicon-Based Optical Biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [Green Version]
- Ranacher, C.; Consani, C.; Tortschanoff, A.; Jannesari, R.; Bergmeister, M.; Grille, T.; Jakoby, B. Mid-infrared absorption gas sensing using a silicon strip waveguide. Sens. Actuators A Phys. 2018, 277, 117–123. [Google Scholar] [CrossRef]
- Su, J. Label-Free Biological and Chemical Sensing Using Whispering Gallery Mode Optical Resonators: Past, Present, and Future. Sensors 2017, 17, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Kozma, P.; Kehl, F.; Ehrentreich-Förster, E.; Stamm, C.; Bier, F.F. Integrated planar optical waveguide interferometer bio-sensors: A comparative review. Biosens. Bioelectron. 2014, 58, 287–307. [Google Scholar] [CrossRef]
- Patel, P. (Bio)sensors for measurement of analytes implicated in food safety: A review. TrAC Trends Anal. Chem. 2002, 21, 96–115. [Google Scholar] [CrossRef]
- Wang, W. A review of optical waveguide biosensor especially in diamond waveguide. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Electromechanical Automation, Tianjin, China, 26–28 June 2020; pp. 189–192. [Google Scholar]
- Butt, M.A.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V.; Kazanskiy, N.L.; Khonina, S.N. Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors. Biosensors 2022, 12, 1038. [Google Scholar] [CrossRef]
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical biosensors: A decade in review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 1973, 9, 919–933. [Google Scholar] [CrossRef] [Green Version]
- Servel, G.; Deschacht, D. On-chip crosstalk evaluation between adjacent interconnections. In Proceedings of the 2000 IEEE 7th International Conference on Electronics, Circuits and Systems, Wuhan, China, 17–20 December 2000; pp. 827–834. [Google Scholar]
- Dutta, A.; Deka, B.; Sahu, P.P. Planar Waveguide Optical Sensors; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Elosua, C.; Bariain, C.; Matias, I.R.; Rodriguez, A.; Colacio, E.; Salinas-Castillo, A.; Segura-Carretero, A.; Fernandez-Gutiérrez, A. Pyridine Vapors Detection by an Optical Fibre Sensor. Sensors 2008, 8, 847–859. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.C. Advanced Materials for Integrated Optical Waveguides; Springer International Publishing: New York, NY, USA, 2014; p. 46. [Google Scholar] [CrossRef] [Green Version]
- Soldano, L.; Pennings, E. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, N.; Zhang, B.; Saha, C.; Kumar, C.; Kaushik, B.K.; Kumar, S. Development of dopamine sensor using silver nano-particles and PEG-functionalized tapered optical fiber structure. IEEE Trans. Biomed. Eng. 2019, 67, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Qavi, A.J.; Kindt, J.T.; Gleeson, M.A.; Bailey, R.C. Anti-DNA: RNA Antibodies and Silicon Photonic Microring Resonators: Increased Sensitivity for Multiplexed microRNA Detection. Anal. Chem. 2011, 83, 5949–5956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator micro-ring resonator for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610–7615. [Google Scholar] [CrossRef]
- Hu, S.; Qin, K.; Kravchenko, I.I.; Retterer, S.T.; Weiss, S.M. Suspended micro-ring resonator for enhanced biomolecule detection sensitivity. In Frontiers in Biological Detection: From Nanosensors to Systems VI; SPIE: Bellingham, WA, USA, 2014; Volume 8933, pp. 33–39. [Google Scholar]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Dong, Y. The Structure Design and Simulation of the Ring Resonator Based on SOI Planar Optical Waveguide for the Micro Biochemical Sensor. Key Eng. Mater. 2014, 609, 914–920. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-Free Biosensing with a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Yang, Y. Photonic Crystal Waveguide and Microcavity Controling Light Properties and Sensing Application Research. Master’s Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2018. [Google Scholar]
- Dwivedi, R.; Kumar, A.; Tripathi, S.M. Ultra High Sensitive Refractive Index Sensor Using a Metal Under-Clad Ridge Waveguide Modal Interferometer Near the Dispersion Turning Point. IEEE Sens. J. 2020, 21, 4674–4681. [Google Scholar] [CrossRef]
- Vivien, L.; Marris-Morini, D.; Griol, A.; Gylfason, K.; Hill, D.; Alvarez, J.; Sohlström, H.; Hurtado, J.; Bouville, D.; Cassan, E. Vertical multiple-slot waveguide ring resonators in silicon nitride. Opt. Express 2008, 16, 17237–17242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, F.; Zhang, W.; Li, X.; Zhang, X.; Jin, H.; Jian, J.; Jin, Q. An Ag-assisted silicon slot waveguide sensor model for mid-infrared spectra gas detection with micro-ring air pressure compensation. Optik 2020, 208, 164298. [Google Scholar] [CrossRef]
- Song, J.; Wang, L.; Jin, L.; Xia, X.; Kou, Q.; Bouchoule, S.; He, J.-J. Intensity-Interrogated Sensor Based on Cascaded Fabry–Perot Laser and Microring Resonator. J. Light. Technol. 2012, 30, 2901–2906. [Google Scholar] [CrossRef]
- Chandran, S.; Gupta, R.K.; Das, B.K. Dispersion Enhanced Critically Coupled Ring Resonator for Wide Range Refractive Index Sensing. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 424–432. [Google Scholar] [CrossRef]
- Luan, E.; Yun, H.; Laplatine, L.; Dattner, Y.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Enhanced sensitivity of subwave-length multibox waveguide microring resonator label-free biosensors. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 7300211. [Google Scholar]
- Heideman, R.G.; Lambeck, P.V. Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system. Sens. Actuators B Chem. 1999, 61, 100–127. [Google Scholar] [CrossRef]
- Prieto, F.; Sepulveda, B.; Calle, A.; Llobera, A.; Dominguez, C.; Lechuga, L. Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications. Sens. Actuators B Chem. 2003, 92, 151–158. [Google Scholar] [CrossRef]
- Zhang, W.; Serna, S.; Le Roux, X.; Vivien, L.; Cassan, E. Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Opt. Lett. 2016, 41, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yan, H.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. Opt. Express 2017, 25, 10527–10535. [Google Scholar] [CrossRef] [Green Version]
- Pi, M.; Zheng, C.; Peng, Z.; Zhao, H.; Lang, J.; Liang, L.; Zhang, Y.; Wang, Y.; Tittel, F.K. Theoretical study of microcavity-enhanced absorption spectroscopy for mid-infrared methane detection using a chalcogenide/silica-on-fluoride horizontal slot-waveguide racetrack resonator. Opt. Express 2020, 28, 21432. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Luo, Y.; Zhang, W.; Li, C.; Li, L.; Yang, Z.; Xu, P. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Phys. Technol. 2021, 116, 103792. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, C.; Luo, Y.; Yang, Z.; Zhang, W.; Li, L.; Xu, P.; Zhang, P.; Xu, T. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Opt. Express 2022, 30, 3866. [Google Scholar] [CrossRef]
- Ashok, N.; Lee, Y.L.; Shin, W. GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing. In Proceedings of the 2017 IEEE 25th Optical Fiber Sensors Conference, Jeju Island, Republic of Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Richardson, K.; Petit, L.; Carlie, N.; Zdyrko, B.; Luzinov, I.; Hu, J.; Agarwal, A.; Kimerling, L.; Anderson, T. Progress on the Fabrication of On-Chip, Integrated Chalcogenide Glass (Chg)-Based Sensors. J. Nonlinear Opt. Phys. Mater. 2010, 19, 75–99. [Google Scholar] [CrossRef]
- Wang, C.; Search, C.P. A Nonlinear Microresonator Refractive Index Sensor. J. Light. Technol. 2015, 33, 4360–4366. [Google Scholar] [CrossRef]
- Wang, J.; Bo, F.; Wan, S.; Li, W.; Gao, F.; Li, J.; Zhang, G.; Xu, J. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 2015, 23, 23072–23078. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Burek, M.J.; Lin, Z.; Atikian, H.A.; Venkataraman, V.; Huang, I.-C.; Stark, P.; Lončar, M. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express 2014, 22, 30924–30933. [Google Scholar] [CrossRef]
- Liang, H.; Luo, R.; He, Y.; Jiang, H.; Lin, Q. High-quality lithium niobate photonic crystal nanocavities. Optica 2017, 4, 1251–1258. [Google Scholar] [CrossRef]
- Xu, M.; He, M.; Zhang, H.; Jian, J.; Pan, Y.; Liu, X.; Chen, L.; Meng, X.; Chen, H.; Li, Z.; et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 2020, 11, 3911. [Google Scholar] [CrossRef]
- Mercante, A.J.; Shi, S.; Yao, P.; Xie, L.; Weikle, R.M.; Prather, D.W. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 2018, 26, 14810–14816. [Google Scholar] [CrossRef] [PubMed]
- Mercante, A.J.; Yao, P.; Shi, S.; Schneider, G.; Murakowski, J.; Prather, D.W. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 2016, 24, 15590–15595. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Wang, T.-J.; Chu, C.-H.; Lin, C.-Y. Electro-optically tunable microring resonators on lithium niobate. Opt. Lett. 2007, 32, 2777–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Chen, J.-Y.; Sua, Y.M.; Huang, Y.-P. High-extinction electro-optic modulation on lithium niobate thin film. Opt. Lett. 2019, 44, 1265–1268. [Google Scholar] [CrossRef]
- Rao, A.; Patil, A.; Rabiei, P.; Honardoost, A.; DeSalvo, R.; Paolella, A.; Fathpour, S. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 2016, 41, 5700–5703. [Google Scholar] [CrossRef]
- Mahmoud, M.; Cai, L.; Bottenfield, C.; Piazza, G. Lithium Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform. IEEE Photonics J. 2018, 10, 6600410. [Google Scholar] [CrossRef]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res. 2020, 8, 1910. [Google Scholar] [CrossRef]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Hu, H.; Yang, J.; Gui, L.; Sohler, W. Lithium niobate-on-insulator (LNOI): Status and perspectives. In Silicon Photonics and Photonic Integrated Circuits III; SPIE: Bellingham, WA, USA, 2012; Volume 8431, pp. 268–275. [Google Scholar]
- Zhang, J.; Fang, Z.; Lin, J.; Zhou, J.; Wang, M.; Wu, R.; Gao, R.; Cheng, Y. Fabrication of Crystalline Microresonators of High Quality Factors with a Controllable Wedge Angle on Lithium Niobate on Insulator. Nanomaterials 2019, 9, 1218. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.-X.; Gao, R.-H.; Lin, J.; Wang, M.; Chu, W.; Li, W.-B.; Yin, D.-F.; Deng, L.; Fang, Z.-W.; Zhang, J.-H.; et al. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching. Chin. Phys. Lett. 2020, 37, 084201. [Google Scholar] [CrossRef]
- Wu, R.; Wang, M.; Xu, J.; Qi, J.; Chu, W.; Fang, Z.; Zhang, J.; Zhou, J.; Qiao, L.; Chai, Z.; et al. Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness. Nanomaterials 2018, 8, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Naznin, S.; Sher, M.S.M. Design of a lithium niobate-on-insulator-based optical microring resonator for biosensing applications. Opt. Eng. 2016, 55, 087108. [Google Scholar] [CrossRef]
- Chauvet, M.; Al Fares, L.; Guichardaz, B.; Devaux, F.; Ballandras, S. Integrated optofluidic index sensor based on self-trapped beams in LiNbO3. Appl. Phys. Lett. 2012, 101, 181104. [Google Scholar] [CrossRef] [Green Version]
- Suárez, I.; Matesanz, R.; De Cárcer, I.A.; Pernas, P.; Jaque, F.; Blasco, R.; Lifante, G. Antibody binding on LiNbO3: Zn waveguides for biosensor applications. Sens. Actuators B Chem. 2005, 107, 88–92. [Google Scholar] [CrossRef]
- Bhola, B.; Nosovitskiy, P.; Mahalingam, H.; Steier, W.H. Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor. IEEE Sens. J. 2009, 9, 740–747. [Google Scholar] [CrossRef]
- Lv, H.L.; Liang, Y.X.; Han, X.Y.; Wu, Z.L.; Gu, Y.Y.; Zhao, M.S. Simulation and Fabrication of Polymeric Slot Waveguide for Refractive Index Sensing. Acta Photonica Sin. 2020, 49, 0213001. [Google Scholar]
- Kim, Y.-J.; Hong, S.-H.; Lee, J.-S.; Jeon, S.-J.; Choi, W.J.; Choi, Y.-W. Thermal Reflow Effect in Multi-Mode Waveguide of S-Bend Resonator with Mode Discrimination. IEEE Photonics J. 2022, 14, 6610806. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Zhou, K.; Davies, E.; Sugden, K.; Bennion, I.; Hughes, M.; Hine, A. Real-time detection of DNA interactions with long-period fiber-grating-based biosensor. Opt. Lett. 2007, 32, 2541–2543. [Google Scholar] [CrossRef]
- Alvarado-Méndez, E.; Rojas-Laguna, R.; Andrade-Lucio, J.; Hernández-Cruz, D.; Lessard, R.; Aviña-Cervantes, J. Design and characterization of pH sensor based on sol–gel silica layer on plastic optical fiber. Sens. Actuators B Chem. 2005, 106, 518–522. [Google Scholar] [CrossRef]
- Du, Y.; Dong, Y. Micro biochemical sensor based on SOI planar optical waveguide. In Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction; SPIE: Bellingham, WA, USA, 2014; Volume 9142, pp. 537–546. [Google Scholar]
- Liu, Q.; Kim, K.W.; Gu, Z.; Kee, J.S.; Park, M.K. Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide. Opt. Express 2014, 22, 27910–27920. [Google Scholar] [CrossRef]
- La Notte, M.; Passaro, V.M. Ultra high sensitivity chemical photonic sensing by Mach–Zehnder interferometer enhanced Vernier-effect. Sens. Actuators B Chem. 2012, 176, 994–1007. [Google Scholar] [CrossRef]
- Yuan, D.; Dong, Y.; Liu, Y.; Li, T. Mach-Zehnder interferometer biochemical sensor based on silicon-on-insulator rib wave-guide with large cross section. Sensors 2015, 15, 21500–21517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Zhang, M.; Dai, D. Design Rule of Mach-Zehnder Interferometer Sensors for Ultra-High Sensitivity. Sensors 2020, 20, 2640. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chen, Y.; Yu, F.; Tang, L.; Li, M.; He, J.J. High-sensitivity optical biosensor based on cascaded Mach–Zehnder interferometer and ring resonator using Vernier effect. Opt. Lett. 2014, 39, 6363–6366. [Google Scholar] [CrossRef]
- Zhao, K.; Dong, L.; Zheng, Y.; Deng, G.; Li, Z.; Qu, S.; Wu, J. Optimization of light-analyte interaction in Si3N4/polymer hybrid waveguide for sensitive sensing of pyridine vapor with ppb-level detection limit. Sens. Actuators B Chem. 2023, 377, 133104. [Google Scholar] [CrossRef]
- Pejcic, B.; Eadington, P.; Ross, A. Environmental Monitoring of Hydrocarbons: A Chemical Sensor Perspective. Environ. Sci. Technol. 2008, 41, 6333–6342. [Google Scholar] [CrossRef]
- Kim, S.-S.; Young, C.; Mizaikoff, B. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 2007, 390, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, A.; Heck, M.J.R. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics 2020, 2, 012002. [Google Scholar] [CrossRef]
- Coutard, J.G.; Brun, M.; Fournier, M.; Lartigue, O.; Fedeli, F.; Maisons, G.; Fedeli, J.M.; Nicoletti, S.; Carras, M.; Duraffourg, L. Volume Fabrication of Quantum Cascade Lasers on 200 mm-CMOS pilot line. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sieger, M.; Mizaikoff, B. Toward on-chip mid-infrared sensors. Anal. Chem. 2016, 11, 5562–5573. [Google Scholar] [CrossRef] [Green Version]
- Su, P.; Han, Z.; Kita, D.; Becla, P.; Lin, H.; Deckoff-Jones, S.; Richardson, K.; Kimerling, L.C.; Hu, J.; Agarwal, A. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Appl. Phys. Lett. 2019, 114, 051103. [Google Scholar] [CrossRef] [Green Version]
- Bodiou, L.; Dumeige, Y.; Normani, S.; Louvet, G.; Němec, P.; Nazabal, V.; Charrier, J. Design of a multimode interferometer-based mid-infrared multispecies gas sensor. IEEE Sens. J. 2020, 20, 13426–13435. [Google Scholar] [CrossRef]
- Louvet, G.; Normani, S.; Bodiou, L.; Gutwirth, J.; Lemaitre, J.; Pirasteh, P.; Doualan, J.-L.; Benardais, A.; Ledemi, Y.; Messaddeq, Y.; et al. Co-sputtered Pr3+-doped Ga-Ge-Sb-Se active waveguides for mid-infrared operation. Opt. Express 2020, 28, 22511. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Singh, V.; Kita, D.; Monmeyran, C.; Becla, P.; Su, P.; Li, J.; Huang, X.; Kimerling, L.C.; Hu, J.; et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors. Appl. Phys. Lett. 2016, 109, 071111. [Google Scholar] [CrossRef]
- Bodiou, L.; Starecki, F.; Lemaitre, J.; Nazabal, V.; Doualan, J.-L.; Baudet, E.; Chahal, R.; Gutierrez-Arroyo, A.; Dumeige, Y.; Hardy, I.; et al. Mid-infrared guided photoluminescence from integrated Pr3+-doped selenide ridge waveguides. Opt. Mater. 2018, 75, 109–115. [Google Scholar] [CrossRef]
- Goldsmith, H.-D.K.; Ireland, M.; Ma, P.; Cvetojevic, N.; Madden, S. Improving the extinction bandwidth of MMI chalcogenide photonic chip based MIR nulling interferometers. Opt. Express 2017, 25, 16813–16824. [Google Scholar] [CrossRef]
- Ma, P.; Choi, D.Y.; Yu, Y.; Yang, Z.; Vu, K.; Nguyen, T.; Madden, S. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. Opt. Express 2015, 23, 19969–19979. [Google Scholar] [CrossRef] [Green Version]
- Baillieul, M.; Baudet, E.; Michel, K.; Moreau, J.; Němec, P.; Boukerma, K.; Nazabal, V. Toward chalcogenide platform infrared sensor dedicated to the in situ detection of aromatic hydrocarbons in natural waters via an attenuated total reflection spectroscopy study. Sensors 2021, 21, 2449. [Google Scholar] [CrossRef]
- Hu, J.; Gmachl, C. QCL-based sensors target health and environmental applications. Laser Focus World 2012, 48, 39–43. [Google Scholar]
- Ma, P.; Choi, D.-Y.; Yu, Y.; Gai, X.; Yang, Z.; Debbarma, S.; Madden, S.; Luther-Davies, B. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Express 2013, 21, 29927–29937. [Google Scholar] [CrossRef]
- Tsay, C.; Zha, Y.; Arnold, C.B. Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. Opt. Express 2010, 18, 26744–26753. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Lin, P.T.; Patel, N.; Lin, H.; Li, L.; Zou, Y.; Deng, F.; Ni, C.; Hu, J.; Giammarco, J.; et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 2014, 15, 014603. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, L.; Deng, F.; Ni, C.; Danto, S.; Musgraves, J.D.; Richardson, K.; Hu, J. Demonstration of mid-infrared waveguide photonic crystal cavities. Opt. Lett. 2013, 38, 2779–2782. [Google Scholar] [CrossRef] [Green Version]
- Anne, M.L.; Keirsse, J.; Nazabal, V.; Hyodo, K.; Inoue, S.; Boussard-Pledel, C.; Bureau, B. Chalcogenide glass optical wave-guides for infrared biosensing. Sensors 2009, 9, 7398–7411. [Google Scholar] [CrossRef] [PubMed]
- Baudet, E.; Gutierrez-Arroyo, A.; Baillieul, M.; Charrier, J.; Němec, P.; Bodiou, L.; Lemaitre, J.; Rinnert, E.; Michel, K.; Bureau, B.; et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater. Adv. Device Mater. 2017, 3, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, W.; Wang, P.; Dai, S.; Li, J.; Li, Y.; Fu, Q.; Dai, T.; Yu, H.; Yang, J. Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide. Sens. Actuators B Chem. 2021, 347, 130466. [Google Scholar] [CrossRef]
- Schmidtchen, J.; Splett, A.; Schüppert, B.; Petermann, K.; Burbach, G. Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator. Electron. Lett. 1991, 27, 1486–1488. [Google Scholar] [CrossRef]
- Gutierrez-Arroyo, A.; Baudet, E.; Bodiou, L.; Nazabal, V.; Rinnert, E.; Michel, K.; Bureau, B.; Colas, F.; Charrier, J. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sens. Actuators B Chem. 2017, 242, 842–848. [Google Scholar] [CrossRef]
- Kumari, B.; Varshney, R.; Pal, B. Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band. Sens. Actuators B Chem. 2018, 255, 3409–3416. [Google Scholar] [CrossRef]
- Pi, M.; Zheng, C.; Bi, R.; Zhao, H.; Liang, L.; Zhang, Y.; Tittel, F.K. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect. Sens. Actuators B Chem. 2019, 297, 126732. [Google Scholar] [CrossRef]
- Zamboni, R.; Zaltron, A.; Chauvet, M.; Sada, C. Real-time precise microfluidic droplets label-sequencing combined in a velocity detection sensor. Sci. Rep. 2021, 11, 17987. [Google Scholar] [CrossRef]
- Zamboni, R.; Zaltron, A.; Izzo, E.; Bottaro, G.; Ferraro, D.; Sada, C. Opto-Microfluidic System for Absorbance Measurements in Lithium Niobate Device Applied to pH Measurements. Sensors 2020, 20, 5366. [Google Scholar] [CrossRef]
- Kim, K.; Murphy, T.E. Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing. Opt. Express 2013, 21, 19488–19497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.K.; Qi, Z.P.; Li, L.L.; Lin, J.; Yun, B.F.; Cui, Y.P. Design and fabrication of polymer MZI refractive index sensors. J. Optoelectron. Laser 2015, 26, 457–461. [Google Scholar]
- Kumar, A.; Clark, D.F.; Culshaw, B. Explanation of errors inherent in the effective-index method for analyzing rectangular-core waveguides. Opt. Lett. 1988, 13, 1129–1131. [Google Scholar] [CrossRef]
- Soref, R. Silicon-based optoelectronics. Proc. IEEE 1993, 81, 1687–1706. [Google Scholar] [CrossRef]
- Xiao, Y.; Hofmann, M.; Sherman, S.; Wang, Y.; Zappe, H. Technology for polymer-based integrated optical interferometric sensors fabricated by hot-embossing and printing. In Proceedings of the 2015 IEEE China Semiconductor Technology International Conference, Shanghai, China, 15–16 March 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Zheng, Y.B. The Study of Silicon Nitride Waveguide Biochemical Sensor Based on Functional Polymer. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. [Google Scholar]
- Yang, T.F. The Planar Optical Waveguide Biochemical Sensor based on Polymer Material. Master’s Thesis, Jilin University, Changchun, China, 2010. [Google Scholar]
- Liu, Y.; Xie, T.Y.; Yi, Y.J.; Zhang, D.M. All Polymer High Accuracy MZI Waveguide Sensor. J. Jilin Univ. 2017, 35, 243–248. [Google Scholar]
- Liu, Y. Study of all Polymer Asymmetric MZI Waveguide Refractive Index Sensor. Master’s Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Wang, F.; Ma, S.; Ma, T.; Wang, X.; Yu, K.; Li, L. Refractive Index Sensing Performances of a Mid-Infrared Asymmetric Mzi Based on Suspended Gaas Waveguides. Prog. Electromagn. Res. 2022, 111, 173–183. [Google Scholar] [CrossRef]
- Hofmann, M.; Xiao, Y.; Sherman, S.; Gleissner, U.; Schmidt, T.; Zappe, H. Asymmetric Mach–Zehnder interferometers without an interaction window in polymer foils for refractive index sensing. Appl. Opt. 2016, 55, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tang, L.; Song, J.; Li, M.; He, J.-J. Optical waveguide biosensor based on cascaded Mach-Zehnder interferometer and ring resonator with Vernier effect. In Frontiers in Biological Detection: From Nanosensors to Systems VII; SPIE: Bellingham, WA, USA, 2015; Volume 9310, p. 931003. [Google Scholar] [CrossRef]
- Wang, L.H. Fabrication Optimisation of Polymer Integrated Photonic Devices and Their Applications. Doctoral Dissertation, Dalian University of Technology, Dalian, China, 2013. [Google Scholar]
- Zhu, H.H.; Yue, Y.H.; Wang, Y.J.; Zhang, M.; Shao, L.Y.; He, J.J.; Li, M.Y. High-sensitivity optical sensors based on cascaded reflective MZIs and microring resonators. Opt. Express 2017, 25, 28612. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, A. Refractive Index Sensing Using Silicon-on-Insulator Waveguide Based Directional Coupler. IEEE Sens. Lett. 2018, 2, 5001004. [Google Scholar] [CrossRef]
- Wei, H.; Krishnaswamy, S. Direct laser writing polymer micro-resonators for refractive index sensors. IEEE Photonics Technol. Lett. 2016, 28, 2819–2822. [Google Scholar] [CrossRef]
- Ding, Z.; Dai, D.; Shi, Y. Ultra-sensitive silicon temperature sensor based on cascaded Mach–Zehnder interferometers. Opt. Lett. 2021, 46, 2787–2790. [Google Scholar] [CrossRef]
- Kribich, K.R.; Copperwhite, R.; Barry, H.; Kolodziejczyk, B.; Sabattié, J.M.; O’Dwyer, K.; MacCraith, B.D. Novel chemical sensor/biosensor platform based on optical multimode interference (MMI) couplers. Sens. Actuators B Chem. 2005, 1, 188–192. [Google Scholar] [CrossRef]
- Szewczuk, A.; Błahut, M.; Pyka, W. Model of Optical Sensor on the Base of MMI Structures. Acta Phys. Pol. A 2010, 118, 1250–1253. [Google Scholar] [CrossRef]
- Copperwhite, R.; Oubaha, M.; Moore, J.; McDonagh, C.; MacCraith, B.D. Sensing Performance of a Refractometric Optical Sensor Platform Based on Multimode Interference Couplers. IEEE Sens. J. 2011, 11, 3269–3275. [Google Scholar] [CrossRef]
- Zinoviev, K.E.; Gonzalez-Guerrero, A.B.; Dominguez, C.; Lechuga, L.M. Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. J. Light. Technol. 2011, 29, 1926–1930. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.C.; Lechuga, L.M.; Gabrielli, L.H.; Hernandez-Figueroa, H.E. Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors. Opt. Express 2015, 23, 11985–11994. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Dwivedi, R. Ultra high sensitive integrated optical waveguide refractive index sensor based on mul-timode interference. Sens. Actuators B Chem. 2016, 222, 556–561. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Gabrielli, L.H.; Lechuga, L.M.; Hernandez-Figueroa, H.E. Trimodal waveguide demonstration and its im-plementation as a high order mode interferometer for sensing application. Sensors 2019, 12, 2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saimon, S.M.; Noor, M.Y.M.; Azmi, A.I.; Abdullah, A.S.; Ibrahim, M.H.; Ahmad, M.H.; Salim, M.R.; Othman, A.F.; Alqazoun, F.A.H. A High Sensitivity Refractive Index Sensor Based on Leaky Mode Coupler of MMI. IEEE Photonics Technol. Lett. 2021, 34, 63–66. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Kohler, M.H.; Kienle, P.; Bian, Q.; Jakobi, M.; Koch, A.W. Advances in Optical Fiber Sensors Based on Multimode Interference (MMI): A Review. IEEE Sens. J. 2020, 21, 132–142. [Google Scholar] [CrossRef]
- Hong, J.; Choi, J.S.; Han, G.; Kang, J.K.; Kim, C.-M.; Kim, T.S.; Yoon, D.S. A Mach-Zehnder interferometer based on silicon oxides for biosensor applications. Anal. Chim. Acta 2006, 573, 97–103. [Google Scholar] [CrossRef]
- Wang, C.C.; Liu, R.K.; Wang, T.Y.; Li, S.S.; Zhou, G.J.; Bai, Z.X.; Wang, Y.L.; Lv, Z.W. Applications of infrared semiconductor laser. Laser J. 2020, 41, 1–10. [Google Scholar]
- Li, Y.; Yang, K.; Liu, G.; Yao, B.; Ju, Y. 1 kHz nanosecond-pulsed room temperature Fe: ZnSe laser gain-switched by a ZnGeP 2 optical parametric oscillator. Chin. Opt. Lett. 2019, 17, 081404. [Google Scholar] [CrossRef]
- Rezvani, S.A.; Nomura, Y.; Fuji, T. Generation and Characterization of Mid-Infrared Supercontinuum in Bulk YAG Pumped by Femtosecond 1937 nm Pulses from a Regenerative Amplifier. Appl. Sci. 2019, 9, 3399. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yuan, L.; Zhang, Y.; Chen, G.; Cheng, H.; Gao, Y. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal. J. Cryst. Growth 2018, 491, 16–19. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, Y.; Liu, J.; Ji, Y.; Mao, L.; Wang, W. Nd3+-doped antimony germanate glass for 1.06 μm fiber lasers. J. Non-Cryst. Solids 2019, 518, 10–17. [Google Scholar] [CrossRef]
- Woodward, R.I.; Majewski, M.R.; Hudson, D.D.; Jackson, S.D. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics 2019, 4, 020801. [Google Scholar] [CrossRef] [Green Version]
- Njegovec, M.; Donlagic, D. A Fiber-Optic Gas Sensor and Method for the Measurement of Refractive Index Dispersion in NIR. Sensors 2020, 20, 3717. [Google Scholar] [CrossRef]
- Sun, L.; Rotaru, A.; Robeyns, K.; Garcia, Y. A Colorimetric Sensor for the Highly Selective, Ultra-sensitive, and Rapid Detection of Volatile Organic Compounds and Hazardous Gases. Ind. Eng. Chem. Res. 2021, 60, 8788–8798. [Google Scholar] [CrossRef]
- Zibaii, M.I.; Latifi, H.; Asadollahi, A.; Bayat, A.H.; Haghparast, A. DNA aptamer-based fiber optic biosensor for selective and label-free detection of dopamine. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September–2 October 2015; Volume 9634, p. 96340X. [Google Scholar] [CrossRef]
- Wang, N.; Dai, T.; Lei, L. Optofluidic Technology for Water Quality Monitoring. Micromachines 2018, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.Y.; Chang, J.H.; Hong, S.W.; Kim, S.Y.; Bae, H.J.; Park, B.Y.; Oh, M.H. Rapid Detection Methods for Food-Borne Pathogens in Milk and Dairy Products using an Optical Biosensor. J. Dairy Sci. 2013, 31, 165–170. [Google Scholar]
- Song, S.; Lee, J.U.; Kang, J.; Park, K.H.; Sim, S.J. Real-time monitoring of distinct binding kinetics of hot-spot mutant p53 protein in human cancer cells using an individual nanorod-based plasmonic biosensor. Sens. Actuators B Chem. 2020, 322, 128584. [Google Scholar] [CrossRef]
- Maddali, H.; Miles, C.E.; Kohn, J.; O’Carroll, D.M. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem 2021, 22, 1176–1189. [Google Scholar] [CrossRef]
- Bhandari, D.; Chen, F.-C.; Bridgman, R.C. Detection of Salmonella Typhimurium in Romaine Lettuce Using a Surface Plasmon Resonance Biosensor. Biosensors 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ju, H. Label-free optical biosensors based on a planar optical waveguide. BioChip J. 2013, 7, 295–318. [Google Scholar] [CrossRef]
- Estevez, M.; Alvarez, M.; Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev. 2012, 6, 463–487. [Google Scholar] [CrossRef] [Green Version]
- DeBackere, P.; Scheerlinck, S.; Bienstman, P.; Baets, R. Surface plasmon interferometer in silicon-on-insulator: Novel concept for an integrated biosensor. Opt. Express 2006, 14, 7063–7072. [Google Scholar] [CrossRef] [PubMed]
- Le, K.Q.; Bienstman, P. Enhanced Sensitivity of Silicon-On-Insulator Surface Plasmon Interferometer with Additional Silicon Layer. IEEE Photonics J. 2011, 3, 538–545. [Google Scholar] [CrossRef]
- Abbas, A.; Linman, M.J.; Cheng, Q. Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors. Sens. Actuators B Chem. 2011, 156, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Liu, S.; Sun, Q.; Lu, P.; Liu, D. Experimental Characterization of a Vernier Strain Sensor Using Cascaded Fiber Rings. IEEE Photonics Technol. Lett. 2012, 24, 2125–2128. [Google Scholar] [CrossRef]
- Scheler, O.; Kindt, J.T.; Qavi, A.J.; Kaplinski, L.; Glynn, B.; Barry, T.; Kurg, A.; Bailey, R.C. Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosens. Bioelectron. 2012, 36, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Luchansky, M.S.; Bailey, R.C. High-Q Optical Sensors for Chemical and Biological Analysis. Anal. Chem. 2012, 84, 793–821. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Wang, S.; Clarke, J.; Ja, S.; Goad, D.; Wald, L.; Flood, E.; Knobbe, E.; Hryniewicz, J.; Chu, S.T.; et al. A universal biosensing platform based on optical micro-ring resonators. Biosens. Bioelectron. 2008, 23, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Lapsley, M.I.; Chiang, I.K.; Zheng, Y.B.; Ding, X.; Mao, X.; Huang, T.J. A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection. Lab Chip 2011, 11, 1795–1800. [Google Scholar] [CrossRef] [Green Version]
- Hiltunen, J.; Wang, M.; Liedert, C.; Aikio, S.; Masuda, N.; Pearce, S.; Charlton, M.; Karioja, P. Layered polymer: Inorganic composite waveguides for biosensor applications. In Biophotonics: Photonic Solutions for Better Health Care III; SPIE: Bellingham, WA, USA, 2012; Volume 8427, p. 84270. [Google Scholar] [CrossRef]
- Hikita, M.; Yoshimura, R.; Usui, M.; Tomaru, S.; Imamura, S. Polymeric optical waveguides for optical interconnections. Thin Solid Films 1998, 331, 303–308. [Google Scholar] [CrossRef]
- Yun, B.F.; Chen, N.; Cui, Y.P. Refractive Index Sensing Characteristics of Fiber Bragg Grating Based on Cladding Mode. Acta Opt. Sin. 2006, 26, 1013–1015. [Google Scholar]
- Liu, Y.G.; Che, F.L.; Jia, Z.A.; Fu, H.W.; Wang, H.L.; Shao, M. Investigation on the characteristics of micro/nanofiber Bragg grating for refractive index sensing. Acta Phys. Sin. 2013, 62, 104218. [Google Scholar]
- Duan, W.W. Research on Microfiber Bragg Grating with Its Fabricated Technique and Refractive Index Sensing. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2017. [Google Scholar]
- Ray, S.; Mehta, G.; Srivastava, S. Label-free detection techniques for protein microarrays: Prospects, merits and challenges. Proteomics 2010, 10, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H. Study on Surface Plamon Resonance Sensor of Polymer Optical Straight Waveguide. Master’s Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
- Zhang, W.L.; Liu, K.; Jiang, J.F.; Xu, T.H.; Wang, S.; Zhang, Z.; Jing, J.Y.; Ma, J.Y.; Liu, T.G. Tungsten Disulfide Modified Tapered Fiber Optic Surface Plasmon Resonance Sensor with Enhanced Sensitivity. Acta Photonica Sin. 2022, 51, 0306002. [Google Scholar]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics 2022, 9, 331. [Google Scholar] [CrossRef]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.-Y.; Matsuda, N.; et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2022, 4, 194–208. [Google Scholar] [CrossRef]
Interference Mechanism | General | Paired | Symmetric |
---|---|---|---|
Inputs × Outputs | N × N | 2 × N | 1 × N |
First single image distance | 3Lπ | Lπ | 3Lπ/4 |
First N-fold image distance | 3Lπ/N | Lπ/N | 3Lπ/4N |
Excitation condition | none | cm = 0 m = 2, 5, 8 | cm = 0 m = 2, 5, 8 |
Inputs location | any | y = ±W/6 | y = 0 |
Year | Unit | Construction | S (nm/RIU) | LOD (RIU) | Q |
---|---|---|---|---|---|
2008 | Cornell University [25] | Silicon slot MRRs | 490 | 5000 | |
2009 | University of Ghent, Belgium [27] | Slot waveguide SOI (silicon on insulator) ring resonator | 298 | ||
2018 | Beijing University of Posts and Telecommunications [28] | One-dimensional photonic crystal slot waveguide microring | 97.47 | 105 | |
2020 | Shanghai Jiaotong University [16] | Few-mode SiN waveguide ring sensor | 91.79 | 10−5 | 2 × 104 |
2017 | University of Southern California [31] | SOI coupled-ring resonators | 382 | 10−3 | |
2012 | Zhejiang University [32] | Sensors based on cascaded FP cavity lasers and MRRs | 1000 | 3.8 × 106 | |
2016 | University of Paris-Saclay [37] | Silicon slot waveguide ring resonator | 1300 | 10−4 | |
2019 | Columbia University [34] | Silicon photonic waveguide sensors | 579.5 | 1700 | |
2012 | University of Central Florida [43] | chalcogenide glass compact microdisk resonance | 182 | 19,000 | |
2021 | Ningbo University [40] | Ge-Sb-Se MRR | 123 | 10−4 | 7.7 × 104 |
2022 | Ningbo University [41] | ChGS slot MRR | 471 | 10−4 | 1 × 104 |
2016 | Khulna university [64] | LNOI label-free optical MRR | 68 | 10−2 | |
2020 | Dalian University of Technology [68] | Polymer-based slot waveguide microring | 130 |
Year | Unit | Construction | S (nm/RIU) | LOD (RIU) | Q |
---|---|---|---|---|---|
2014 | Saint Petersburg Polytechnic University [73] | Single-mode silicon waveguide double transverse mode helical structure | 461.6 | 2.2 × 10−5 | / |
2013 | Bari Polytechnic University [74] | Vernier effect/Vernier effect enhanced by SOI material MZI | 1000/2500 um/RIU | 10−7/10−8 | / |
2014 | Tsinghua University [75] | Large cross-section SOI ridge waveguide MZI | 7396.6 %/RIU | 2.74 × 10−6 | / |
2020 | Zhejiang University [76] | SOI material MZI | 106 | 10−6 | / |
2014 | Zhejiang University [77] | Venier effect MZI ring sensor | 21,500 | / | |
2022 | University of Electronic Science and Technology of China [78] | CMOS compatible Si3N4 waveguide MZI | 30,000 | 476 ppb | / |
2021 | Ningbo University [99] | Chalcogenide glass compound suspension tank waveguide | 7151 | 1.139 ppm | / |
2013 | University of Maryland [106] | Single-mode porous silicon integrated MZI | 13,000 rad/RIU·cm | 10−5 | / |
2015 | Southeast University [107] | Polymer MZI sensor | 88 dB/mRIU | / | / |
2021 | University of Electronic Science and Technology [111] | Polymer-based non-monospaced MZI | 11,624 | / | / |
2017 | Jilin University [114] | PMMA film asymmetric MZI sensor | 791 dB/RIU | / | / |
2022 | Henan Normal University [115] | Asymmetric MZI double suspended GaAs waveguide Sensor | 854.5 | / | 208.2 |
Performance Characteristics | MRR [14,35] | MZI [72,73] | MMI [5,129] |
---|---|---|---|
Sensitivity (nm/RIU) | 102–103 | 102–104 | 103–104 |
Sensitivity (rad/RIU) | / | 461.6π | / |
Detection limit (RIU) | 10−2–10−5 | 10−5–10−6 | 10−6–10−7 |
Size | Smaller | Small | Smallest |
Fabrication | Hard | Easy | Easy |
Loss(dB/cm) | 1–102 | <1 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Yang, C.; Zhao, H.; Liang, L.; Zheng, C.; Chen, C.; Qin, L.; Tang, H. Optical Waveguide Refractive Index Sensor for Biochemical Sensing. Appl. Sci. 2023, 13, 3829. https://doi.org/10.3390/app13063829
Peng C, Yang C, Zhao H, Liang L, Zheng C, Chen C, Qin L, Tang H. Optical Waveguide Refractive Index Sensor for Biochemical Sensing. Applied Sciences. 2023; 13(6):3829. https://doi.org/10.3390/app13063829
Chicago/Turabian StylePeng, Cheng, Changjin Yang, Huan Zhao, Lei Liang, Chuantao Zheng, Chen Chen, Li Qin, and Hui Tang. 2023. "Optical Waveguide Refractive Index Sensor for Biochemical Sensing" Applied Sciences 13, no. 6: 3829. https://doi.org/10.3390/app13063829
APA StylePeng, C., Yang, C., Zhao, H., Liang, L., Zheng, C., Chen, C., Qin, L., & Tang, H. (2023). Optical Waveguide Refractive Index Sensor for Biochemical Sensing. Applied Sciences, 13(6), 3829. https://doi.org/10.3390/app13063829