Drug–Target Interaction Deep Learning-Based Model Identifies the Flavonoid Troxerutin as a Candidate TRPV1 Antagonist
Abstract
:1. Introduction
2. Materials and Methods
2.1. MT-DTI Model and TRPV1 Inhibitor Hit Prediction
2.2. Cell Culture and Measurement of Intracellular Calcium Influx in TRPV1-Overexpressing HEK293T Cells
2.3. Structural Modeling and Docking Analysis of Troxerutin
2.4. Clinical Evaluation of the Skin-Soothing Effect of Troxerutin
2.5. Immediate Soothing Effect Evaluation in Human Application
2.6. Statistical Analysis
3. Results
3.1. TRPV1 Antagonist Hit Prediction and Compound Selection
3.2. Antagonism of Troxerutin on Calcium Influx in TRPV1-Overexpressing HEK293T Cells
3.3. Structural Modeling and Docking Poses of Troxerutin Compared to JTS-653
3.4. Soothing Effect of Troxerutin on Skin Irritation Stimulated by Capsaicin
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caterina, M.J.; Julius, D. The vanilloid receptor: A molecular gateway to the pain pathway. Annu. Rev. Neurosci. 2001, 24, 487–517. [Google Scholar] [CrossRef]
- Brito, R.; Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. TRPV1: A potential drug target for treating various diseases. Cells 2014, 3, 517–545. [Google Scholar] [CrossRef]
- Aghazadeh Tabrizi, M.; Baraldi, P.G.; Baraldi, S.; Gessi, S.; Merighi, S.; Borea, P.A. Medicinal chemistry, pharmacology, and clinical implications of TRPV1 receptor antagonists. Med. Res. Rev. 2017, 37, 936–983. [Google Scholar] [CrossRef]
- Bagood, M.D.; Isseroff, R.R. TRPV1: Role in skin and skin diseases and potential target for improving wound healing. Int. J. Mol. Sci. 2021, 22, 6135. [Google Scholar] [CrossRef]
- Wallace, M.; Pappagallo, M. Qutenza®: A capsaicin 8% patch for the management of postherpetic neuralgia. Expert Rev. Neurother. 2011, 11, 15–27. [Google Scholar] [CrossRef]
- Damann, N.; Bahrenberg, G.; Stockhausen, H.; Habermann, C.J.; Lesch, B.; Frank-Foltyn, R.; Lee, J.; Ann, J.; Christoph, T. In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) inhibitor GRTE16523. Eur. J. Pharmacol. 2020, 871, 172934. [Google Scholar] [CrossRef]
- Koivisto, A.P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov. 2022, 21, 41–59. [Google Scholar] [CrossRef]
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules 2020, 25, 5277. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Zang, Q.; Mansouri, K.; Williams, A.J.; Judson, R.S.; Allen, D.G.; Casey, W.M.; Kleinstreuer, N.C. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J. Chem. Inf. Model. 2017, 57, 36–49. [Google Scholar] [CrossRef]
- Park, J.; Beck, B.R.; Kim, H.H.; Lee, S.; Kang, K. A brief review of machine learning-based bioactive compound research. Appl. Sci. 2022, 12, 2906. [Google Scholar] [CrossRef]
- Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020, 18, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Shin, B.; Kang, K.; Park, S.; Beck, B.R. Target-centered drug repurposing predictions of human angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine Subtype 2 (TMPRSS2) interacting approved drugs for coronavirus disease 2019 (COVID-19) treatment through a drug-target interaction deep learning model. Viruses 2020, 12, 1325. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xu, Y.; Rui, L.; Gao, S.; Dong, H.; Guo, Q. Liquid chromatography/tandem mass spectrometry assay for the quantification of troxerutin in human plasma. Rapid Commun. Mass Spectrom. 2006, 20, 3522–3526. [Google Scholar] [CrossRef]
- Tanoli, Z.; Alam, Z.; Vähä-Koskela, M.; Ravikumar, B.; Malyutina, A.; Jaiswal, A.; Tang, J.; Wennerberg, K.; Aitokallio, T. Drug Target Commons 2.0: A community platform for systematic analysis of drug–target interaction profiles. Database 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of Open Natural Products database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef]
- Shin, B.; Park, S.; Kang, K.; Ho, J.C. Self-attention based molecule representation for predicting drug-target interaction. Proc. Mach. Learn. Res. 2019, 106, 230–248. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.Z.; Colton, C.K.; Wood, J.D.; Zhu, M.X. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. J. Biol. Chem. 2004, 279, 37423–37430. [Google Scholar] [CrossRef]
- Woo, D.H.; Jung, S.J.; Zhu, M.H.; Park, C.K.; Kim, Y.H.; Oh, S.B.; Lee, C.J. Direct activation of transient receptor potential vanilloid 1 (TRPV1) by diacylglycerol (DAG). Mol. Pain 2008, 4, 1744–8069. [Google Scholar] [CrossRef]
- Kueper, T.; Krohn, M.; Haustedt, L.O.; Hatt, H.; Schmaus, G.; Vielhaber, G. Inhibition of TRPV1 for the treatment of sensitive skin. Exp. Dermatol. 2010, 19, 980–986. [Google Scholar] [CrossRef]
- Huang, J.; Ding, L.; Shi, D.; Hu, J.H.; Zhu, Q.G.; Gao, S.; Qiu, L. Transient receptor potential vanilloid-1 participates in the inhibitory effect of ginsenoside Rg1 on capsaicin-induced interleukin-8 and prostaglandin E2 production in HaCaT cells. J. Pharm. Pharmacol. 2012, 64, 252–258. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Miyai, A.; Usui, K.; Hamada, Y.; Deai, K.; Wada, M.; Koga, Y.; Sakata, M.; Hayashi, M.; Tominaga, M.; et al. Pharmacological characterization of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel transient receptor potential vanilloid 1 antagonist. J. Pharmacol. Exp. Ther. 2012, 342, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016, 534, 347–351. [Google Scholar] [CrossRef]
- Nadezhdin, K.D.; Neuberger, A.; Nikolaev, Y.A.; Murphy, L.A.; Gracheva, E.O.; Bagriantsev, S.N.; Sobolevsky, A.I. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nat. Commun. 2021, 12, 2154. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhou, Q.; Liang, Q.; Qiao, Z.; Liu, Y.; Shao, L.; Wang, K. Identification of a partial and selective TRPV1 agonist CPIPC for alleviation of inflammatory pain. Molecules 2022, 27, 5428. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.; Ubeaud, G.; Walter, T.; Sturm, F.; Jung, L. Free radical scavenging and skin penetration of troxerutin and vitamin derivatives. J. Dermatolog. Treat. 2002, 13, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Noroozi, E.; Javadi, A.; Badalzadeh, R. Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed. Pharmacother. 2018, 102, 385–391. [Google Scholar] [CrossRef]
- Raja, B.; Saranya, D.; Prabhu, R. Role of flavonoid troxerutin on blood pressure, oxidative stress and regulation of lipid metabolism. Front. Biosci. (Elite Ed.) 2019, 11, 121–129. [Google Scholar] [CrossRef]
- Vidhya, R.; Anuradha, C.V. Anti-inflammatory effects of troxerutin are mediated through elastase inhibition. Immunopharmacol. Immunotoxicol. 2020, 42, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Z.; Mohammadinejad, R.; Roomiani, S.; Afshar, E.G.; Ashrafizadeh, M. Biological and therapeutic effects of troxerutin: Molecular signaling pathways come into view. J. Pharmacopunct. 2021, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, M.; Guan, X.; Yin, L.; Sun, Y.; Fawcett, J.P.; Gu, J. LC–MS–MS determination of troxerutin in plasma and its application to a pharmacokinetic study. Chromatographia 2011, 73, 165–169. [Google Scholar] [CrossRef]
- Fleming, N. How artificial intelligence is changing drug discovery. Nature 2018, 557, S55–S57. [Google Scholar] [CrossRef]
- Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of molecules via deep reinforcement learning. Sci. Rep. 2019, 9, 10752. [Google Scholar] [CrossRef]
- Park, S.; Ko, Y.H.; Lee, B.; Shin, B.; Beck, B.R. Abstract 35: Molecular optimization of phase III trial failed anticancer drugs using target affinity and toxicity-centered multiple properties reinforcement learning. Clin. Cancer Res. 2020, 26, 35. [Google Scholar] [CrossRef]
Name | CAS No. | SMILES | Molecular Weight (g/mol) |
---|---|---|---|
SB452533 | 459429-39-1 | O=C(NCCN(CC)C1=CC=CC(C)=C1)NC2=CC=CC=C2Br | 376.29 |
JTS-653 | 942614-99-5 | OC[C@@H]1N(C(N=C2)=CC=C2C)C3=CC=CC(C(NC(C=C4)=CN=C4OCC(F)(F)F)=O)=C3OC1 | 474.43 |
Mavatrep (JNJ-39439335) | 956274-94-5 | OC(C)(C)C1=CC=CC=C1C2=CC=C3N=C(/C=C/C4=CC=C(C(F)(F)F)C=C4)NC3=C2 | 422.44 |
Vehicle | 10% Troxerutin | 1% Troxerutin |
---|---|---|
Water | Water | Water |
Pemulen TR2 | Pemulen TR2 | Pemulen TR2 |
Cetiol C5C | Cetiol C5C | Cetiol C5C |
DPG-FG | DPG-FG | DPG-FG |
Tris Amino Ultra PC | Tris Amino Ultra PC | Tris Amino Ultra PC |
Activonol-6 | Activonol-6 | Activonol-6 |
Sepimax Zen | Sepimax Zen | Sepimax Zen |
- | Troxerutin (10%) | Troxerutin (1%) |
COCONUT ID | Chemical Name | SMILES | TRPV1 Predicted KD (nM) | TRPV1 Predicted IC50 (nM) | Group | Similarity Score |
---|---|---|---|---|---|---|
CNP0145155 | Karamomycin C | COc1cc(C2=NC (C3SCC4C5SCC(C)(C(=O)N43)N5C)CS2)c(O)c2ccccc12 | 43.65 | 397.84 | SB 452533 | 0.344 |
CNP0303130 | Amamistatin A | CCCCCCCC(OC(=O)C (CCCCN(O)C=O)NC(=O)c1nc(-c2cc(OC)ccc2O)oc1C)C(C)(C)C(=O)NC1CCCCN(O)C1=O | 55.14 | 256.21 | JTS-653 | 0.301 |
CNP0115741 | Fdm E | CC=CC=Cc1cc2cc3c(c(O)c2c(=O)[nH]1)C1(CC3)C(=O)C(=O)c2c(c(O)c3c(O)c(OC)cc(O)c3c2O)C1=O | 130.34 | 2011.20 | JTS-653 | 0.301 |
CNP0150586 | Troxerutin | CC1OC(OCC2OC(Oc3c(-c4ccc(OCCO)c(OCCO)c4)oc4cc(OCCO)cc(O)c4c3=O)C(O)C(O)C2O)C(O)C(O)C1O | 140.08 | 582.73 | JTS-653 | 0.333 |
CNP0322312 | Fdm A | CC=CC=Cc1cc2cc3c(c(O)c2c(=O)[nH]1)C1(CC3)C(=O)c2c(O)c3c(c(O)c2C1=O)C(=O)C(OC)=CC3=O | 164.37 | 2727.29 | JTS-653 | 0.359 |
CNP0273385 | Plagiochin B | COc1ccc2c(c1)CCc1ccc(cc1)Oc1cc(cc(O)c1O)CCc1cc(O)ccc1-2 | 42.62 | 164.76 | Mavatrep | 0.324 |
CNP0237220 | Dragmacidin D | CC(C1=CNC(N)N1)c1ccc(O)c2[nH]cc(-c3cnc(-c4c[nH]c5cc(Br)ccc45)c(=O)[nH]3)c12 | 11.83 | 29.34 | No group | |
CNP0295233 | Dictazoline B | CN1C(=N)N(C)C2(C1=O)c1[nH]c3cc(Br)ccc3c1CC1(NC(N)=NC1=O)C2c1c[nH]c2cc(Br)ccc12 | 20.65 | 317.72 | No group | |
CNP0121123 | Cryptophycin C | COc1ccc(CC2NC(=O)C=CCC(C(C)C=Cc3ccccc3)OC(=O)C (CC(C)C)OC(=O)C(C)CNC2=O)cc1Cl | 32.90 | 217.69 | No group | |
CNP0295527 | Eusynstyelamide D | NCCCCNC(=O)C1(O)C(c2c[nH]c3cc(Br)ccc23)C(O)(Cc2c[nH]c3cc(Br)ccc23)C(=O) N1CCCCN | 142.69 | 278.27 | No group |
Chemical Name | Docking Score | mmGBSA ΔG Binding Free Energy |
---|---|---|
Troxerutin | −6.234 | −46.90 |
JTS-653 | −8.010 | −69.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yoon, H.; Lee, Y.J.; Kim, T.-Y.; Bahn, G.; Kim, Y.-h.; Lim, J.-M.; Park, S.-W.; Song, Y.-S.; Kim, M.-S.; et al. Drug–Target Interaction Deep Learning-Based Model Identifies the Flavonoid Troxerutin as a Candidate TRPV1 Antagonist. Appl. Sci. 2023, 13, 5617. https://doi.org/10.3390/app13095617
Lee J, Yoon H, Lee YJ, Kim T-Y, Bahn G, Kim Y-h, Lim J-M, Park S-W, Song Y-S, Kim M-S, et al. Drug–Target Interaction Deep Learning-Based Model Identifies the Flavonoid Troxerutin as a Candidate TRPV1 Antagonist. Applied Sciences. 2023; 13(9):5617. https://doi.org/10.3390/app13095617
Chicago/Turabian StyleLee, Jinyong, Hyunjun Yoon, Youn Jung Lee, Tae-Yoon Kim, Gahee Bahn, Young-heon Kim, Jun-Man Lim, Sang-Wook Park, Young-Sook Song, Mi-Sun Kim, and et al. 2023. "Drug–Target Interaction Deep Learning-Based Model Identifies the Flavonoid Troxerutin as a Candidate TRPV1 Antagonist" Applied Sciences 13, no. 9: 5617. https://doi.org/10.3390/app13095617