UAV Hyperspectral Characterization of Vegetation Using Entropy-Based Active Sampling for Partial Least Square Regression Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
- At time zero, i.e., when just one image is available:
- a.
- Consider each plot of the field as cluster and make the spatial average for each spectral band;
- b.
- Calculate the histogram considering all the elements of the average spectral response starting from one randomly selected plot. Calculate the entropy of the histogram according to Equation (1);
- c.
- Add another plot to the dataset by appending its (average) spectral response to the vector constituted by the one of the first plot. Calculate the new histogram and its entropy ;
- d.
- If mark the plot as informative and continue by adding new plots to the dataset without deleting those marked as not informative. The plots marked as informative will be sampled to retrieve model calibration data.
- Use ground data collected with the above procedure to calculate the linear correlation with each spectral band.
- When a new acquisition becomes available, repeat the procedure described at Point 1, this time using only the spectral features showing significant correlation with ground data (see point 2) for histograms calculation. A reasonable threshold to select features showing at least moderate correlation can be set to 0.4 [32]. All the available data should be used for samples selection. In other words, the new clusters should be appended to those already available from time zero in order to set-up an incremental sampling framework. This growing vector is the one used for entropy calculation at each iteration.
- As the number of flights increases, the linear correlation analysis between the different spectral features and ground data continues to modulate the active sampling procedure. In this case, the computation of histograms will consider only the features showing, on average, a linear correlation coefficient higher than 0.4.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Verdouw, C.; Beulens, A.; Reijers, H.; van der Vorst, J. A control model for object virtualization in supply chain management. Comput. Ind. 2015, 68, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Ranghetti, M.; Boschetti, M.; Ranghetti, L.; Tagliabue, G.; Panigada, C.; Gianinetto, M.; Verrelst, J.; Candiani, G. Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling. Eur. J. Remote. Sens. 2022. [Google Scholar] [CrossRef]
- Sousa, J.J.; Toscano, P.; Matese, A.; Di Gennaro, S.F.; Berton, A.; Gatti, M.; Poni, S.; Pádua, L.; Hruška, J.; Morais, R.; et al. UAV-Based Hyperspectral Monitoring Using Push-Broom and Snapshot Sensors: A Multisite Assessment for Precision Viticulture Applications. Sensors 2022, 22, 6574. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F.; Orlandi, G.; Gatti, M.; Poni, S. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery. Front. Plant Sci. 2022, 13, 898722. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Becker, R.; Wichern, F.; Kooistra, L. Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral Imagery—Active Sample Selection for Model Transfer. Drones 2022, 6, 73. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 7155. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.; Corsi, F.; van Wieren, S.E.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 414–424. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.; Cho, M.; Mathieu, R.; Heitkönig, I.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 27–40. [Google Scholar] [CrossRef]
- Yi, Q.; Jiapaer, G.; Chen, J.; Bao, A.; Wang, F. Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J. Photogramm. Remote Sens. 2014, 91, 72–84. [Google Scholar] [CrossRef]
- Tuia, D.; Persello, C.; Bruzzone, L. Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances. IEEE Geosci. Remote Sens. Mag. 2016, 4, 41–57. [Google Scholar] [CrossRef]
- Berger, K.; Caicedo, J.R.; Martino, L.; Wocher, M.; Hank, T.; Verrelst, J. A survey of active learning for quantifying vegetation traits from terrestrial earth observation data. Remote Sens. 2021, 13, 287. [Google Scholar] [CrossRef]
- He, T.; Zhang, S.; Xin, J.; Zhao, P.; Wu, J.; Xian, X.; Li, C.; Cui, Z. An Active Learning Approach with Uncertainty, Representativeness, and Diversity. Sci. World J. 2014, 2014, 827586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Zhang, J.; Li, T.; Zhang, Y. Incorporating Diversity into Self-Learning for Synergetic Classification of Hyperspectral and Panchromatic Images. Remote Sens. 2016, 8, 804. [Google Scholar] [CrossRef] [Green Version]
- Douak, F.; Melgani, F.; Benoudjit, N. Kernel ridge regression with active learning for wind speed prediction. Appl. Energy 2013, 103, 328–340. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, Z.; Zhang, K.; Li, D.; Ma, Q. Application of Active Learning in Carbonate Lithologic Identification. In Proceedings of the 4th International Conference on Artificial Intelligence and Big Data, Chengdu, China, 28–31 May 2021; pp. 404–408. [Google Scholar] [CrossRef]
- Demir, B.; Persello, C.; Bruzzone, L. Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014–1031. [Google Scholar] [CrossRef] [Green Version]
- Kira, O.; Linker, R.; Gitelson, A. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 251–260. [Google Scholar] [CrossRef]
- Pan, W.-J.; Wang, X.; Deng, Y.-R.; Li, J.-H.; Chen, W.; Chiang, J.Y.; Yang, J.-B.; Zheng, L. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Sci. Rep. 2015, 5, 11108. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.-Q.; Zhao, Y.-R.; Zhu, F.-L.; Li, X.-L.; He, Y. Mapping of Chlorophyll and SPAD Distribution in Pepper Leaves During Leaf Senescence Using Visible and Near-Infrared Hyperspectral Imaging. Trans. ASABE 2016, 59, 13–24. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Suomalainen, J.; Anders, N.; Iqbal, S.; Roerink, G.; Franke, J.; Wenting, P.; Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L. A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles. Remote Sens. 2014, 6, 11013–11030. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating plant traits of grasslands from uav-acquired hyperspectral images: A comparison of statistical approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Patra, S.; Bruzzone, L. A Fast Cluster-Assumption Based Active-Learning Technique for Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1617–1626. [Google Scholar] [CrossRef]
- Neter, J.; Wasserman, W.; Whitmore, G.A. Applied Statistics, 4th ed.; Allyn & Bacon: Boston, MA, USA, 2000. [Google Scholar]
- Profillidis, V.; Botzoris, G. Statistical Methods for Transport Demand Modeling. In Modeling of Transport Demand; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–224. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 574–583. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de la Haute Resolution Spectrale pour Suivre L’etat des Couverts Vegetaux. In Spectral Signatures of Objects in Remote Sensing; European Space Agency: Paris, France, 1988; 279p. [Google Scholar]
- Curran, P.J.; Windham, W.R.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiol. 1995, 15, 203–206. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E., III. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Jurgens, C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens. 1997, 18, 3583–3594. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Water Content in Eucalyptus Leaves. Aust. J. Bot. 1999, 47, 909–923. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Q.; Pu, R.; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat. Sensors 2014, 14, 20347–20359. [Google Scholar] [CrossRef] [Green Version]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; Alessio, P. Angular Dependence of Maize and Sugar Beet VIs from Directional CHRIS/Proba Data. In Proceedings of the 4th ESA CHRIS PROBA Workshop, online, 19–21 September 2006; pp. 19–21. [Google Scholar]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Gonenc, A.; Ozerdem, M.S.; Acar, E. Comparison of NDVI and RVI Vegetation Indices Using Satellite Images. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. Compr. Anal. Chem. 2018, 82, 265–299. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction error estimation: A comparison of resampling methods. Bioinformatics 2005, 21, 3301–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Lin, C.-T.; Huang, J. Active learning for regression using greedy sampling. Inf. Sci. 2019, 474, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the Biomass of Maize with Hyperspectral and LiDAR Data. Remote Sens. 2016, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.A.; Näsi, R.; Niemeläinen, O.; Nyholm, L.; Alhonoja, K.; Kaivosoja, J.; Jauhiainen, L.; Viljanen, N.; Nezami, S.; Markelin, L.; et al. Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens. Environ. 2020, 246, 111830. [Google Scholar] [CrossRef]
- Tian, Q.; Gong, P.; Zhao, C.; Guo, X. A feasibility study on diagnosing wheat water status using spectral reflectance. Chin. Sci. Bull. 2001, 46, 666–669. [Google Scholar] [CrossRef]
- Zhao, H.-S.; Zhu, X.-C.; Li, C.; Wei, Y.; Zhao, G.-X.; Jiang, Y.-M. Improving the Accuracy of the Hyperspectral Model for Apple Canopy Water Content Prediction using the Equidistant Sampling Method. Sci. Rep. 2017, 7, 11192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verrelst, J.; Berger, K.; Rivera-Caicedo, J.P. Intelligent Sampling for Vegetation Nitrogen Mapping Based on Hybrid Machine Learning Algorithms. IEEE Geosci. Remote Sens. Lett. 2020, 18, 2038–2042. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, Q. Evaluation of informative bands used in different pls regressions for estimating leaf biochemical contents from hyperspectral reflectance. Remote Sens. 2019, 11, 197. [Google Scholar] [CrossRef] [Green Version]
- Afanador, N.; Tran, T.; Buydens, L. An assessment of the jackknife and bootstrap procedures on uncertainty estimation in the variable importance in the projection metric. Chemom. Intell. Lab. Syst. 2014, 137, 162–172. [Google Scholar] [CrossRef]
- Schucknecht, A.; Seo, B.; Krämer, A.; Asam, S.; Atzberger, C.; Kiese, R. Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data—A comparison of sensors, algorithms, and predictor sets. Biogeosciences 2022, 19, 2699–2727. [Google Scholar] [CrossRef]
Index | Full Name | Formula | Reference |
---|---|---|---|
102 | Green normalized difference vegetation index | [8] | |
103 | Green normalized difference vegetation index | [8] | |
104 | Renormalized difference vegetation index | [34] | |
105 | Red edge Position Index | [35] | |
106 | Red edge Position Index | [36] | |
107 | MERIS terrestrial chlorophyll index | [37] | |
108 | Modified chlorophyll absorption ratio index | [38] | |
109 | Modified Chlorophyll Absorption Reflectance Index/Optimized Soil Adjusted Vegetation Index | [33] | |
110 | Transformed Chlorophyll Absorption Ratio Optimized Soil Adjusted Vegetation Index | [33] | |
111 | Transformed Chlorophyll Absorption Ratio | [38] | |
112 | Modified Chlorophyll Absorption Ratio Index | [39] | |
113 | Modified Chlorophyll Absorption Reflectance Index/Optimized Soil Adjusted Vegetation Index | [39] | |
114 | Transformed Chlorophyll Absorption Ratio | [40] | |
115 | Transformed Chlorophyll Absorption Ratio/Optimized Soil Adjusted Vegetation Index | [39] | |
116 | Chlorophyll index red edge | [33] | |
117 | Chlorophyll index green | [33] | |
118 | Normalized Difference Vegetation Index | [7] | |
119 | Normalized Difference Vegetation Index | [7] | |
120 | Normalized Difference Vegetation Index | [7] | |
121 | Modified Normalized Difference Vegetation Index | [41] | |
122 | Soil Adjusted Vegetation Index | [42] | |
123 | Renormalized Difference Vegetation Index | [40] | |
124 | Normalized Difference Red Edge Index | [43] | |
125 | Normalized Difference Red Edge Index | [8] | |
126 | NIR—red edge—red normalized difference vegetation index | [8] | |
127 | Transformed Vegetation Index | [44] | |
128 | Modified triangular vegetation index | [8] | |
129 | Enhanced Vegetation Index | [43] | |
130 | Enhanced Vegetation Index | [8] | |
131 | Leaf Chlorophyll Index | [45] | |
132 | Modified Normalized Difference Vegetation Index | [8] | |
133 | Nitrogen Reflectance Index | [46] | |
134 | Photochemical Reflectance Index | [47] | |
135 | Spectral Polygon Vegetation Index | [48] | |
136 | Simple Ratio | [49] | |
137 | Simple Ratio | [49] | |
138 | Ratio Vegetation Index | [50] | |
139 | Vogelmann Index | [51] | |
140 | Gitelson and Merzlyak index | [8] | |
141 | Modified normalized difference | [8] |
Proposed | Random Sampling | GSx | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | Total | (t/ha) | (t/ha) | RMSEmax (t/ha) | RMSEmean (t/ha) | RMSE (t/ha) | Mmean (t/ha) |
48 | 48 | 0.14 | na | 9.93 | 2.70 | 0.14 | 33.5 | ||||
48 | 27 | 75 | 4.97 | 62.3 | 5.55 | 3.77 | 3.91 | 16.2 | |||
48 | 27 | 28 | 103 | 2.07 | 196 | 4.70 | 2.38 | 2.39 | 11.0 | ||
48 | 27 | 28 | 24 | 127 | 1.38 | 20.9 | 2.83 | 2.26 | 1.35 | 10.2 | |
48 | 27 | 28 | 24 | 21 | 148 | 1.69 | 11.7 | 3.55 | 2.70 | 2.03 | 9.50 |
Proposed | Random Sampling | GSx | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | Total | RMSE (kg/ha) | RMSE* (kg/ha) | RMSE (t/ha) | RMSEmax (kg/ha) | RMSEmean (kg/ha) | RMSE (kg/ha) | Nmean (kg/ha) |
47 | 47 | 1.10 | 2.96 | na | 13.4 | 4.96 | 1.70 | 43.4 | ||||
47 | 27 | 74 | 8.84 | 7.22 | 93.1 | 9.71 | 7.03 | 8.74 | 37.2 | |||
47 | 27 | 28 | 102 | 4.63 | 2.65 | 265 | 7.67 | 4.71 | 3.87 | 23.8 | ||
47 | 27 | 28 | 26 | 128 | 6.87 | 6.16 | 48.8 | 10.8 | 7.93 | 5.82 | 29.8 | |
47 | 27 | 28 | 26 | 20 | 148 | 4.56 | 4.43 | 56.5 | 10.5 | 7.34 | 6.99 | 23.8 |
Dry Mass | Nitrogen | |||
---|---|---|---|---|
NVIP | VIP | NVIP | VIP | |
D1 | 7 | B112 (0.780), B113 (0.742), B114 (0.633), B115 (0.439), B127 (0.439), B128 (0.474), B135 (0.591) | 8 | B100 (0.732), B101 (0.754), B109 (−0.293), B112 (0.626), B113 (0.667), B114 (0.901), B115 (0.802), B127 (0.610) |
D2 | 5 | B101 (0.158), B112 (0.065), B113 (0.115), B115 (0.266), B127 (0.333) | 9 | B65 (0.685), B99 (0.343), B100 (0.130), B101 (0.182), B112 (0.135), B113 (0.263), B114 (0.253), B115 (0.345), B127 (0.519) |
D3 | 9 | B63 (0.774), B64 (0.699), B108 (0.028), B109 (−0.134), B112 (0.432), B113 (0.358), B114 (−0.543), B115 (−0.427), B127 (0.183) | 11 | B63 (0.780), B64 (0.767), B69 (0.719), B100 (0.255), B108 (−0.080), B109 (−0.242), B112 (0.526), B113 (0.441), B114 (−0.381), B115 (−0.243), B127 (0.232) |
D4 | 9 | B63 (0.545), B64 (0.588), B108 (0.249), B109 (0.192), B112 (0.728). B113 (0.726), B114 (0.134), B115 (0.085), B127 (0.658) | 10 | B63 (0.435), B64 (0.477), B69 (0.527), B108 (0.136), B109 (0.080), B112 (0.669), B113 (0.661), B114 (0.233), B115 (0.187), B127 (0.579) |
D5 | 9 | B63 (0.474), B64 (0.469), B108 (0.189), B109 (0.124), B112 (0.287). B113 (0.259), B114 (−0.168), B115 (−0.232), B127 (0.215) | 11 | B57 (0.278), B58 (0.420), B63 (0.547), B64 (0.538), B108 (0.253), B109 (0.190), B112 (0.340), B113 (0.317), B114 (−0.211), B115 (−0.280), B127 (0.280) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amitrano, D.; Cicala, L.; De Mizio, M.; Tufano, F. UAV Hyperspectral Characterization of Vegetation Using Entropy-Based Active Sampling for Partial Least Square Regression Models. Appl. Sci. 2023, 13, 4812. https://doi.org/10.3390/app13084812
Amitrano D, Cicala L, De Mizio M, Tufano F. UAV Hyperspectral Characterization of Vegetation Using Entropy-Based Active Sampling for Partial Least Square Regression Models. Applied Sciences. 2023; 13(8):4812. https://doi.org/10.3390/app13084812
Chicago/Turabian StyleAmitrano, Donato, Luca Cicala, Marco De Mizio, and Francesco Tufano. 2023. "UAV Hyperspectral Characterization of Vegetation Using Entropy-Based Active Sampling for Partial Least Square Regression Models" Applied Sciences 13, no. 8: 4812. https://doi.org/10.3390/app13084812
APA StyleAmitrano, D., Cicala, L., De Mizio, M., & Tufano, F. (2023). UAV Hyperspectral Characterization of Vegetation Using Entropy-Based Active Sampling for Partial Least Square Regression Models. Applied Sciences, 13(8), 4812. https://doi.org/10.3390/app13084812