Optimization of the Position and Stiffness of Passive Walking Assistance Devices
Abstract
:1. Introduction
2. Methods
2.1. Computational Model of Human Walking with Passive Assistive System
2.2. Optimal Location and Stiffness of Passive Walking Assistance System
3. Results
3.1. Optimal Location of the Passive Walking Assistance
3.2. Optimal Stiffness of Passive Walking Systems at Different Walking Speeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freiberger, E.; Sieber, C.; Kob, R. Mobility in Older Community-Dwelling Persons: A Narrative Review. Front. Physiol. 2020, 11, 811. [Google Scholar] [CrossRef]
- Forhan, M.; Gill, S.V. Obesity, functional mobility and quality of life. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Fautrel, B.; Hilliquin, P.; Rozenberg, S.; Allaert, F.A.; Coste, P.; Leclerc, A.; Rossignol, M. Impact of osteoarthritis: Results of a nationwide survey of 10,000 patients consulting for OA. Jt. Bone Spine 2005, 72, 235–240. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. Neuroeng. Rehabil. 2014, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, S.; Chang, W.H.; Seo, K.; Shim, Y.; Choi, B.; Ryu, G.; Kim, Y. A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.; Wiggin, M.; Sawicki, G. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015, 522, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Panizzolo, F.A.; Annese, E.; Paoli, A.; Marcolin, G. A Single Assistive Profile Applied by a Passive Hip Flexion Device Can Reduce the Energy Cost of Walking in Older Adults. Appl. Sci. 2021, 11, 2851. [Google Scholar] [CrossRef]
- Zhou, T.; Xiong, C.; Zhang, J.; Hu, D.; Chen, W.; Huang, X. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. J. Neuroeng. Rehabil. 2021, 18, 95. [Google Scholar] [CrossRef]
- Nuckols, R.W.; Sawicki, G.S. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. J. Neuroeng. Rehabil. 2020, 17, 75. [Google Scholar] [CrossRef]
- Cheng, L.; Xiong, C.; Chen, W.; Liang, J.; Huang, B.; Xu, X. A portable exotendon assisting hip and knee joints reduces muscular burden during walking. R. Soc. Open Sci. 2021, 8, 211266. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, R.; Ahmadi, A.; Ahmadabadi, M.N. Reducing the energy cost of human running using an unpowered exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Yong, X.; Yan, Z.; Wang, C.; Wang, C.; Li, N.; Wu, X. Ergonomic Mechanical Design and Assessment of a Waist Assist Exoskeleton for Reducing Lumbar Loads During Lifting Task. Micromachines 2019, 10, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Qu, C.; Ma, T.; Yin, P.; Zhao, N.; Xia, Y.; Qu, S. Effects of an industrial passive assistive exoskeleton on muscle activity, oxygen consumption and subjective responses during lifting tasks. PLoS ONE 2021, 16, e0245629. [Google Scholar] [CrossRef]
- Sawicki, G.S.; Beck, O.N.; Kang, I.; Young, A.J. The exoskeleton expansion: Improving walking and running economy. J. Neuroeng. Rehabil. 2020, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Schrack, J.A.; Simonsick, E.M.; Chaves, P.H.M.; Ferrucci, L. The role of energetic cost in the age-related slowing of gait speed. J. Am. Geriatr. Soc. 2021, 60, 1811–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, L.N.; Bae, J.; O’Donnell, K.; De Rossi, S.M.M.; Hendron, K.; Sloot, L.H.; Kudzia, P.; Allen, S.; Holt, K.G.; Ellis, T.D.; et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 2017, 9, eaai9084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller-Jackson, T.M.; Natividad, R.F.; Lim, D.Y.L.; Hernandez-Barraza, L.; Ambrose, J.W.; Yeow, R.C.H. A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation. Front. Robot. AI 2022, 9, 835237. [Google Scholar] [CrossRef]
- Etenzi, E.; Borzuola, R.; Grabowski, A.M. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. J. Neuroeng. Rehabil. 2020, 17, 104. [Google Scholar] [CrossRef]
- Dembia, C.L.; Silder, A.; Uchida, T.K.; Hicks, J.L.; Delp, S.L. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE 2017, 12, e0180320. [Google Scholar] [CrossRef] [Green Version]
- Guzelbulut, C.; Shimono, S.; Suzuki, K. Optimization of human gait using singular-value decomposition-based design variables. Multibody Syst. Dyn. 2023. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. The mechanics and energetics of human walking and running: A joint level perspective. J. R. Soc. Interface 2012, 9, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzelbulut, C.; Shimono, S.; Yonekura, K.; Suzuki, K. Detection of gait variations by using artificial neural networks. Biomed. Eng. Lett. 2022, 12, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Guzelbulut, C.; Suzuki, K.; Shimono, S. Singular value decomposition-based gait characterization. Heliyon 2022, 8, e12006. [Google Scholar] [CrossRef] [PubMed]
- Moissenet, F.; Leboeuf, F.; Armand, S. Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and BMI. Sci. Rep. 2019, 9, 9510. [Google Scholar] [CrossRef] [Green Version]
Study | Type of Assistance | Type of Study | Joint Assisted | Purpose |
---|---|---|---|---|
Zhang et al. [4] | Active-tethered | Exp. | Ankle | Reducing the cost of walking |
Mooney et al. [5] | Active | Exp. | Ankle | Reducing the cost of walking |
Awad et al. [17] | Active soft robotics | Exp. | Ankle | Rehabilitation |
Miller-Jackson et al. [18] | Active soft robotics | Exp. and Comp. | Hip | Rehabilitation |
Collins et al. [7] | Passive elastic spring | Exp. | Ankle | Reducing the cost of walking |
Nuckols and Sawicki [10] | Passive elastic | Exp. | Ankle | Reducing the cost of walking |
Panizzolo et al. [8] | Passive elastic band | Exp. | Hip | Reducing the cost of walking |
Cheng et al. [11] | Passive exotendon | Exp. | Hip and knee | Reducing the cost of walking |
Etenzi et al. [19] | Passive elastic springs | Exp. | Ankle and knee | Reducing the cost of walking |
Dembia et al. [20] | Passive elastic elements | Comp. | Seven different locations | Reducing the cost of walking |
This study | Passive elastic springs, but can be extended | Comp. | Location was found by optimization | Reducing the cost of walking, but it can be extended. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzelbulut, C.; Shimono, S.; Suzuki, K. Optimization of the Position and Stiffness of Passive Walking Assistance Devices. Appl. Sci. 2023, 13, 4198. https://doi.org/10.3390/app13074198
Guzelbulut C, Shimono S, Suzuki K. Optimization of the Position and Stiffness of Passive Walking Assistance Devices. Applied Sciences. 2023; 13(7):4198. https://doi.org/10.3390/app13074198
Chicago/Turabian StyleGuzelbulut, Cem, Satoshi Shimono, and Katsuyuki Suzuki. 2023. "Optimization of the Position and Stiffness of Passive Walking Assistance Devices" Applied Sciences 13, no. 7: 4198. https://doi.org/10.3390/app13074198
APA StyleGuzelbulut, C., Shimono, S., & Suzuki, K. (2023). Optimization of the Position and Stiffness of Passive Walking Assistance Devices. Applied Sciences, 13(7), 4198. https://doi.org/10.3390/app13074198