The Ultrasound Signal Processing Based on High-Performance CORDIC Algorithm and Radial Artery Imaging Implementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radial Artery Ultrasound Imaging System
2.2. Ultrasound Signal Processing
2.2.1. Dynamic Filtering Module Based on the Radix-4 CORDIC Algorithm
2.2.2. Quadrature Demodulation Module Based on the Partitioned-Hybrid CORDIC Algorithm
2.2.3. Dynamic Range Transformation Module Based on the Improved Scale-Free CORDIC Algorithm
3. Results and Discussions
3.1. Experimental Setup
3.2. Accuracy Verification of CORDIC Algorithm
3.2.1. Dynamic Filtering
3.2.2. Quadrature Demodulation
- During the FPGA simulation, 16-bit wide data is used that can be accurately represented in MATLAB. This process introduces quantization errors, especially in the quantization of the calibration factor, which can have a large impact on the final results.
- The number of pipeline stages is limited. Considering the complexity of programming and the consumption of internal resources of the FPGA, the number of pipeline stages is 7, which affects the accuracy to some extent.
Input Value | Theoretical Value | Partitioned-Hybrid CORDIC Value | Absolute Value |
---|---|---|---|
1 | 1.0000 | 0.9946 | 5.4 × 10−3 |
2 | 1.4142 | 1.4047 | 9.5 × 10−3 |
3 | 1.7321 | 1.7402 | 8.1 × 10−3 |
4 | 2.0000 | 1.9959 | 4.1 × 10−3 |
5 | 2.2361 | 2.2322 | 3.9 × 10−3 |
6 | 2.4495 | 2.4581 | 8.6 × 10−3 |
7 | 2.6458 | 2.6426 | 3.2 × 10−3 |
8 | 2.8284 | 2.8352 | 6.8 × 10−3 |
3.2.3. Dynamic Range Transformation
3.2.4. FPGA Simulation and Testing
3.3. Validation of CORDIC Algorithm
Characteristic (Unit) | Number or Mean ± SD |
---|---|
Number (n) | 20 |
Age (year) | 30 ± 5.8 |
BMI (kg/m2) | 21.2 ± 1.4 |
Bpsystolic (mmHg) | 121.0 ± 6.3 |
Bpdiastolic (mmHg) | 71.0 ± 6.2 |
Heart Rate (beats/min) | 71.2 ± 5.6 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Lin, L.; Zhang, L.; Xu, R.; Chen, X.; Ji, J.; Li, Y. Long noncoding RNA p21 enhances autophagy to alleviate endothelial progenitor cells damage and promote endothelial repair in hypertension through SESN2/AMPK/TSC2 pathway. Pharmacol. Res. 2021, 173, 105920. [Google Scholar]
- Shuna, S.; Zhensu, S.H.E. A new interpretation of TCM pulse diagnosis based on quantum physical model of the human body. Digit. Chin. Med. 2022, 5, 360–366. [Google Scholar]
- Nie, J.; Zhang, L.; Liu, J.; Wang, Y. Pulse taking by a piezoelectric film sensor via mode energy ratio analysis helps identify pregnancy status. IEEE J. Biomed. Health Inform. 2021, 26, 2116–2123. [Google Scholar]
- Wang, P.; Zuo, W.; Zhang, H.; Zhang, D. Design and implementation of a multi-channel pulse signal acquisition system. In Proceedings of the 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China, 16–18 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1063–1067. [Google Scholar]
- Guo, C.; Jiang, Z.; He, H.; Liao, Y.; Zhang, D. Wrist pulse signal acquisition and analysis for disease diagnosis: A review. Comput. Biol. Med. 2022, 143, 105312. [Google Scholar]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar]
- Kang, X.; Zhang, J.; Shao, Z.; Wang, G.; Geng, X.; Zhang, Y.; Zhang, H. A Wearable and Real-Time Pulse Wave Monitoring System Based on a Flexible Compound Sensor. Biosensors 2022, 12, 133. [Google Scholar]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—Past and present. Electronics 2014, 3, 282–302. [Google Scholar]
- Chlupáč, J.; Filova, E.; Bačáková, L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol. Res. 2009, 58 (Suppl. 2), S119–S139. [Google Scholar] [CrossRef]
- Ban, Y.; Wang, Y.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. 2D/3D multimode medical image alignment based on spatial histograms. Appl. Sci. 2022, 12, 8261. [Google Scholar]
- Zhang, X.; Xu, Y.; Wang, N.; Jiao, Y.; Cui, Y. A Novel Approach to Tele-Ultrasound Imaging: Compressive Beamforming in Fourier Domain for Ultrafast Ultrasound Imaging. Appl. Sci. 2023, 13, 3127. [Google Scholar]
- Noble, J.A.; Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging 2006, 25, 987–1010. [Google Scholar] [PubMed]
- Feng, H.; Yang, B.; Wang, J.; Liu, M.; Yin, L.; Zheng, W.; Yin, Z.; Liu, C. Identifying Malignant Breast Ultrasound Images Using ViT-Patch. Appl. Sci. 2023, 13, 3489. [Google Scholar]
- Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Yu, J.; Lu, L.; Chen, Y.; Zhu, Y.; Kong, L. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans. Mob. Comput. 2019, 20, 337–351. [Google Scholar]
- Xu, B.; Guo, Y. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans. Veh. Technol. 2022, 71, 9422–9434. [Google Scholar]
- Xu, B.; Wang, X.; Zhang, J.; Guo, Y.; Razzaqi, A.A. A novel adaptive filtering for cooperative localization under compass failure and non-gaussian noise. IEEE Trans. Veh. Technol. 2022, 71, 3737–3749. [Google Scholar]
- Liu, F.; Zhao, X.; Zhu, Z.; Zhai, Z.; Liu, Y. Dual-microphone active noise cancellation paved with Doppler assimilation for TADS. Mech. Syst. Signal Process. 2023, 184, 109727. [Google Scholar]
- Assef, A.A.; Ferreira, B.M.; Maia, J.M.; Costa, E.T. Modeling and FPGA-based implementation of an efficient and simple envelope detector using a Hilbert Transform FIR filter for ultrasound imaging applications. Res. Biomed. Eng. 2018, 34, 87–92. [Google Scholar]
- Zhang, L.; Zhou, W.; Li, J.; Li, J.; Lou, X. Histogram of oriented gradients feature extraction without normalization. In Proceedings of the Asia Pacific Conference on Circuits and Systems (APCCAS), Ha Long, Vietnam, 8–10 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 252–255. [Google Scholar]
- Fu, W.; Xia, J.; Lin, X.; Liu, M.; Wang, M. Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx and Coshx Based on Improved CORDIC Algorithm. Electronics 2021, 10, 2533. [Google Scholar]
- Sayed, W.S.; Roshdy, M.; Said, L.A.; Herencsar, N.; Radwan, A.G. CORDIC-based FPGA realization of a spatially rotating translational fractional-order multi-scroll grid chaotic system. Fractal Fract. 2022, 6, 432. [Google Scholar]
- Duprat, J.; Muller, J.M. The CORDIC algorithm: New results for fast VLSI implementation. IEEE Trans. Comput. 1993, 42, 168–178. [Google Scholar]
- Andraka, R. A survey of CORDIC algorithms for FPGA based computers. In Proceedings of the ACM/SIGDA 6th International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 22–25 February 1998; pp. 191–200. [Google Scholar]
- Qin, M.; Liu, T.; Hou, B.; Gao, Y.; Yao, Y.; Sun, H. A Low-Latency RDP-CORDIC Algorithm for Real-Time Signal Processing of Edge Computing Devices in Smart Grid Cyber-Physical Systems. Sensors 2022, 22, 7489. [Google Scholar]
- Chung, R.L.; Hsueh, Y.; Chen, S.L.; Abu, P.A.R. Efficient and Accurate CORDIC Pipelined Architecture Chip Design Based on Binomial Approximation for Biped Robot. Electronics 2022, 11, 1701. [Google Scholar]
- Tang, W.; Xu, F. A noniterative Radix-8 CORDIC algorithm with low latency and high efficiency. Electronics 2020, 9, 1521. [Google Scholar]
- Li, Y.; Hao, Y.X.; Li, M.; Wang, Y.; Chen, X.D.; Yu, D.Y. An Improved High-Accuracy CORDIC Algorithm for DSC in Endoscopic Ultrasonography System. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 2012; Volume 130, pp. 37–40. [Google Scholar]
- Xu, R.; Jiang, Z.; Huang, H.; Dong, C. An optimization of CORDIC algorithm and FPGA implementation. Int. J. Hybrid Inf. Technol. 2015, 8, 217–228. [Google Scholar]
- Xing, X.; Wang, W. A New Recursive Trigonometric Technique for FPGA-Design Implementation. Sensors 2023, 23, 3683. [Google Scholar]
- Quistgaard, J.U. Signal acquisition and processing in medical diagnostic ultrasound. IEEE Signal Process. Mag. 1997, 14, 67–74. [Google Scholar]
- Wang, L.; Shen, Y.; Wang, X.T. Designing and realization of the dynamic filter in B mode ultrasonic scanning. Zhongguo Yi Liao Qi Xie Za Zhi Chin. J. Med. Instrum. 2006, 30, 372–374, 348. [Google Scholar]
- Wagner, R.F.; Insana, M.F.; Brown, D.G. Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound. J. Opt. Soc. America. A Opt. Image Sci. 1987, 4, 910. [Google Scholar]
- Bosisio, M.R.; Hasquenoph, J.M.; Sandrin, L.; Laugier, P.; Bridal, S.L.; Yon, S. Real-time chirp-coded imaging with a programmable ultrasound biomicroscope. IEEE Trans. Biomed. Eng. 2009, 57, 654–664. [Google Scholar]
- Shayesteh, M.G.; Mottaghi-Kashtiban, M. FIR filter design using a new window function. In Proceedings of the 16th International Conference on Digital Signal Processing, Santorini, Greece, 5–7 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6. [Google Scholar]
- Avci, K. Design of fir filters using exponential—Hamming window family. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 2513–2524. [Google Scholar]
- Longa, P.; Miri, A. Area-efficient FIR filter design on FPGAs using distributed arithmetic. In Proceedings of the International Symposium on Signal Processing and Information Technology, Vancouver, BC, Canada, 28–30 August 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 248–252. [Google Scholar]
- Zeng, P.; Lu, F.; Zhao, X. The efficient realization of B mode ultrasonic digital scan conversion based on radix-4 CORDIC algorithm. In Proceedings of the 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2683–2686. [Google Scholar]
- Zhou, S.; Wang, X.; Yang, J.; Ji, J.; Wang, Y. Designing and realization of the dynamic filter in digital B mode ultrasonography. In Proceedings of the 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 241–244. [Google Scholar]
- Lee, D.Y.; Yoo, Y.; Song, T.K.; Chang, J.H. Adaptive dynamic quadrature demodulation with autoregressive spectral estimation in ultrasound imaging. Biomed. Signal Process. Control. 2012, 7, 371–378. [Google Scholar]
- Chang, J.H.; Yen, J.T.; Shung, K.K. A novel envelope detector for high-frame rate, high-frequency ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007, 54, 1792–1801. [Google Scholar]
- Li, Y.; Chu, W. Implementation of single precision floating point square root on FPGAs. In Proceedings of the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Napa Valley, CA, USA, 16–18 April 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 226–232. [Google Scholar]
- Vankka, J. 6. Cordic Algorithm. In Digital Synthesizers and Transmitters for Software Radio; Springer: Berlin/Heidelberg, Germany, 2005; pp. 81–95. [Google Scholar] [CrossRef]
- Tiwari, B.; Goel, N. Implementation of a fast hybrid CORDIC architecture. In Proceedings of the 2nd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 12–13 February 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 702–706. [Google Scholar]
- Parhami, B. Computing with logarithmic number system arithmetic: Implementation methods and performance benefits. Comput. Electr. Eng. 2020, 87, 106800. [Google Scholar]
- Maharatna, K.; Banerjee, S.; Grass, E.; Krstic, M.; Troya, A. Modified virtually scaling-free adaptive CORDIC rotator algorithm and architecture. IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 1463–1474. [Google Scholar]
- Moroz, L.; Nagayama, S.; Mykytiv, T.; Kirenko, I.; Boretskyy, T. Simple hybrid scaling-free CORDIC solution for FPGAs. Int. J. Reconfigurable Comput. 2014, 2014, 6. [Google Scholar]
- Zhang, C.; Han, J.; Yan, H. Unidirectional rotating coordinate rotation digital computer algorithm based on rotational phase estimation. Rev. Sci. Instrum. 2015, 86, 064705. [Google Scholar]
- Moroz, L.; Mykytiv, T.; Herasym, M. Improved scaling-free CORDIC algorithm. In Proceedings of the 11th East-West Design and Test Symposium (EWDTS), Rostov-on-Don, Russia, 27–30 September 2013; IEEE Computer Society: Washington, DC, USA, 2013; pp. 1–5. [Google Scholar]
- Aggarwal, S.; Khare, K. Efficient window-architecture design using completely scaling-free CORDIC pipeline. In Proceedings of the 26th International Conference on VLSI Design and 2013 12th International Conference on Embedded Systems, Pune, India, 5–10 January 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 60–65. [Google Scholar]
- Pereira, F.M.Q.; Berlin, D. Wave propagation and deep propagation for pointer analysis. In Proceedings of the International Symposium on Code Generation and Optimization, Seattle, WA, USA, 22–25 March 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 126–135. [Google Scholar]
- Zou, H.; Zhang, Y.; Zhang, J.; Chen, C.; Geng, X.; Zhang, S.; Zhang, H. A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting. Algorithms 2020, 13, 297. [Google Scholar]
- Wahood, W.; Ghozy, S.; Al-Abdulghani, A.; Kallmes, D.F. Radial artery diameter: A comprehensive systematic review of anatomy. J. Neurointer. Surg. 2022, 14, 1274–1278. [Google Scholar]
Name | Parameter |
---|---|
Digital frequency | 100 MHz |
Array elements center spacing | 0.8 mm |
Array elements length | 10 mm |
Transmitting focus delay accuracy | 2.5 ns |
Maximum detection depth | 10 mm |
Detection width | 8 cm |
Scanning method | Receive/transmit interval scanning |
Transmitting pulse width | 190 mm |
Input Value | Theoretical Value | Improved Scale-Free CORDIC Value | Absolute Value |
---|---|---|---|
1 | 0 | 0.0031 | 3.1 × 10−3 |
2 | 0.6932 | 0.6991 | 5.9 × 10−3 |
3 | 1.0986 | 1.1043 | 5.7 × 10−3 |
4 | 1.3863 | 1.3877 | 1.4 × 10−3 |
5 | 1.6094 | 1.6125 | 3.1 × 10−3 |
6 | 1.7918 | 1.7985 | 6.7 × 10−3 |
7 | 1.9459 | 1.9517 | 5.8 × 10−3 |
8 | 2.0794 | 2.0866 | 7.2 × 10−3 |
Resource | Utilization | Available | Utilization % |
---|---|---|---|
Logic elements | 1232 | 15,408 | 8% |
Register | 924 | 15,408 | 6% |
Embedded memory | 15,482 | 516,096 | 3% |
Embedded multipliers | 2 | 56 | 3% |
Pins | 64 | 166 | 39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Geng, X.; Yao, F.; Liu, L.; Guo, Z.; Zhang, Y.; Wang, Y. The Ultrasound Signal Processing Based on High-Performance CORDIC Algorithm and Radial Artery Imaging Implementation. Appl. Sci. 2023, 13, 5664. https://doi.org/10.3390/app13095664
Zhang C, Geng X, Yao F, Liu L, Guo Z, Zhang Y, Wang Y. The Ultrasound Signal Processing Based on High-Performance CORDIC Algorithm and Radial Artery Imaging Implementation. Applied Sciences. 2023; 13(9):5664. https://doi.org/10.3390/app13095664
Chicago/Turabian StyleZhang, Chaohong, Xingguang Geng, Fei Yao, Liyuan Liu, Ziyang Guo, Yitao Zhang, and Yunfeng Wang. 2023. "The Ultrasound Signal Processing Based on High-Performance CORDIC Algorithm and Radial Artery Imaging Implementation" Applied Sciences 13, no. 9: 5664. https://doi.org/10.3390/app13095664
APA StyleZhang, C., Geng, X., Yao, F., Liu, L., Guo, Z., Zhang, Y., & Wang, Y. (2023). The Ultrasound Signal Processing Based on High-Performance CORDIC Algorithm and Radial Artery Imaging Implementation. Applied Sciences, 13(9), 5664. https://doi.org/10.3390/app13095664