Enhancing Autofocus in Non-Mydriatic Fundus Photography: A Fast and Robust Approach with Adaptive Window and Path-Optimized Search
Abstract
:Featured Application
Abstract
1. Introduction
2. Proposed Methods
2.1. Adaptive Focus Window
2.1.1. Selection of Fundus FOV
2.1.2. Selection of SL Region
2.1.3. Mask Fusion and Optimization
2.2. Path-Optimized Search with EWMA Control
- STEP 1. Perform continuous axial scanning with a large step D (D < Δ, Δ is the depth of field (DOF) of the imaging system) while utilizing the sampling interval to update vectors F and E;
- STEP 2. If vector E decreases continuously for three steps, Et−2 > Et−1 > Et (meaning the scanning starts to leave the curve’s peak), then proceed to STEP 3; otherwise, go back to STEP 1.
- STEP 3. Pause the scanning and calculate the coarse focus position, Pcoarse = .
3. Experimental Results and Discussion
3.1. Experiment on Adaptive Focus Window
3.2. Simulation Analysis of POSE
3.3. Clinical Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, E.D.; Novais, E.A.; Louzada, R.N.; Waheed, N.K. Contemporary retinal imaging techniques in diabetic retinopathy: A review. Clin. Exp. Ophthalmol. 2016, 44, 289–299. [Google Scholar] [CrossRef]
- McGrorya, S.; Camerona, J.R.; Pellegrinia, E.; Warrenc, C.; Doubala, F.N.; Dearyd, I.J.; Dhillona, B.; Wardlawa, J.M.; Truccog, E.; MacGillivraya, T.J. The application of retinal fundus camera imaging in dementia: A systematic review. Alzheimer’s Dement. 2017, 6, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Son, T.; Ma, J. Developing portable widefield fundus camera for teleophthalmology: Technical challenges and potential solutions. Exp. Biol. Med. 2022, 247, 289–299. [Google Scholar] [CrossRef]
- Kawali, A.; Pichi, F.; Avadhani, K.; Invernizzi, A.; Hashimoto, Y.; Mahendradas, P. Multimodal Imaging of the Normal Eye. Ocul. Immunol. Inflamm. 2017, 25, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, R.; Serranho, P.; Lobo, C. Digital Ocular Fundus Imaging: A Review. Ophthalmologica 2011, 226, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Panwar, N.; Huang, P.; Lee, J.; Keane, P.A.; Chuan, T.S.; Richhariya, A.; Teoh, S.; Lim, T.H.; Agrawal, R. Fundus Photography in the 21st Century—A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare. Telemed. e-Health 2016, 22, 198–208. [Google Scholar] [CrossRef]
- Callaway, N.F.; Mruthyunjaya, P. Widefield imaging of retinal and choroidal tumors. Int. J. Retin. Vitr. 2019, 5 (Suppl. 1), 49. [Google Scholar] [CrossRef]
- Fleming, A.D.; Philip, S.; Goatman, K.A.; Olson, J.A.; Sharp, P.F. Automated Assessment of Diabetic Retinal Image Quality Based on Clarity and Field Definition. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1120–1125. [Google Scholar] [CrossRef]
- Shen, Z.; Fu, H.; Shen, J.; Shao, L. Modeling and Enhancing Low-Quality Retinal Fundus Images. IEEE Trans. Med. Imaging 2021, 40, 996–1006. [Google Scholar] [CrossRef]
- Sahu, S.; Singh, A.K.; Ghrera, S.P.; Elhoseny, M. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt. Laser Technol 2019, 110, 87–98. [Google Scholar]
- Moscaritolo, M.; Jampel, H.; Knezevich, F.; Zeimer, R. An Image Based Autofocusing Algorithm for Digital Fundus Photography. IEEE Trans. Med. Imaging 2009, 28, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Gong, W.; Yu, H.; Wang, W.; Zhao, C.; Wang, P.; Ueda, T. Autofocus System and Evaluation Methodologies: A Literature Review. Sens. Mater. 2018, 30, 1165–1174. [Google Scholar]
- Shen, F.; Hodgson, L.; Hahn, K. Digital Autofocus Methods for Automated Microscopy. Methods Enzymol. 2006, 414, 620–632. [Google Scholar] [PubMed]
- Bian, Z.; Guo, C.; Jiang, S.; Zhu, J.; Wang, R.; Song, P.; Zhang, Z.; Hoshino, K.; Zheng, G. Autofocusing technologies for whole slide imaging and automated microscopy. J. Biophotonics 2020, 13, e202000227. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liao, J.; Bian, Z.; Guo, K.; Zhang, Y.; Zheng, G. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging. Biomed. Opt. Express 2018, 9, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Dastidar, T.R.; Ethirajan, R. Whole slide imaging system using deep learning-based automated focusing. Biomed. Opt. Express 2020, 11, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, Z.; Guo, X.; Li, W.; Qi, X.; Zhao, Q. Fast autofocusing search algorithm for a high-speed and high-resolution camera based on the image histogram feature function. Appl. Opt. 2018, 57, 44–49. [Google Scholar] [CrossRef]
- Gu, C.; Wu, K.; Hu, J.; Hao, C.; Guan, X. Region sampling for robust and rapid autofocus in microscope. Microsc. Res. Tech. 2015, 78, 382–390. [Google Scholar] [CrossRef]
- Marrugo, A.G.; Millán, M.S.; Cristóbal, G.; Gabarda, S.; Abril, H.C. No-reference Quality Metrics for Eye Fundus Imaging. In Proceedings of the 14th Computer Analysis of Images and Patterns (CAIP), Seville, Spain, 29–31 August 2011. [Google Scholar]
- Marrugo, A.G.; Millán, M.S.; Abril, H.C. Implementation of an image based focusing algorithm for non-mydriatic retinal imaging. In Proceedings of the 3rd International Congress of Engineering Mechatronics and Automation (CIIMA), Cartagena, Colombia, 22–24 October 2014. [Google Scholar]
- Marrugo, A.G.; Millán, M.S.; Cristóbal, G.; Gabarda, S.; Abril, H.C. Anisotropy-based robust focus measure for non-mydriatic retinal imaging. J. Biomed. Opt. 2012, 17, 076021. [Google Scholar] [CrossRef]
- Yeo, T.T.E.; Ong, S.H.; Sinniah, R. Autofocusing for tissue microscopy. Image Vis. Comput. 1993, 11, 629–639. [Google Scholar] [CrossRef]
- Subbarao, M.; Choi, T.S. Focusing techniques. Opt. Eng. 1993, 32, 2824–2836. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, Y.; Hu, J.; Jin, Z.; Wang, Z.; Sun, L. Improved autofocus method for human red blood cell images. Appl. Opt. 2019, 58, 8031–8038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.S.; Li, S.W.; Hu, Z.G. Fish swarm window selection algorithm based on cell microscopic automatic focus. Clust. Comput. 2017, 20, 485–495. [Google Scholar] [CrossRef]
- Tsai, D.; Chen, H.H. Reciprocal Focus Profile. IEEE Trans. Image Process. 2012, 21, 459–468. [Google Scholar] [CrossRef]
- Winnik, J.; Suski, D.; Zdańkowski, P.; Stanaszek, L.; Micó, V.; Trusiak, M. Versatile optimization-based speed-up method for autofocusing in digital holographic microscopy. Opt. Express 2021, 29, 33297–33311. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lu, L.; Zhang, J.; Li, Z.; Zuo, C. Autofocusing Algorithm for Pixel-Super-Resolved Lensfree On-Chip Microscopy. Front. Phys. 2021, 9, 139. [Google Scholar] [CrossRef]
- Brazdilova, S.L.; Kozubek, M. Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions. J. Microsc. 2009, 236, 194–202. [Google Scholar] [CrossRef]
- Scanlon, P.H.; Malhotra, R.; Greenwood, R.H.; Aldington, S.J.; Foy, C.; Flatman, M.; Downes, S. Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy. Br. J. Ophthalmol. 2003, 87, 1258–1263. [Google Scholar] [CrossRef]
- Abdel-Hamid, L.; El-Rafei, A.; El-Ramly, S.; Michelson, G.; Hornegger, J. Retinal image quality assessment based on image clarity and content. J. Biomed. Opt. 2016, 21, 096007. [Google Scholar] [CrossRef]
- DeHoog, E.; Schwiegerling, J. Optimal parameters for retinal illumination and imaging in fundus cameras. Appl. Opt. 2008, 47, 6769–6777. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Roberts, S.W. Control Chart Tests Based on Geometric Moving Averages. Technometrics 1959, 1, 239–250. [Google Scholar] [CrossRef]
- Abujiya, M.R.; Lee, M.H.; Riaz, M. Improving the Performance of Exponentially Weighted Moving Average Control Charts. Qual. Reliab. Engng. Int. 2014, 30, 571–590. [Google Scholar] [CrossRef]
- Harada, M.; Obara, K.; Nakamae, K. A robust SEM autofocus algorithm using multiple band-pass filters. Meas. Sci. Technol. 2017, 28, 015403. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, M.; Yao, B.; Cai, Y.; Liang, Y.; Yang, Y.; Yang, X.; Li, H.; Xiong, D. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing. Biomed. Opt. Express 2015, 6, 4353–4364. [Google Scholar] [CrossRef]
Quantitative Criteria | IHCS | POSE |
---|---|---|
Average number of local extrema | 3.38 | 0.65 |
Average search success rate | 71.56% | 93.40% |
Strategy | Expert | Success | Failure | Success Rate | Motor Movement Count | Motor Steps * |
---|---|---|---|---|---|---|
IHCS | A | 56 | 24 | 70.0% | 22 | 7120 |
B | 58 | 22 | 72.5% | |||
GFF | A | 65 | 15 | 81.3% | 32 | 12,010 |
B | 64 | 16 | 80.0% | |||
POSE | A | 72 | 8 | 90.0% | 10 | 5626 |
B | 71 | 9 | 88.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Qiu, S.; Cai, H.; Wang, Y.; Chen, X. Enhancing Autofocus in Non-Mydriatic Fundus Photography: A Fast and Robust Approach with Adaptive Window and Path-Optimized Search. Appl. Sci. 2024, 14, 286. https://doi.org/10.3390/app14010286
Liu Z, Qiu S, Cai H, Wang Y, Chen X. Enhancing Autofocus in Non-Mydriatic Fundus Photography: A Fast and Robust Approach with Adaptive Window and Path-Optimized Search. Applied Sciences. 2024; 14(1):286. https://doi.org/10.3390/app14010286
Chicago/Turabian StyleLiu, Zeyuan, Shufang Qiu, Huaiyu Cai, Yi Wang, and Xiaodong Chen. 2024. "Enhancing Autofocus in Non-Mydriatic Fundus Photography: A Fast and Robust Approach with Adaptive Window and Path-Optimized Search" Applied Sciences 14, no. 1: 286. https://doi.org/10.3390/app14010286
APA StyleLiu, Z., Qiu, S., Cai, H., Wang, Y., & Chen, X. (2024). Enhancing Autofocus in Non-Mydriatic Fundus Photography: A Fast and Robust Approach with Adaptive Window and Path-Optimized Search. Applied Sciences, 14(1), 286. https://doi.org/10.3390/app14010286