Research of Peak Searching Technology for Separating Lithium from Coal Based on XRD Pattern
Abstract
:1. Introduction
2. The Symmetric Zero-Area Conversion Method
2.1. The Introduction of SZAC
2.2. The Limitation of SZAC
3. The Improved Symmetric Zero-Area Conversion Method
3.1. Passive Anti-Counterfeiting and Information Fusion
3.2. Background Deduction and Intensity Screening
3.3. Comparison Method and Flat Peak Screening
3.4. ISZAC Algorithm
- (I)
- Load spectral data and initialize parameters;
- (II)
- Background deduction;
- (III)
- Intensity screening;
- (IV)
- According to the window width range, the symmetric zero-area conversion function is constructed to generate the conversion result group;
- (V)
- According to the comparison width, construct the conversion function of the comparison method, and transmit the conversion results to the next step;
- (VI)
- Flat peak screening, and add results into the result group;
- (VII)
- Fusion processing to generate the final decision result; and
- (VIII)
- Determination of peak position and display of results.
4. Simulation and Experiment
4.1. The Simulation to Verify Accuracy
4.2. The Simulation to Verify Applicability and Experimental Test
5. Conclusions and Future Work
- (I)
- Adjusting parameters cannot correct the misjudgment problem generated by SZAC in specific scenarios. By introducing a comparison method, ISZAC has better accuracy of peak identification.
- (II)
- For different types of spectral signals, SZAC needs to adjust the parameters to achieve the optimal recognition effect, otherwise there will be a phenomenon of missing judgment. ISZAC uses a group of conversion functions to give full play to the advantages of wide and narrow window functions to suppress noise and identify overlapping peaks, which enhances the applicability of the method.
- (III)
- The experimental results of ISZAC basically meet the requirements of phase matching, which has a practical application prospect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Benson, T.R.; Coble, M.A.; Rytuba, J.J.; Mahood, G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun. 2017, 8, 270. [Google Scholar] [CrossRef]
- Coelho, A.A. An indexing algorithm independent of peak position extraction for X-ray powder diffraction patterns. J. Appl. Crystallogr. 2017, 50, 1323–1330. [Google Scholar] [CrossRef]
- Ladd, M.; Palmer, R. Structure Determination by X-ray Crystallography: Analysis by X-rays and Neutrons; Springer: Berlin, Germany, 2013; ISBN 978-1-4614-3956-1. [Google Scholar]
- Huang, Y.; Liu, M.; Liu, X.; Luo, R. Nuclide spectrum peak searching algorithm based on multiple morphological structuring elements. J. Phys. Conf. Ser. 2020, 1634, 12078. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Liu, H.-L.; Yang, K.; Zhang, Y.-L. Processing FBG Sensing Signals with Exponent Modified Gaussian Curve Fitting Peak Detection Method. J. Spectrosc. Spectr. Anal. 2016, 36, 1526–1531. [Google Scholar] [PubMed]
- Wu, H.X.; Zhang, H.Q.; Liu, Q.C.; Yang, B.; Wei, Q.; Yuan, X. Information retrieval methods for high resolution gamma-ray spectra. Nucl. Sci. Technol. 2012, 23, 332–336. [Google Scholar] [CrossRef]
- Wu, S.; Tang, X.; Gong, P.; Wang, P.; Liang, D.; Li, Y.; Zhou, C.; Zhu, X. Peak-searching method for low count rate γ spectrum under short-time measurement based on a generative adversarial network. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1002, 165262. [Google Scholar] [CrossRef]
- Bi, Y.F.; Li, Y.; Du, Z.F.; Chen, L.; Zheng, R.E. Automatic recognition of overlapping spectral peaks by symmetric zero-area conversion combined with L-M fitting. J. Spectrosc. Spectr. Anal. 2015, 35, 2339–2342. [Google Scholar]
- Wang, Y.; Wei, Y. Implicit FWHM calibration for gamma-ray spectra. Nucl. Sci. Technol. 2013, 24, 59–64. [Google Scholar] [CrossRef]
- Pang, J.S.; Zheng, G.F.; Hou, X.F. Finding peak by symmetrical zero area conversion method. J. At. Energy Sci. Technol. 1987, 21, 270–279. [Google Scholar]
- Shang, F.J.; Wang, H.X.; Zhou, R.S. Discussion and practice of peak search algorithm in X fluorescence spectrum analysis. J. Comput. Tech. Geophys. Geochem. Explor. 2000, 364–368. [Google Scholar]
- Bi, Y.F.; Li, Y.; Zheng, R.E. The Symmetric Zero-Area Conversion Adaptive Peak-Seeking Method Research for LIBS/Raman Spectra. Spectrosc. Spectr. Anal. 2013, 33, 438–443. [Google Scholar] [CrossRef]
- Lee, J.W.; Gil Hong, H.; Kim, K.W.; Park, K.R. A Survey on Banknote Recognition Methods by Various Sensors. Sensors 2017, 17, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, Z.; Wangliang, L.; Chuang, L.; Linda, S.; Kaiyan, W. Discussion on multi-sensor information fusion in green house detection system. In Proceedings of the 2017 International Conference on Smart Grid and Electrical Automation, Changsha, China, 27–28 May 2017; pp. 64–67. [Google Scholar]
- Li, Y.; Zhao, M.; Xu, M.; Liu, Y.; Qian, Y. Analysis and Comparison of Multi-Source Information Fusion Technologies. In Frontiers in Artificial Intelligence and Applications; IOS Press: Amsterdam, The Netherlands, 2019; pp. 1057–1063. [Google Scholar]
- Zeng, M.X.; Song, Y.G. Study on Factors Influencing quantitative Analysis of X-ray diffraction phase based on McQuart Algo-rithm. J. Rock Ore Test. 2012, 31, 798–806. [Google Scholar]
- Tomoyori, K.; Hirano, Y.; Kurihara, K.; Tamada, T. Background elimination using the SNIP algorithm for Bragg reflections from a protein crystal measured by a TOF single-crystal neutron diffractometer. J. Phys. Conf. Ser. 2016, 664, 072049. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xiao, H.; Yang, Y.; Qu, J.; Xu, H.; Lin, L. A study of background subtraction method for NaI(TI) instrument spectrum based on adaptive FWHM. In AER-Advances in Engineering Research; Cheng, B., Liang, W., Eds.; Atlantis Press: Berlin, Germany, 2015; pp. 462–468. [Google Scholar]
- Wu, H.X.; Liu, Q.C.; Yang, B.; Liu, Y.J. Application of SNIP method in natural radionuclide γ spectrum analysis. J. Nucl. Technol. 2010, 33, 513–516. [Google Scholar]
- Jin, Y.; Fei, L.; Liangquan, G.; Qingxian, Z.; Maolin, X.; Kun, S.; Yi, G. Application of Improved Simpson-Snip Algorithm in spectral Background Deduction for airborne γ Instruments. J. Nucl. Technol. 2020, 43, 77–83. [Google Scholar]
- Song, F.; Sun, W.; Wei, J.; Jiang, M.; Zhang, L.; Zhang, F.; Sui, Q.; Tian, Y. The optimization study of FBG Gaussian fitting peak-detection based on Levenberg-Marquardt Algorithm. In Proceedings of the Chinese Automation Congress, Jinan, China, 20–22 October 2017; pp. 3723–3727. [Google Scholar]
- Liu, Q.; Cai, L.J.; Li, Z.Y.; Tang, Z.; Du, F.; Zhao, M. Research on peak-detection algorithm for high-speed and high-precision FBG Demodulation. Op-Toelectronics Laser 2012, 23, 1233–1239. [Google Scholar] [CrossRef]
- Chen, Z.J.; Bai, J.; Wu, Z.T.; Zhao, X.; Zhang, J. Optimization and comparison of Optical Fiber Bragg Grating Reflection Spectrum peak Search Algorithm. J. Acta Photonica Sin. 2015, 44, 83–88. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Liu, Y.; Xiu, T. Research of Peak Searching Technology for Separating Lithium from Coal Based on XRD Pattern. Appl. Sci. 2023, 13, 4016. https://doi.org/10.3390/app13064016
Jiang X, Liu Y, Xiu T. Research of Peak Searching Technology for Separating Lithium from Coal Based on XRD Pattern. Applied Sciences. 2023; 13(6):4016. https://doi.org/10.3390/app13064016
Chicago/Turabian StyleJiang, Xiaoping, Yurong Liu, and Tianning Xiu. 2023. "Research of Peak Searching Technology for Separating Lithium from Coal Based on XRD Pattern" Applied Sciences 13, no. 6: 4016. https://doi.org/10.3390/app13064016
APA StyleJiang, X., Liu, Y., & Xiu, T. (2023). Research of Peak Searching Technology for Separating Lithium from Coal Based on XRD Pattern. Applied Sciences, 13(6), 4016. https://doi.org/10.3390/app13064016