Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dust Source Upgrade
2.2. Focusing System Upgrade
2.3. Dust Detector Upgrade
2.4. Particle Selection Unit
2.5. Post-Stage Linac
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog–digital converters |
ASIC | Application-Specific Integrated Circuit |
CSA | Charge-sensitive amplifier |
EMC | Electromagnetic compatibility |
FPGA | Field-programmable gate array |
MOSFET | Metal-Oxide-Semiconductor Field-effect Transitor |
PSU | Particle-selection unit |
PTFE | Polytetrafluorethylen |
TTL | Transistor–Transistor Logic |
Appendix A
Material | Supplier | Shape | Composition |
---|---|---|---|
Iron | ThermoFisher | Spherical | Iron 98.19%, Carbon 0.68%, Oxygen 0.46% and Nitrogen 0.67% |
Copper | ThermoFisher | Spherical | Copper 99.9%, Sliver < 10 ppm, Al < 10 ppm, Carbon 19 ppm, Iron < 10 ppm, Nickel < 10 ppm, O2 4650 ppm, Lead < 20 ppm, Silicon < 20 ppm, Tin < 20 ppm and Zinc < 20 ppm |
References
- Ticos, C.M.; Wang, Z.H.; Wurden, G.A.; Kline, J.L.D.; Montgomery, S.; Dorf, L.A.; Shuklaand, P.K. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities. Phys. Rev. Lett. 2008, 100, 155002. [Google Scholar]
- Klein, T.; Wolf, E.; Wu, R.; Sanford, J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Menezes, V.; Takayama, K.; Ohki, T.; Gopalan, J. Laser-ablation-assisted microparticle acceleration for drug delivery. Appl. Phys. Lett. 2005, 87, 163504. [Google Scholar] [CrossRef]
- Shelton, H.; Hendricks, C.; Wuerker, R. Electrostatic acceleration of microparticles to hypervelocities. J. Appl. Phys. 1960, 31, 1243–1246. [Google Scholar] [CrossRef]
- Friichtenicht, J. Micrometeroid simulation using nuclear accelerator techniques. Nucl. Instrum. Methods 1964, 28, 70–78. [Google Scholar] [CrossRef]
- Mocker, A.; Bugiel, S.; Auer, S.; Baust, G.; Colette, A.; Drake, K.; Fiege, K.; Grün, E.; Heckmann, F.; Helfert, S.; et al. A 2 mv van de graaff accelerator as a tool for planetary and impact physics research. Rev. Sci. Instrum. 2011, 82, 095111. [Google Scholar] [CrossRef] [PubMed]
- Burchell, M.J.; Cole, M.J.; McDonnell, J.A.; Zarnecki, J.C.J. Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury. Meas. Sci. Technol. 1999, 10, 41. [Google Scholar] [CrossRef]
- Shibata, H.; Kobayashi, K.; Iwai, T.; Hamaba, Y.; Sasaki, S.; Hasegawa, S.; Yano, H.; Fujiwara, A.; Ohashi, H.; Kawamura, T.; et al. Microparticle acceleration by a Van de Graaff accelerator and application to space and material sciences. Radiat. Phys. Chem. 2001, 60, 277–282. [Google Scholar] [CrossRef]
- Shu, A.; Collette, A.; Drake, K.; Grün, E.; Horányi, M.; Kempf, S.; Mocker, A.; Munsat, T.; Northway, P.; Srama, R.; et al. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. Rev. Sci. Instrum. 2012, 83, 075108. [Google Scholar] [CrossRef]
- Wang, X.; Schwan, J.; Hsu, H.-W.; Grün, E.; Horányi, M. Dust charging and transport on airless planetary bodies. Geophys. Res. Lett. 2016, 43, 6103–6110. [Google Scholar] [CrossRef] [Green Version]
- Colwell, J.E.; Batiste, S.; Horányi, M.; Robertson, S.R.; Sture, S. Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys. 2007, 45, RG2006. [Google Scholar] [CrossRef]
- Colwell, J.E.; Robertson, S.R.; Horányi, M.; Wang, X.; Poppe, A.; Wheeler, P. Lunar dust levitation. J. Aerosp. Eng. 2009, 22, 2–9. [Google Scholar] [CrossRef]
- Horányi, M.; Szalay, J.R.; Kempf, S.; Schmidt, J.; Grün, E.; Srama, R.; Sternovsky, Z. A permanent, asymmetric dust cloud around the Moon. Nature 2015, 522, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Crawford, I.; Anand, M.; Cockell, C.; Falcke, H.; Green, D.; Jaumann, R.; Wieczorek, M. Back to the moon: The scientific rationale for resuming lunar surface exploration. Planet. Space Sci. 2012, 74, 3–14. [Google Scholar]
- Christoffersen, R.; Lindsay, J.; Noble, S.; Meador, M.; Kosmo, J.; Lawrence, J.; Brostoff, L.; Young, A.; McCue, T. Lunar Dust Effects on Spacesuit Systems-Insights from the Apollo Spacesuits. NASA/TP-2009-2014786. 2009. Available online: https://repository.hou.usra.edu/handle/20.500.11753/1329 (accessed on 19 February 2023).
- Sternovsky, Z.; Horányi, M.; Robertson, S. Charging of dust particles on surfaces. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2001, 19, 2533–2541. [Google Scholar] [CrossRef]
- Stübig, M.; Schäfer, G.; Ho, T.M.; Srama, R.; Grün, E. Laboratory simulation improvements for hypervelocity micrometeorite impacts with a new dust particle source. Planet. Space Sci. 2001, 49, 853–858. [Google Scholar] [CrossRef]
- Srama, S.; Auer, S. Low-charge detector for the monitoring of hyper-velocity micron-sized dust particles. Meas. Sci. Technol. 2008, 19, 055203. [Google Scholar] [CrossRef]
- Kelz, S.; Veigel, T.; Grözing, M.; Berroth, M. A fully differential charge-sensitive amplifier for dust-particle detectors. In Proceedings of the 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 13–16. [Google Scholar]
- Müller, W.E. Field Desorption. Phys. Rev. J. 1956, 102, 618. [Google Scholar] [CrossRef]
Previous Setup | New Setup | |
---|---|---|
Total length | 1.5 m | Up to 4.5 m |
Focusing system | Single cylinder | Einzel lens |
Acceleration voltage | Up to 20 kV | Up to 30 kV (+120 kV) |
Particle speed detection range | Above 100 m/s | 10 m/s to 10 km/s |
Test chamber | ∅ 100 mm | ∅ 100 mm and ∅ 300 mm |
Operation mode | Continuous mode | Continuous and single mode |
Parameter | Description | Value |
---|---|---|
Length × Diameter | 127 mm × 127 mm | |
Size | Reservoir | = 12 mm, length = 25 mm |
Distance (Needle-extraction hole) | 2.5–4 mm | |
Chassis | Stainless steel | |
Material | Insulators | PEEK |
Needle | Tungsten | |
HV feedthrough (40 kV) | Alumina ceramic | |
Voltage | Needle | 0–30 kV, fixed |
Reservoir | same as needle, pulsed | |
Pulses | Duration | 1–255 ms, adjustable |
Repetition | 1–255 ms, adjustable |
Lens | Focusing Voltage | Acceleration Voltage | Focal Length |
---|---|---|---|
10 kV | 15 kV | beyond beam (5 m) | |
10.745 kV | 15 kV | 3000 mm | |
Einzel lens | 10.94 kV | 15 kV | 1500 mm |
11 kV | 15 kV | 1327 mm | |
12 kV | 15 kV | 467 mm | |
10 kV | 15 kV | beyond beam (5 m) | |
11 kV | 15 kV | beyond beam (5 m) | |
Single-cylinder | 11.15 kV | 15 kV | 3000 mm |
11.18 kV | 15 kV | 1500 mm | |
12 kV | 15 kV | 250 mm |
Material | Supplier | , kV | Event Number | Grain Size, m | Velocity, m/s |
---|---|---|---|---|---|
Iron | ThermoFisher | 7–20 | 16,218 | 0.02–10 | 11–7140 |
Copper | ThermoFisher | 9–12 | 20,081 | 0.02–10 | 12–6667 |
Carbon | ThermoFisher | 3–12 | 2570 | 0.4–12 | 10–1530 |
SiO2 1 | Dr. V. Steck 2 | 3–9 | 810 | 0.4–0.9 | 10–1470 |
Peridot 3 | Dr. J. Hiller 2 | 15 | 761 | 0.7–3 | 17–939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bauer, M.; Kelz, S.; Strack, H.; Simolka, J.; Mazur, C.; Sommer, M.; Mocker, A.; Srama, R. Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Appl. Sci. 2023, 13, 4441. https://doi.org/10.3390/app13074441
Li Y, Bauer M, Kelz S, Strack H, Simolka J, Mazur C, Sommer M, Mocker A, Srama R. Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Applied Sciences. 2023; 13(7):4441. https://doi.org/10.3390/app13074441
Chicago/Turabian StyleLi, Yanwei, Marcel Bauer, Sebastian Kelz, Heiko Strack, Jonas Simolka, Christian Mazur, Maximilian Sommer, Anna Mocker, and Ralf Srama. 2023. "Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart" Applied Sciences 13, no. 7: 4441. https://doi.org/10.3390/app13074441
APA StyleLi, Y., Bauer, M., Kelz, S., Strack, H., Simolka, J., Mazur, C., Sommer, M., Mocker, A., & Srama, R. (2023). Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Applied Sciences, 13(7), 4441. https://doi.org/10.3390/app13074441