Applications of Machine Learning in National Territory Spatial Planning
1. Introduction
2. Materials and Methods
2.1. Big-Data-Driven Urban Spatial Environmental Monitoring and Infrastructure Service Capability Measurement
2.2. The Interdisciplinary Perspective of Food Security, Agricultural Development Spatial Planning, and Machine Learning
2.3. Methodological Innovation and the System Development of Machine Learning and National Territorial Spatial Planning Integration
3. Summary and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Elvas, L.B.; Nunes, M.; Ferreira, J.C.; Francisco, B.; Afonso, J.A. Georeferenced Analysis of Urban Nightlife and Noise Based on Mobile Phone Data. Appl. Sci. 2024, 14, 362. https://doi.org/10.3390/app14010362.
- Ren, G.; Song, G.; Wang, Q.; Sui, H. Impact of “Non-Grain” in Cultivated Land on Agricultural Development Resilience: A Case Study from the Major Grain-Producing Area of Northeast China. Appl. Sci. 2023, 13, 3814. https://doi.org/10.3390/app13063814.
- Yu, H.; Zhang, X.; Yu, W.; Gao, Y.; Xue, Y.; Sun, W.; Sun, D. Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province. Appl. Sci. 2023, 13, 3336. https://doi.org/10.3390/app13053336.
- Martinho, V.J.P.D.; Cunha, C.A.d.S.; Pato, M.L.; Costa, P.J.L.; Sánchez-Carreira, M.C.; Georgantzís, N.; Rodrigues, R.N.; Coronado, F. Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0. Appl. Sci. 2022, 12, 11828. https://doi.org/10.3390/app122211828.
- McCord, M.; Lo, D.; Davis, P.; McCord, J.; Hermans, L.; Bidanset, P. Applying the Geostatistical Eigenvector Spatial Filter Approach into Regularized Regression for Improving Prediction Accuracy for Mass Appraisal. Appl. Sci. 2022, 12, 10660. https://doi.org/10.3390/app122010660.
- Fiorini, L.; Falasca, F.; Marucci, A.; Saganeiti, L. Discretization of the Urban and Non-Urban Shape: Unsupervised Machine Learning Techniques for Territorial Planning. Appl. Sci. 2022, 12, 10439. https://doi.org/10.3390/app122010439.
- Fu, B.; Xiao, X.; Li, J. Big Data-Driven Measurement of the Service Capacity of Public Toilet Facilities in China. Appl. Sci. 2022, 12, 4659. https://doi.org/10.3390/app12094659.
References
- Zeng, J.; Tian, J.; Wang, Q.W.; Sun, K.K. Theory of Climate Resilience, Disaster Adaptation, and Flood Mitigation in Territorial Spatial Planning Systems: A Case Study of the Fujian Delta Region. Sci. Sin. (Technol.) 2023, 53, 1713–1727. [Google Scholar] [CrossRef]
- Cheng, M.J. From Spatial Blueprint to Regulatory Planning: Practice and Exploration of Municipal Land Space Master Planning. Urban Dev. Stud. 2023, 30, 8–16+35. [Google Scholar]
- Yin, X.; Zhao, Y.; Tong, H.; Duan, Z.K.; Zhou, D. Strategy and Practice of Territorial Space District Planning in the Yellow River Basin from the Perspective of High Quality Development: Southern Mountainous Area of Jinan City. Planners 2024, 40, 115–120. [Google Scholar]
- Lin, J.; Zhang, Y. Transformation from Spatial Planning System to Territorial Space System: Analyzing the Trend of Territorial Space Governance under the Construction of Territorial Space System. China Land Sci. 2024, 38, 1–8. [Google Scholar]
- Ma, Y.; Lei, Z.D.; Liu, J.P.; Wu, Y.H.; Wang, Y. Territorial Space Comprehensive Reorganization Planning for Refined Governance of Rural Revitalization. Planners 2023, 39, 26–33. [Google Scholar]
- Dong, Z.J.; Cheng, Y.Q.; Meng, H.Y.; Wang, S.H. Theoretical Foundations on Territorial Space Planning. China Land Sci. 2024, 38, 27–35. [Google Scholar]
- Yang, L.; Wu, W. Review, Reflection and Prospect of Ecological Spatial Planning in China—Based on the Background of Land Spatial Planning System. Chin. Landsc. Archit. 2020, 36, 29–34. [Google Scholar]
- Bao, H.J.; Cao, W.; Ye, Y.; Zhu, Z.J. Data-driven Territorial Space Planning: Theory, Paradigm and Trends. China Land Sci. 2024, 38, 53–63. [Google Scholar]
- Tu, W.; Cao, J.Z.; Gao, Q.L.; Cao, R.; Fang, Z.X.; Le, Y.; Li, Q.Q. Sensing Urban Dynamics by Fusing Multi-sourced Spatiotemporal Big Data. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1875–1883. [Google Scholar]
- Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for Smart City Monitoring. IEEE Commun. Surv. Tutor. 2018, 21, 1533–1560. [Google Scholar] [CrossRef]
- Yao, C.S.; Teng, Y.; Huang, L. Evaluation Index System Construction and Empirical Analysis on Food Security in China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 1–10. [Google Scholar]
- Huang, S.Y.; Yang, L.; Chen, X.; Yao, Y. Study of Typical Arid Crops Classification Based on Machine Learning. Spectrosc. Spectr. Anal. 2018, 38, 3169–3176. [Google Scholar]
- Yuan, S.Y.; Zhao, L.H.; Li, G.Q. Trends and Prospects of Food Security Monitoring and Early Warning Research Based on Big Data Technology. Agric. Outlook 2022, 18, 3–9. [Google Scholar]
- Jia, K.; Zhang, H.P.; Tang, Z.W. The Concept Evolution, Connotation Construction and Institutional Framework Innovation of Smart Society. E-Government 2019, 4, 2–8. [Google Scholar]
- Xiao, X.; Xie, X.P.; Li, J.Z.; Xie, X.; Xue, B. Urban spatial structural change and transformation in the new era. Bull. Chin. Acad. Sci. 2023, 38, 1118–1129. [Google Scholar]
- Zhang, B.; Li, X.; Wang, H.; He, S.W.; Zeng, H.R.; Cao, X.X.; Song, Y.C.; Tung, C.L.; Hu, S.G. Modeling self-organized urban growth by incorporating stakeholders’ interactions into the neighborhood of cellular automata. Cities 2024, 149, 104976. [Google Scholar] [CrossRef]
- Emre, T.; Abolfazl, S. Spatio-temporal Modeling of Parcel-level Land-Use Changes Using Machine Learning Methods. Sustain. Cities Soc. 2023, 90, 104390. [Google Scholar]
- Lei, W.; Alves, L.G.; Amaral, L.A.N. Forecasting the Evolution of Fast-changing Transportation Networks Using Machine Learning. Nat. Commun. 2022, 13, 4252. [Google Scholar] [CrossRef] [PubMed]
- Stupariu, S.M.; Cushman, S.A.; Pleşoianu, A.L.; Pătru, S.I.; Fürst, C. Machine Learning in Landscape Ecological Analysis: A Review of Recent Approaches. Landsc. Ecol. 2021, 37, 1227–1250. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Asghari, A.; Tayyebi, A.; Taleai, M. Coupling Machine Learning, Tree-based and Statistical Models with Cellular Automata to Simulate Urban Growth. Comput. Environ. Urban Syst. 2017, 64, 297–308. [Google Scholar] [CrossRef]
- Allama, Z.; Dhunnyb, Z.A. On Big Data, Artificial Intelligence and Smart Cities. Cities 2019, 2019, 80–91. [Google Scholar] [CrossRef]
- Zhen, F.; Zhang, S.Q.; Qin, X.; Xi, G.L. From Informational Empowerment to Comprehensive Empowerment: Exploring the Ideas of Smart Territorial Spatial Planning. J. Nat. Resour. 2019, 34, 2060–2072. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, B.; Xu, Y.; Yang, J.; Xiao, X. Applications of Machine Learning in National Territory Spatial Planning. Appl. Sci. 2024, 14, 4045. https://doi.org/10.3390/app14104045
Xue B, Xu Y, Yang J, Xiao X. Applications of Machine Learning in National Territory Spatial Planning. Applied Sciences. 2024; 14(10):4045. https://doi.org/10.3390/app14104045
Chicago/Turabian StyleXue, Bing, Yaotian Xu, Jun Yang, and Xiangming Xiao. 2024. "Applications of Machine Learning in National Territory Spatial Planning" Applied Sciences 14, no. 10: 4045. https://doi.org/10.3390/app14104045
APA StyleXue, B., Xu, Y., Yang, J., & Xiao, X. (2024). Applications of Machine Learning in National Territory Spatial Planning. Applied Sciences, 14(10), 4045. https://doi.org/10.3390/app14104045