Construction Schedule versus Various Constraints and Risks
Abstract
:1. Introduction
2. Scheduling Construction Processes
- Summary methods (estimated, statistical, comparative),
- Analytical methods (analytical research, analytical–computational).
3. Materials and Methods
3.1. Time Coupling Method—TCM
- Continuity of work of brigades (zero coupling between activities performed by individual brigades);
- Continuity of work on the plots (zero coupling between activities);
- Sequence of activities, assuming minimization of the construction project completion time, without maintaining the continuity of work of teams and continuity of work on working plots.
- TCM I—continuity of work of individual work brigades is maintained;
- TCM II—continuity of work is maintained on working plots (sectors);
- TCM III—where the priority is to minimize the implementation time of the construction project, team downtime and failure to maintain continuity of work on work plots are possible;
- TCM IV, V, VI—minimum working time is taken into account with additional restrictions applied.
3.2. Multivariate Method of Statistical Models—MMSM
- Defining the problem;
- Obtaining and analyzing data;
- Variable analysis;
- Analysis of the occurrence of linear correlations of variables;
- Predictive modeling with application: Multiple Regression, Multivariate Adaptive Regression Splines, Generalized Additive Methods, Spiking Neutral Network, Support Vector Machine;
- Checking the correctness of calculations.
3.3. Standard Deviations
3.4. Cyclograms
3.5. Validation and Verification Studies of the Developed PTCM and the Obtained Solutions
4. Probabilistic Time Coupling Methods—PTCM
- tij—calculated implementation time of construction process j on plot i;
- σij—standard deviation of the completion time of construction process j on plot I;
- Σij—the sum of standard deviations of processes preceding the construction process j on plot i and the standard deviation σ(tij) of current work, calculated by the formula for the sum of deviations of independent variables;
- tijr—prognostic start time of the construction process j on plot i;
- tijz—prognostic time of completion of the construction process j on plot i (most probable);
- tijmin—prognostic minimum time for completing the construction process j on plot i (the most optimistic);
- tijmax—prognostic time of maximum completion of the construction process j on plot i (the most pessimistic).
4.1. PTCM I—Description of the Model and Method of Calculating the Time Characteristics of Construction Works in the Flow-Shop System, Assuming the Continuity of Work of Work Teams
4.2. PTCM II—Description of the Model and Methodology for Calculating the Time Characteristics of Construction Works in a Stream System and Assuming Continuity of Work in Working Sectors
4.3. PTCM III—Description of the Model and Methodology for Calculating the Time Characteristics of Construction Works in the Flow-Shop System and Assuming Minimization of the Work Time
4.4. Validation and Verification of the PTCM Methodology
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abeyasinghe, M.C.L.; Greenwood, D.J.; Johansen, D.E. An efficient method for scheduling construction projects with resource constraints. Int. J. Proj. Manag. 2001, 19, 29–45. [Google Scholar] [CrossRef]
- Ameen, M.; Jacob, M. Complexity in Projects. A Study of Practitioners’ Understanding of Complexity in Relation to Existing Theoretical Models. Master’s Thesis, Umea School of Business, Suecia, Sweden, 2007. [Google Scholar]
- Brockmann, C.; Kähkönen, K. Evaluating construction project complexity. In CIB Joint International Symposium, Proceedings of the Management of Construction: Research to Practice; Birmingham School of Built Environment: Montreal, QC, Canada, 2012; Volume 2, pp. 716–727. [Google Scholar]
- Kermanshachi, S.; Dao, B.; Shane, J.; Anderson, S. Project complexity indicators and management strategies—A Delphi study. Procedia Eng. 2016, 145, 587–594. [Google Scholar] [CrossRef]
- Urgiles, P.; Sebastian, M.A.; Claver, J. Proposal and Application of a Methodology to Improve the Control and Monitoring of Complex Hydroelectric Power Station Construction Projects. Appl. Sci. 2020, 10, 7913. [Google Scholar] [CrossRef]
- Agyekum-Mensah, G.; Knight, A.; Pasquire, C. Adaption of structured analysis design techniques methodology for construction project planning. In Proceedings of the 28th Annual ARCOM Conference, ARCOM, Edinburgh, UK, 3–5 September 2012; pp. 1055–1065. [Google Scholar]
- Ansar, A.; Flyvbjerg, B.; Budzier, A.; Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 2014, 69, 43–56. [Google Scholar] [CrossRef]
- Awojobi, O.; Jenkins, G.P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 2015, 86, 222–232. [Google Scholar] [CrossRef]
- Cristóbal, J.R.S. The S-curve envelope as a tool for monitoring and control of projects. Procedia Comput. Sci. 2017, 121, 756–761. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Gilbert, A.; Nugent, D. An international comparative assessment of construction cost overruns for electricity infrastructure. Energy Res. Soc. Sci. 2014, 3, 152–160. [Google Scholar] [CrossRef]
- Sweis, G.; Sweis, R.; Hammad, A.A.; Shboul, A. Delays in construction projects: The case of Jordan. Int. J. Proj. Manag. 2008, 26, 665–674. [Google Scholar] [CrossRef]
- Bac, M.; Hejducki, Z. Analiza skuteczności wykonania harmonogramu robót za pomocą Katalogów Nakładów Rzeczowych. Przegląd Bud. 2017, 5, 52–55. [Google Scholar]
- Liu, N.; Kang, B.G.; Zheng, Y. Current trend in planning and scheduling of construction project using artificial in telligence. In Proceedings of the IET Doctoral Forum on Biomedical Engineering, Healthcare, Robotics and Artificial Intelligence 2018 (BRAIN 2018), Ningbo, China, 4 November 2018; IET: Hertfordshire UK; pp. 1–6. [Google Scholar]
- Nusen, P.; Boonyung, W.; Nusen, S.; Panuwatwanich, K.; Champrasert, P.; Kaewmoracharoen, M. Construction planning and scheduling of a renovation project using BIM-based multi-objective genetic algorithm. Appl. Sci. 2021, 11, 4716. Available online: https://ssrn.com/abstract=4616055 (accessed on 14 November 2023). [CrossRef]
- Wang, H.; Hu, Y. Artificial Intelligence Technology Based on Deep Learning in Building Construction Management System Modeling. Adv. Multimed. 2022, 2022, 5602842. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Delgado, J.M.D.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Doukari, O.; Seck, B.; Greenwood, D. The creation of construction schedules in 4D BIM: A comparison of conventional and automated approaches. Buildings 2022, 12, 1145. [Google Scholar] [CrossRef]
- Singh, J.; Anumba, C.J. Real-time pipe system installation schedule generation and optimization using artificial intelligence and heuristic techniques. J. Inf. Technol. Constr. 2022, 27, 173–190. [Google Scholar] [CrossRef]
- Abanda, F.H.; Musa, A.M.; Clermont, P.; Tah, J.H.; Oti, A.H. A BIM-based framework for construction project scheduling risk management. Int. J. Comput. Aided Eng. Technol. 2020, 12, 182–218. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Y.; Wu, X.; Skibniewski, M.J. Artificial Intelligence in Construction Engineering and Management; Springer: Singapore, 2021; pp. 95–124. [Google Scholar]
- Eber, W. Potentials of artificial intelligence in construction management. Organ. Technol. Manag. Constr. Int. J. 2020, 12, 2053–2063. [Google Scholar] [CrossRef]
- Chen, H.-P.; Ying, K.-C. Artificial Intelligence in the Construction Industry: Main Development Trajectories and Future Outlook. Appl. Sci. 2022, 12, 5832. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Zabielski, J. Kosztorysowanie i Normowanie w Budownictwie; WSiP: Warszawa, Poland, 2012. [Google Scholar]
- Hoła, B.; Mrozowicz, J. Modelowanie Procesów Budowlanych o Charakterze Losowym; DWE: Wrocław, Poland, 2003. [Google Scholar]
- Rogalska, M. Wieloczynnikowe Modele w Prognozowaniu Czasu Procesów Budowlanych; Monografie: Lublin, Poland, 2016. [Google Scholar]
- PMI. A Guide to the Project Management Body of Knowledge; Project Management Institute (PMI): Newtown Squarel, PA, USA, 2017; Volume 44, p. 3. [Google Scholar]
- Leo-Olagbaye, F.; Odeyinka, H.A. An assessment of risk impact on road projects in Osun State, Nigeria. Built Environ. Proj. Asset Manag. 2020, 10, 673–691. [Google Scholar] [CrossRef]
- Choudhry, R.M.; Aslam, M.A.; Hinze, J.; Arain, F.M. Cost and Schedule Risk Analysis of Bridge Construction in Pakistan: Establishing Risk Guidelines. J. Constr. Eng. Manag. 2014, 140, 04014020. [Google Scholar] [CrossRef]
- Kosztyán, Z.T.; Bogdány, E.; Szalkai, I.; Kurbucz, M.T. Impacts of synergies on software project scheduling. Ann. Oper. Res. 2021, 312, 883–908. [Google Scholar] [CrossRef]
- Ma, G.; Wu, M. A Big Data and FMEA-based construction quality risk evaluation model considering project schedule for Shanghai apartment projects. Int. J. Qual. Reliab. Manag. 2019, 37, 18–33. [Google Scholar] [CrossRef]
- Rezakhani, P. A review of fuzzy risk assessment models for construction projects. Slovak J. Civ. Eng. 2012, 20, 35–40. [Google Scholar] [CrossRef]
- Hulett, D. Practical Schedule Risk Analysis; Ashgate Publishing Group: Abingdon, UK, 2009. [Google Scholar]
- Walczak, R. Analiza ryzyka harmonogramowania projektu z wykorzystaniem metody Monte Carlo. In Innowacje w zarządzaniu i inżynierii produkcji, Tom 1; Knosala, R., Ed.; Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją: Opole, Poland, 2014; pp. 914–925. [Google Scholar]
- Marcinkowski, R. Metody Rozdziału Zasobów Realizatora w Działalności Inżynieryjno–Budowlanej; WAT: Warszawa, Poland, 2002. [Google Scholar]
- Sambasivan, M.; Soon, Y.W. Causes and effects of delays in Malaysian construction industry. Int. J. Proj. Manag. 2007, 25, 517–526. [Google Scholar] [CrossRef]
- Afanasev, V.A.; Afanasev, A.V. Potocnaja Organizacja Rabot v Stroitelstwie; Sankt-Petersburg, Russia, 2000. [Google Scholar]
- Jaworski, K.M. Metodologia Projektowania Realizacji Budowy; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1999. [Google Scholar]
- Lutz, J.D.; Hijazi, A. Planning repetitive construction: Current practice. Constr. Manag. Eng. 1993, 11, 99–110. [Google Scholar] [CrossRef]
- Hejducki, Z. Sprzężenia czasowe w metodach organizacji złożonych procesów budowlanych. Pr. Nauk. Inst. Budownictwa Politech. Wrocławskiej. Monogr. 2000, 77, 126. [Google Scholar]
- Hejducki, Z.; Podolski, M. Teoria szeregowania zadań a metody sprzężeń czasowych. Mater. Bud. 2016, 6, 20–21. [Google Scholar] [CrossRef]
- Mrozowicz, J. Metody Organizacji Procesów Budowlanych Uwzględniające Sprzężenia Czasowe, Dolnośląskie Wyd; Edukacyjne: Wrocław, Poland, 1997. [Google Scholar]
- Podolski, M. Analiza nowych zastosowań teorii szeregowania zadań w organizacji robót budowlanych. Ph.D. Thesis, Wrocław University of Technology, Wrocław, Poland, 2008. [Google Scholar]
- Afanasejv, V.A. Algoritmy Formirovania Rascieta i Optimizacji Metod Organizacji Rabot; Ucziebnoje pasobije: Leningrad, Russia, 1980. [Google Scholar]
- Afanasev, V.A.; Afanasev, A.V. Paralelno–Potočnaja Organizacja Stroitelstva; LISI: Leningrad, Russia, 1985. [Google Scholar]
- Afanasev, V.A.; Afanasev, A.V. Projektirowanije Organizacji Stroitielstva, Organizacji i Proizvodstwa Rabot; LISI: Leningrad, Russia, 1988. [Google Scholar]
- Afanasev, V.A. Učiet Zatrat Wremieni Na Perieboizirowanije Stroitielnych Organizacji Pri Formirowani I Optimalizacji Kompleksov Potokov; Aktualnyje problemy sovietskowo stroitielstwa: Sankt-Petersburg, Russia, 1994. [Google Scholar]
- Mrozowicz, J. Potokowe Metody Organizacji Procesów Budowlanych o Charakterze Deterministycznym. DSc. Thesis, Monografia no 14. Wyd. Politechniki Wrocławskiej, Wrocław, Poland, 1982. [Google Scholar]
- Hejducki, Z. Zarządzanie Czasem w Procesach Budowlanych z Zastosowaniem Modeli Macierzowych; Wydawnictwo Politechniki Wrocławskiej: Wrocław, Poland, 2004. [Google Scholar]
- Hejducki, Z. Sequencing problems in methods of organising construction processes. Eng. Constr. Archit. Manag. 2004, 11, 20–32. [Google Scholar] [CrossRef]
- Hejducki, Z.; Rogalska, M. Flow Shop Scheduling of Construction Prosesses Using Time Coupling Methods; Politechnika Lubelska: Lublin, Poland, 2021. [Google Scholar]
- Rogalska, M.; Hejducki, Z. Modelowanie Przedsięwzięć Budowlanych z Zastosowaniem Metod Sprzężeń Czasowych—Część 1. Model TCM I. In Organizacja Przedsięwzięć Budownictwa Drogowego/Red. Nauk. Zbigniew Tokarski; Zarząd Oddziału Stowarzyszenia Inżynierów i Techników Komunikacji RP: Bydgoszcz, Poland, 2011; pp. 379–391. [Google Scholar]
- Rogalska, M.; Hejducki, Z. Modelowanie przedsięwzięć budowlanych z zastosowaniem metody sprzężeń czasowych—Część 2, Model TCM II. In Organizacja Przedsięwzięć Budownictwa Drogowego/Red. Nauk. Zbigniew Tokarski; Zarząd Oddziału Stowarzyszenia Inżynierów i Techników Komunikacji RP: Bydgoszcz, Poland, 2011; pp. 119–130. [Google Scholar]
- Rogalska, M.; Hejducki, Z.; Wodecki, M. Development of time couplings method. In Proceedings of the International Scientific Conference in Posthumous Memory of Professor Viktor Alekseevic Afanas’ev, Sankt-Peterburg, Russia, 20–21 February 2014; Volume 40, pp. 90–93. [Google Scholar]
- Kostrzewa-Demczuk, P.; Rogalska, M. Scheduling with the Probabilistic Coupling Method I (PTCM I)–assuming the continuity of workof working teams. Arch. Civ. Eng. 2023, 2, 455–469. [Google Scholar]
- Kostrzewa-Demczuk, P.; Rogalska, M. Scheduling construction processes using the probabilistic time coupling method III. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 11207. [Google Scholar]
- Hejducki, Z.; Rogalska, M. Time Coupling Methods: Construction Scheduling and Time/Cost Optimization; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2011. [Google Scholar]
- Marcinkowski, R. Modelowanie ograniczeń w metodzie pracy potokowej. Przegląd Nauk. -Inżynieria I Kształtowanie Sr. 2017, 26, 210–218. [Google Scholar] [CrossRef]
- Bladowski, S. Metody Sieciowe w Planowaniu i Organizacji Pracy; PWE Warszawa: Warszawa, Poland, 1970. [Google Scholar]
- Malcolm, D.G.; Roseboom, J.H.; Clark, C.E.; Fazar, W. Application of a Technique for Research and Development Program Evaluation. Oper. Res. 1959, 7, 646–669. [Google Scholar] [CrossRef]
- Kostrzewa-Demczuk, P.; Rogalska, M. Anticipating the Length of Employees’ Working Time. Symmetry 2020, 12, 413. [Google Scholar] [CrossRef]
- Kostrzewa-Demczuk, P.; Rogalska, M. Planning of construction projects taking into account the design risk. Arch. Civ. Eng. 2023, LXIX ISSUE 1, 613–626. [Google Scholar]
- Kostrzewa-Demczuk, P. Scheduling with TCM Methods in the Probabilistic Approach. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2022. [Google Scholar]
Scheduling Method | The Most Optimistic (Minimum) Investment Implementation Time (Working Days) | The Most Probable Investment Implementation Time (Working Days) | The Most Pessimistic (Maximum) Investment Implementation Time (Working Days) | |
---|---|---|---|---|
assumption of continuity of brigades’ work | PTCM I | 154.9 | 161.2 | 167.5 |
Real time of the process | - | 162.7 | - | |
RiskyProject Professional | 154.88 | 161.21 | 167.46 | |
assumption of continuity of work on work sectors | PTCM II | 180.7 | 187.8 | 194.9 |
Real time of the process | - | 191.3 | - | |
RiskyProject Professional | 197.71 | 188.08 | 194.90 | |
simultaneous assumption of continuity of work by brigade and in work sectors | PTCM III | 139.9 | 146.7 | 153.5 |
Real time of the process | - | 148.4 | - | |
RiskyProject Professional | 139.70 | 146.69 | 153.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa-Demczuk, P. Construction Schedule versus Various Constraints and Risks. Appl. Sci. 2024, 14, 196. https://doi.org/10.3390/app14010196
Kostrzewa-Demczuk P. Construction Schedule versus Various Constraints and Risks. Applied Sciences. 2024; 14(1):196. https://doi.org/10.3390/app14010196
Chicago/Turabian StyleKostrzewa-Demczuk, Paulina. 2024. "Construction Schedule versus Various Constraints and Risks" Applied Sciences 14, no. 1: 196. https://doi.org/10.3390/app14010196
APA StyleKostrzewa-Demczuk, P. (2024). Construction Schedule versus Various Constraints and Risks. Applied Sciences, 14(1), 196. https://doi.org/10.3390/app14010196