Coal to Biomass Transition as the Path to Sustainable Energy Production: A Hypothetical Case Scenario with the Conversion of Pego Power Plant (Portugal)
Abstract
:1. Introduction
2. The Paradigm of Carbon-based Energy Production
2.1. Biomass Energy
2.2. Coal-Fuelled Energy Production
2.3. Biomass as an Alternative to Coal
3. Energy Production Decarbonization and the Pego Power Plant
4. A Hypothetical Scenario Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khuc, Q.V.; Tran, M.; Nguyen, T.; Thinh, N.A.; Dang, T.; Tuyen, D.T.; Pham, P.; Dat, L.Q. Improving energy literacy to facilitate energy transition and nurture environmental culture in Vietnam. Urban Sci. 2023, 7, 13. [Google Scholar] [CrossRef]
- Liu, Z.; Ahmad, I.; Perveen, Z.; Alvi, S. Do the globalization and imports of capital goods from EU, US and China determine the use of renewable energy in developing countries? Carbon Manag. 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Raihan, A.; Pavel, M.I.; Muhtasim, D.A.; Farhana, S.; Faruk, O.; Paul, A. The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innov. Green Dev. 2023, 2, 100035. [Google Scholar] [CrossRef]
- Baz, K.; Cheng, J.; Xu, D.; Abbas, K.; Ali, I.; Ali, H.; Fang, C. Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique. Energy 2021, 226, 120357. [Google Scholar] [CrossRef]
- Shaari, M.; Hussain, N.; Ismail, M. Relationship between energy consumption and economic growth: Empirical evidence for Malaysia. Bus. Syst. Rev. 2013, 2, 17–28. [Google Scholar]
- Park, S.-Y.; Yoo, S.-H. The dynamics of oil consumption and economic growth in Malaysia. Energy Policy 2014, 66, 218–223. [Google Scholar] [CrossRef]
- Žiković, S.; Vlahinic-Dizdarević, N. Oil consumption and economic growth interdependence in small European countries. Econ. Res. 2011, 24, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef] [Green Version]
- Allain, J.P.; Allain, S. The Post-Industrial Midwest and Appalachia (PIMA) Nuclear Alliance. J. Crit. Infrastruct. Policy 2023, 3, 47. [Google Scholar]
- Bairrão, D.; Soares, J.; Almeida, J.; Franco, J.F.; Vale, Z. Green Hydrogen and Energy Transition: Current State and Prospects in Portugal. Energies 2023, 16, 551. [Google Scholar] [CrossRef]
- Hussain, S.; Xuetong, W.; Maqbool, R. Understanding the power disruption and its impact on community development: An empirical case of Pakistan. Sustain. Energy Technol. Assess. 2023, 55, 102922. [Google Scholar] [CrossRef]
- Yana, S.; Nizar, M.; Mulyati, D. Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review. Renew. Sustain. Energy Rev. 2022, 160, 112268. [Google Scholar] [CrossRef]
- Bellelli, F.S.; Aftab, A.; Scarpa, R. The Participation Dilemma: A Survey of Empirical Literature on International Environmental Agreement Ratification. Rev. Environ. Econ. Policy 2023, 17, 38–51. [Google Scholar] [CrossRef]
- Ashworth, P.; Clarke, E. Climate Change—Does the IPCC Model Provide the Foundation for a Potential Global Technology Assessment Framework? In Technology Assessment in a Globalized World: Facing the Challenges of Transnational Technology Governance; Springer International Publishing: Cham, Switzerland, 2023; pp. 127–148. [Google Scholar]
- Pacesila, M.; Burcea, S.G.; Colesca, S.E. Analysis of renewable energies in European Union. Renew. Sustain. Energy Rev. 2016, 56, 156–170. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Ćosić, B.; Krajačić, G.; Pukšec, T.; Duić, N.; Markovska, N. Zero carbon energy system of Southeast Europe in 2050. Appl. Energy 2016, 184, 1517–1528. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, F.; van Eck, N.J.; Frey, M. The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management. Renew. Energy 2014, 62, 657–671. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Demirbaş, A. Influence of gas and detrimental metal emissions from biomass firing and co-firing on environmental impact. Energy Sources 2005, 27, 1419–1428. [Google Scholar] [CrossRef]
- Baxter, L. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 2005, 84, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yang, K.; Zhou, J.; Zhao, G. Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability 2020, 12, 3692. [Google Scholar] [CrossRef]
- Thornley, P. Increasing biomass-based power generation in the UK. Energy Policy 2006, 34, 2087–2099. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Bentz, J.; Silva, J.M.; Fonseca, A.L.; Swart, R.; Santos, F.D.; Penha-Lopes, G. Adaptation to climate change at local level in Europe: An overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 15. [Google Scholar] [CrossRef] [Green Version]
- Tol, R.S. The economic effects of climate change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Legutko-Kobus, P.; Nowak, M. The contemporary economic costs of spatial chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Jaeger, C.; Mielke, J.; Schütze, F.; Teitge, J.; Wolf, S. The European Green Deal–More Than Climate Neutrality. Intereconomics 2021, 2021, 99–107. [Google Scholar]
- Elkerbout, M.; Egenhofer, C.; Núñez Ferrer, J.; Catuti, M.; Kustova, I.; Rizos, V. The European Green Deal after Corona: Implications for EU climate policy. CEPS Policy Insights 2020, 6, 1–12. [Google Scholar]
- Santopietro, L.; Scorza, F. The Italian Experience of the Covenant of Mayors: A Territorial Evaluation. Sustainability 2021, 13, 1289. [Google Scholar] [CrossRef]
- Codemo, A.; Favargiotti, S.; Albatici, R. Fostering the climate-energy transition with an integrated approach. TeMA-J. Land Use Mobil. Environ. 2021, 14, 5–20. [Google Scholar]
- Salvia, M.; Olazabal, M.; Fokaides, P.A.; Tardieu, L.; Simoes, S.G.; Geneletti, D.; Hurtado, S.D.G.; Viguié, V.; Spyridaki, N.-A.; Pietrapertosa, F. Climate mitigation in the Mediterranean Europe: An assessment of regional and city-level plans. J. Environ. Manag. 2021, 295, 113146. [Google Scholar] [CrossRef]
- Von Stein, J. The international law and politics of climate change: Ratification of the United Nations Framework Convention and the Kyoto Protocol. J. Confl. Resolut. 2008, 52, 243–268. [Google Scholar] [CrossRef]
- Kim, Y.; Tanaka, K.; Matsuoka, S. Environmental and economic effectiveness of the Kyoto Protocol. PLoS ONE 2020, 15, e0236299. [Google Scholar] [CrossRef] [PubMed]
- Villoria-Sáez, P.; Tam, V.W.; del Río Merino, M.; Arrebola, C.V.; Wang, X. Effectiveness of greenhouse-gas Emission Trading Schemes implementation: A review on legislations. J. Clean. Prod. 2016, 127, 49–58. [Google Scholar] [CrossRef]
- Carvalho, A.; Schmidt, L.; Santos, F.D.; Delicado, A. Climate change research and policy in Portugal. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Martins, H.; Lopes, M. Portuguese industry and the EU trade emissions directive: Development and analysis of CO2 emission scenarios. Environ. Sci. Policy 2005, 8, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Pereira, R.M.; Rodrigues, P.G. A new carbon tax in Portugal: A missed opportunity to achieve the triple dividend? Energy Policy 2016, 93, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.-F. Biomass for energy in the EU–The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Herzog, H.; Golomb, D. Carbon capture and storage from fossil fuel use. Encycl. Energy 2004, 1, 277–287. [Google Scholar]
- Giuntoli, J.; Agostini, A.; Caserini, S.; Lugato, E.; Baxter, D.; Marelli, L. Climate change impacts of power generation from residual biomass. Biomass Bioenergy 2016, 89, 146–158. [Google Scholar] [CrossRef]
- Gonçalves, M.; Freire, F.; Garcia, R. Material flow analysis of forest biomass in Portugal to support a circular bioeconomy. Resour. Conserv. Recycl. 2021, 169, 105507. [Google Scholar] [CrossRef]
- Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Wolfsmayr, U.J.; Rauch, P. The primary forest fuel supply chain: A literature review. Biomass Bioenergy 2014, 60, 203–221. [Google Scholar] [CrossRef]
- Nunes, L.J. Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms. Clean Technol. 2020, 2, 270–289. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Johnson, J.M.; Coleman, M.D.; Gesch, R.; Jaradat, A.; Mitchell, R.; Reicosky, D.; Wilhelm, W.W. Biomass-Bioenergy Crops in the United States: A Changing Paradigm. 2007. Available online: https://pubag.nal.usda.gov/download/47858/PDF (accessed on 15 March 2023).
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.a.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Müller, A.; Weigelt, J.; Götz, A.; Schmidt, O.; Alva, I.L.; Matuschke, I.; Ehling, U.; Beringer, T. The Role of Biomass in the Sustainable Development Goals: A Reality Check and Governance Implications; IASS Working paper; Institute for Advanced Sustainability Studies (IASS): Madrid, Spain, 2015; pp. 1–35. [Google Scholar]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Cairns, M.A.; Meganck, R.A. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management. Environ. Manag. 1994, 18, 13–22. [Google Scholar] [CrossRef]
- Sebastián, F.; Royo, J.; Gómez, M. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy 2011, 36, 2029–2037. [Google Scholar] [CrossRef]
- Mobini, M.; Meyer, J.-C.; Trippe, F.; Sowlati, T.; Fröhling, M.; Schultmann, F. Assessing the integration of torrefaction into wood pellet production. J. Clean. Prod. 2014, 78, 216–225. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 2014, 40, 153–160. [Google Scholar] [CrossRef]
- Proskurina, S.; Junginger, M.; Heinimö, J.; Tekinel, B.; Vakkilainen, E. Global biomass trade for energy—Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod. Biorefining 2019, 13, 371–387. [Google Scholar] [CrossRef]
- Van den Broek, R.; Faaij, A.; van Wijk, A. Biomass combustion for power generation. Biomass Bioenergy 1996, 11, 271–281. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion systems for biomass fuel. Energy Sources Part A 2007, 29, 303–312. [Google Scholar] [CrossRef]
- Demirbas, A. The importance of biomass. Energy Sources 2004, 26, 361–366. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew. Sustain. Energy Rev. 2016, 53, 235–242. [Google Scholar] [CrossRef]
- Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Raven, R. Analyzing Emerging Sustainable Energy Niches in Europe: A Strategic Niche Management Perspective: Rob Raven. In Governing the Energy Transition; Routledge: Milton Park, UK, 2012; pp. 136–162. [Google Scholar]
- Beuchelt, T.D.; Nassl, M. Applying a sustainable development lens to global biomass potentials. Sustainability 2019, 11, 5078. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2010, 2, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.; Curt, M.D.; Robert, N.; Fernández, J. Biomass resources. In The Role of Bioenergy in the Emerging Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 25–111. [Google Scholar]
- Tonini, D.; Vadenbo, C.; Astrup, T.F. Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective. Energy 2017, 124, 295–309. [Google Scholar] [CrossRef]
- Lindholt, L.; Glomsrød, S. Phasing out coal and phasing in renewables–good or bad news for arctic gas producers? Energy Econ. 2018, 70, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Demirbaş, A. Sustainable cofiring of biomass with coal. Energy Convers. Manag. 2003, 44, 1465–1479. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Wolfe, A.; Hendryx, M.S. The future environmental and health impacts of coal. Energy Geosci. 2021, 2, 99–112. [Google Scholar] [CrossRef]
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development–A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Brown, B.; Spiegel, S.J. Coal, climate justice, and the cultural politics of energy transition. Glob. Environ. Politics 2019, 19, 149–168. [Google Scholar] [CrossRef]
- Breyer, C.; Fasihi, M.; Aghahosseini, A. Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: A new type of energy system sector coupling. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Strezov, V. Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies. Energy 2017, 133, 1132–1141. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, A.; Fishel, S. A coal elimination treaty 2030: Fast tracking climate change mitigation, global health and security. Earth Syst. Gov. 2020, 3, 100046. [Google Scholar] [CrossRef]
- Millot, A.; Krook-Riekkola, A.; Maïzi, N. Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy 2020, 139, 111358. [Google Scholar] [CrossRef]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; den Elzen, M.; Forsell, N.; Höhne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Fuhrmann, J.; Madlener, R. Evaluation of Synergies in the Context of European Multi-Business Utilities. Energies 2020, 13, 6676. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Jen, T.-C. Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 97–117. [Google Scholar] [CrossRef]
- Jorgenson, D.W.; Slesnick, D.T.; Wilcoxen, P.J.; Joskow, P.L.; Kopp, R. Carbon taxes and economic welfare. Brook. Pap. Econ. Act. Microecon. 1992, 1992, 393–454. [Google Scholar] [CrossRef] [Green Version]
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Rietig, K. Accelerating low carbon transitions via budgetary processes? EU climate governance in times of crisis. J. Eur. Public Policy 2021, 28, 1018–1037. [Google Scholar] [CrossRef]
- Duwe, M. The climate action network: A glance behind the curtains of a transnational NGO network. Rev. Eur. Comp. Int'l Envtl. L. 2001, 10, 177. [Google Scholar] [CrossRef]
- Climate Action Network Europe. Off Target—Ranking of EU Countries’ Ambition and Progress in Fighting Climate Change; Climate Action Network Europe: Brussels, Belgium, 2018; Available online: http://caneurope.org/content/uploads/2018/06/CAN_Off-target_report_FIN.pdf (accessed on 15 March 2023).
- Hein, K.; Bemtgen, J. EU clean coal technology—Co-combustion of coal and biomass. Fuel Process. Technol. 1998, 54, 159–169. [Google Scholar] [CrossRef]
- McIlveen-Wright, D.R.; Huang, Y.; Rezvani, S.; Redpath, D.; Anderson, M.; Dave, A.; Hewitt, N.J. A technical and economic analysis of three large scale biomass combustion plants in the UK. Appl. Energy 2013, 112, 396–404. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Development and bottlenecks of renewable electricity generation in China: A critical review. Environ. Sci. Technol. 2013, 47, 3044–3056. [Google Scholar] [CrossRef]
- Jewell, J.; Vinichenko, V.; Nacke, L.; Cherp, A. Prospects for powering past coal. Nat. Clim. Chang. 2019, 9, 592–597. [Google Scholar] [CrossRef]
- Parraga, J.; Khalilpour, K.R.; Vassallo, A. Polygeneration with biomass-integrated gasification combined cycle process: Review and prospective. Renew. Sustain. Energy Rev. 2018, 92, 219–234. [Google Scholar] [CrossRef]
- Costa, L.; Moreau, V.; Thurm, B.; Yu, W.; Clora, F.; Baudry, G.; Warmuth, H.; Hezel, B.; Seydewitz, T.; Ranković, A. The decarbonisation of Europe powered by lifestyle changes. Environ. Res. Lett. 2021, 16, 044057. [Google Scholar] [CrossRef]
- Capstick, S.; Whitmarsh, L.; Poortinga, W.; Pidgeon, N.; Upham, P. International trends in public perceptions of climate change over the past quarter century. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 35–61. [Google Scholar] [CrossRef]
- Viola, E.; Franchini, M.; Ribeiro, T.L. Climate governance in an international system under conservative hegemony: The role of major powers. Rev. Bras. De Política Int. 2012, 55, 9–29. [Google Scholar] [CrossRef] [Green Version]
- Amorim, F.; Pina, A.; Gerbelová, H.; da Silva, P.P.; Vasconcelos, J.; Martins, V. Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling. Energy 2014, 69, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaños, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K. The human imperative of stabilizing global climate change at 1.5 C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [Green Version]
- Miguel, C.V.; Mendes, A.; Madeira, L.M. An overview of the Portuguese energy sector and perspectives for power-to-gas implementation. Energies 2018, 11, 3259. [Google Scholar] [CrossRef] [Green Version]
- Casau, M.; Cancela, D.C.; Matias, J.C.; Dias, M.F.; Nunes, L.J. Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal). Resources 2021, 10, 84. [Google Scholar] [CrossRef]
- Fernandes, U.; Costa, M. Potential of biomass residues for energy production and utilization in a region of Portugal. Biomass Bioenergy 2010, 34, 661–666. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Brito, P.; Vilarinho, C. Biomass resources in Portugal: Current status and prospects. Renew. Sustain. Energy Rev. 2017, 78, 1221–1235. [Google Scholar] [CrossRef]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Bartik, T.J. Solving the problems of economic development incentives. Growth Change 2005, 36, 139–166. [Google Scholar] [CrossRef] [Green Version]
- Hibbs, M. Minding America’s Business: The Decline and Rise of the American Economy by Ira C. Magaziner and Robert B. Reich, and The Deindustrialization of America: Plant Closings, Community Abandonment, and the Dismantling of Basic Industry by Barry Bluestone and Bennett Harrison. Challenge 1983, 26, 62–65. [Google Scholar]
- Borjas, G.J. Does immigration grease the wheels of the labor market? Brook. Pap. Econ. Act. 2001, 2001, 69–133. [Google Scholar] [CrossRef] [Green Version]
- Fougère, D.; Kramarz, F.; Pouget, J. Youth unemployment and crime in France. J. Eur. Econ. Assoc. 2009, 7, 909–938. [Google Scholar] [CrossRef]
- Ravallion, M. Growth, inequality and poverty: Looking beyond averages. World Dev. 2001, 29, 1803–1815. [Google Scholar] [CrossRef] [Green Version]
- Burchardt, T.; Le Grand, J.; Piachaud, D. Degrees of Exclusion: Developing a Dynamic, Multidimensional Measure; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Moretti, E. Local multipliers. Am. Econ. Rev. 2010, 100, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.E.; Romer, P. The Economics of Place-Making Policies. Comments and Discussion. Brook. Pap. Econ. Act. 2008, 2008, 240–253. [Google Scholar]
- Heckman, J.J.; LaLonde, R.J.; Smith, J.A. The economics and econometrics of active labor market programs. In Handbook of labor economics; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, pp. 1865–2097. [Google Scholar]
- Porter, M.E. Location, competition, and economic development: Local clusters in a global economy. Econ. Dev. Q. 2000, 14, 15–34. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Casau, M.; Matias, J.C.O.; Dias, M.F. Coal to Biomass Transition as the Path to Sustainable Energy Production: A Hypothetical Case Scenario with the Conversion of Pego Power Plant (Portugal). Appl. Sci. 2023, 13, 4349. https://doi.org/10.3390/app13074349
Nunes LJR, Casau M, Matias JCO, Dias MF. Coal to Biomass Transition as the Path to Sustainable Energy Production: A Hypothetical Case Scenario with the Conversion of Pego Power Plant (Portugal). Applied Sciences. 2023; 13(7):4349. https://doi.org/10.3390/app13074349
Chicago/Turabian StyleNunes, Leonel J. R., Margarida Casau, João C. O. Matias, and Marta Ferreira Dias. 2023. "Coal to Biomass Transition as the Path to Sustainable Energy Production: A Hypothetical Case Scenario with the Conversion of Pego Power Plant (Portugal)" Applied Sciences 13, no. 7: 4349. https://doi.org/10.3390/app13074349
APA StyleNunes, L. J. R., Casau, M., Matias, J. C. O., & Dias, M. F. (2023). Coal to Biomass Transition as the Path to Sustainable Energy Production: A Hypothetical Case Scenario with the Conversion of Pego Power Plant (Portugal). Applied Sciences, 13(7), 4349. https://doi.org/10.3390/app13074349