Association between Biochemical Parameters, Especially Hydration Status and Dietary Patterns, and Metabolic Alterations in Polish Adults with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sociodemographic, Lifestyle, and Health Data
2.3. Non-Alcoholic Beverage Consumption Data
2.4. Dietary Patterns
2.5. Anthropometric Measurements
2.6. BIA Measurements
2.7. Blood Pressure Measurements
2.8. Biochemical Analysis
2.9. Metabolic Syndrome
2.10. Statistical Analysis
3. Results
3.1. Study Group Characteristics
3.2. Frequency of Non-Alcoholic Beverage Consumption and Dietary Patterns
3.3. Anthropometric Measurements, Biochemical Analysis, and MetS
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Regufe, V.M.G.; Pinto, C.M.C.B.; Perez, P.M.V.H. Metabolic syndrome in type 2 diabetic patients: A review of current evidence. Porto Biomed. J. 2020, 5, e101. [Google Scholar] [CrossRef] [PubMed]
- de la Iglesia, R.; Loria-Kohen, V.; Zulet, M.A.; Martinez, J.A.; Reglero, G.; de Molina, A.R. Dietary Strategies Implicated in the Prevention and Treatment of Metabolic Syndrome. Int. J. Mol. Sci. 2016, 17, 1877. [Google Scholar] [CrossRef]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef]
- Keefe, M.S.; Luk, H.Y.; Rolloque, J.J.S.; Jiwan, N.C.; Tyler, B.; McCollum, T.B.; Sekiguchi, Y. The weight, urine colour and thirst Venn diagram is an accurate tool compared with urinary and blood markers for hydration assessment at morning and afternoon timepoints in euhydrated and free-living individuals. Br. J. Nutr. 2024, 131, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Muñoz, C.X.; Kenefick, R.W. The void in using urine concentration to assess population fluid intake adequacy or hydration status. Am. J. Clin. Nutr. 2016, 104, 553–556. [Google Scholar] [CrossRef]
- Baron, S.; Courbebaisse, M.; Lepicard, E.M.; Friedlander, G. Assessment of hydration status in a large population. Br. J. Nutr. 2015, 113, 147–158. [Google Scholar] [CrossRef]
- Białecka-Dębek, A.; Pietruszka, B. The association between hydration status and cognitive function among free-living elderly volunteers. Aging Clin. Exp. Res. 2019, 31, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.; Airaghi, K.; Davy, B. Does Hydration Status Influence Executive Function? Syst. Rev. J. Acad. Nutr. Diet. 2021, 121, 1284–1305. [Google Scholar] [CrossRef]
- Maughan, R.J. Hydration, morbidity, and mortality in vulnerable populations. Nutr. Rev. 2012, 70, 152–155. [Google Scholar] [CrossRef]
- Bahouth, M.N.; Gottesman, R.F.; Szanton, S.L. Primary ‘dehydration’ and acute stroke: A systematic research review. J. Neurol. 2018, 265, 2167–2181. [Google Scholar] [CrossRef]
- Low, S.; Ng, T.P.; Lim, C.L.; Ang, S.F.; Moh, A.; Wang, J.; Yap, P.; Cheong, C.Y.; Goh, K.S.; Ang, K.; et al. Higher ratio of extracellular water to total body water was associated with reduced cognitive function in type 2 diabetes. J. Diabetes 2021, 13, 222–231. [Google Scholar] [CrossRef]
- Chang, T.; Ravi, N.; Plegue, M.A.; Sonneville, K.R.; Davis, M.M. Inadequate hydration, BMI, and obesity among us adults: NHANES 2009–2012. Ann. Fam. Med. 2016, 14, 320–324. [Google Scholar] [CrossRef]
- Rosinger, A.Y.; Lawman, H.G.; Akinbami, L.J.; Ogden, C.L. The role of obesity in the relation between total water intake and urine osmolality in us adults, 2009–2012. Am. J. Clin. Nutr. 2016, 104, 1554–1561. [Google Scholar] [CrossRef]
- Padrão, P.; Sousa, A.S.; Guerra, R.S.; Álvares, L.; Santos, A.; Borges, N.; Afonso, C.; Amaral, T.F.; Moreira, P. A Cross-Sectional Study on the Association between 24-h Urine Osmolality and Weight Status in Older Adults. Nutrients 2017, 9, 1272. [Google Scholar] [CrossRef]
- Watso, J.C.; Farquhar, W.B. Hydration Status and Cardiovascular Function. Nutrients 2019, 11, 1866. [Google Scholar] [CrossRef]
- Mohammedin, A.S.; AlSaid, A.H.; Almalki, A.M.; Alsaiari, A.R.; Alghamdi, F.N.; Jalalah, A.A.; Alghamdi, A.F.; Jatoi, N.A. Assessment of Hydration Status and Blood Pressure in a Tertiary Care Hospital at Al-Khobar. Cureus 2022, 14, e27706. [Google Scholar] [CrossRef]
- Nakamura, Y.; Watanabe, H.; Tanaka, A.; Yasui, M.; Nishihira, J.; Murayama, N. Effect of Increased Daily Water Intake and Hydration on Health in Japanese Adults. Nutrients 2020, 12, 1191. [Google Scholar] [CrossRef]
- Białkowska, A.; Górnicka, M.; Zielińska-Pukos, M.A.; Hamulka, J. Associations between Dietary Patterns, Anthropometric and Cardiometabolic Indices and the Number of MetS Components in Polish Adylts with Metabolic Disorders. Nutrients 2023, 15, 2237. [Google Scholar] [CrossRef]
- Gawecki, J. (Ed.) KomPAN® Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing of Nutritional Data KomPAN [in Polish: KomPAN® Kwestionariusz do Badania Poglądów i Zwyczajów Żywieniowych Oraz Procedura Opracowania Danych: Wersja Polskojęzyczna. In Committee of Human Nutrition Science, 2nd ed.; Polish Academy of Science: Olsztyn, Poland, 2020; Available online: https://knozc.pan.pl/images/stories/MLonnie/KomPAN_manual_english_version_25-11-2020_last_korekta_2021.pdf (accessed on 20 April 2021).
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Wadolowska, L. The 72-Item Semi-Quantitative Food Frequency Questionnaire (72-Item SQ-FFQ) for Polish Young Adults: Reproducibility and Relative Validity. Nutrients 2022, 14, 2696. [Google Scholar] [CrossRef] [PubMed]
- Norton, K.; Eston, R. (Eds.) Kinanthropometry and Exercise Physiology, 4th ed.; Routledge: London, UK, 2018; Available online: https://www.taylorfrancis.com/books/edit/10.4324/9781315385662/kinanthropometry-exercise-physiology-roger-eston-kevin-norton?refId=2b68726a-4b1e-4ff0-a7aa-acf6d1a9ca93&context=ubx (accessed on 20 February 2019).
- Batsis, J.A.; Mackenzie, T.A.; Bartels, S.J.; Sahakyan, K.R.; Somers, V.K.; Lopez-Jimenez, F. Diagnostic accuracy of Body Mass Index to identify obesity in older adults: NHANES 1999–2004. Int. J. Obes. 2016, 40, 761–767. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Finbarr, C.M.; Jean-Pierre, M.; Yves, R.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 2019, 39, 412–423. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef]
- Villafuerte, F.U.; Cànaves, J.L.; Montalvo, P.L.; Sancho, M.L.M.; Oliver, B.O.; Flores, P.B.; Mantolan, A.E.; Bordoy, J.P.; Ruiz, T.R.; Hernández, A.R.; et al. Effectiveness of a multifactorial intervention, consisting of self-management of antihypertensive medication, self-measurement of blood pressure, hypocaloric and low sodium diet, and physical exercise, in patients with uncontrolled hypertension taking 2 or more antihypertensive drugs. Medicine 2020, 99, e19769. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Rossitto, G.; Delles, C. Does Excess Tissue Sodium Storage Regulate Blood Pressure? Curr. Hypertens. Rep. 2022, 24, 115–122. [Google Scholar] [CrossRef]
- Hong, C.; Zhu, H.; Zhou, X.; Zhai, X.; Li, S.; Ma, W.; Liu, K.; Shirai, K.; Sheerah, H.A.; Cao, J. Association of Blood Urea Nitrogen with Cardiovascular Diseases and All-Cause Mortality in USA Adults: Results from NHANES 1999–2006. Nutrients 2023, 15, 461. [Google Scholar] [CrossRef]
- Zhu, Y.; Sasmita, B.R.; Hu, X.; Xue, Y.; Gan, H.; Xiang, Z.; Jiang, Y.; Huang, B.; Luo, S. Blood Urea Nitrogen for Short-Term Prognosis in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction. Int. J. Clin. Pract. 2022, 2022, 9396088. [Google Scholar] [CrossRef]
- Kostelnik, S.B.; Davy, K.P.; Hedrick, V.E.; Thomas, D.T.; Davy, B.M. The Validity of Urine Color as a Hydration Biomarker within the General Adult Population and Athletes: A Systematic Review. J. Am. Coll. Nutr. 2021, 40, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Perrier, E.T.; Buendia-Jimenez, I.; Vecchio, M.; Armstrong, L.E.; Tack, I.; Klein, A. Twenty-four-hour urine osmolality as a physiological index of adequate water intake. Dis. Markers 2015, 2015, 231063. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.; Summers, L.G.; Seal, A.D.; Colburn, A.T.; Mauromoustakos, A.; Perrier, E.T.; Bottin, J.H.; Kavouras, S.A. Afternoon urine osmolality is equivalent to 24 h for hydration assessment in healthy children. Eur. J. Clin. Nutr. 2020, 74, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Katsimardou, A.; Imprialos, K.; Stavropoulos, K.; Sachinidis, A.; Doumas, M.; Athyros, V. Hypertension in Metabolic Syndrome: Novel Insights. Curr. Hypertens. Rev. 2020, 16, 12–18. [Google Scholar] [CrossRef]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef]
- Rodriguez-Monforte, M.; Sánchez, E.; Barrio, F.; Costa, B.; Flores-Mateo, G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017, 56, 925–947. [Google Scholar] [CrossRef] [PubMed]
- Flemming, G.M.C.; Bussler, S.; Körner, A.; Kiess, W. Definition and early diagnosis of metabolic syndrome in children. J. Pediatr. Endocrinol. Metab. 2020, 33, 821–833. [Google Scholar] [CrossRef]
- Alkhulaifi, F.; Darkoh, C. Meal Timing, Meal Frequency and Metabolic Syndrome. Nutrients 2022, 14, 1719. [Google Scholar] [CrossRef] [PubMed]
- Gierach, M.; Junik, R. Insulin resistance in metabolic syndrome depending on the occurrence of its components. Endokrynol. Pol. 2021, 72, 243–248. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; de Koning, L.; Delgado-Lista, J.; Díaz-López, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome:An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Abdulsalam, R.; Alsadah, A.; Alkhuboli, M.; Muala, D.; Hussein, A.; Elmoselhi, A.B. Hydration status assessment and impinging factors among university students in the UAE. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6451–6458. [Google Scholar] [CrossRef]
- Maffeis, C.; Tommasi, M.; Tomasselli, F.; Spinelli, J.; Fornari, E.; Scattolo, N.; Marigliano, M.; Morandi, A. Fluid intake and hydration status in obese vs normal weight children. Eur. J. Clin. Nutr. 2016, 70, 560–565. [Google Scholar] [CrossRef]
- Dizdar, O.S.; Yeşiltepe, A.; Dondurmaci, E.; Ozkan, E.; Koç, A.; Gunal, A.I. Hydration status and blood pressure variability in primary hypertensive patients. Nefrologia 2020, 40, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Billington, C.K.; Appleton, J.P.; Berge, E.; Sprigg, N.; Glover, M.; Bath, P.M.W. Impact of hydration status on haemodynamics, effects of acute blood pressure-lowering treatment, and prognosis after stroke. Br. J. Clin. Pharmacol. 2018, 84, 2914–2922. [Google Scholar] [CrossRef]
- Okuya, Y.; Saito, Y.; Takahashi, T.; Kishi, K. Impact of Elevated Serum Uric Acid Level on Target Lesion Revascularization after Percutaneous Coronary Intervention for Chronic Total Occlusion. Am. J. Cardiol. 2019, 124, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, T.; Chen, J.; Li, Y.; Wang, L.; Huang, H.; Li, J. Hyperuricemia and Risk of Incident Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. PLoS ONE 2014, 9, e114259. [Google Scholar] [CrossRef]
- Ko, G.J.; Rhee, C.M.; Kalantar-Zadeh, K.; Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020, 31, 1667–1679. [Google Scholar] [CrossRef]
Women (n = 170) | Men (n = 120) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MetS 3 (n = 119) | MetS 4 (n = 33) | MetS 5 (n = 18) | MetS 3 (n = 71) | MetS 4 (n = 37) | MetS 5 (n = 12) | |||||||||
Variable | n | % | n | % | n | % | p-Value | n | % | n | % | n | % | p-Value |
Age (years) | 50.1 ± 14.1 | 55.9 ± 11.0 | 61.3 ± 7.2 | 0.012 1 | 53.1 ± 12.9 | 55.6 ± 10.8 | 54.1 ± 11.7 | 0.989 1 | ||||||
Education (%) | ||||||||||||||
primary/vocational | 21 | 18 | 5 | 15 | 3 | 17 | 15 | 21 | 13 | 35 | 7 | 58 | ||
secondary/‘I study’ | 48 | 40 | 23 | 70 | 10 | 55 | 0.031 2 | 31 | 44 | 13 | 35 | 1 | 8 | 0.055 2 |
higher | 50 | 42 | 5 | 15 | 5 | 28 | 25 | 35 | 11 | 30 | 4 | 34 | ||
Place of residence (%) | ||||||||||||||
village | 12 | 10 | 0 | 0 | 1 | 6 | 12 | 17 | 1 | 3 | 0 | 0 | ||
town | 18 | 15 | 7 | 21 | 2 | 11 | 0.328 2 | 8 | 11 | 7 | 19 | 3 | 25 | 0.093 2 |
city | 89 | 75 | 26 | 79 | 15 | 83 | 51 | 72 | 29 | 78 | 9 | 75 | ||
Health status—self-assessment (%) | ||||||||||||||
poor | 17 | 14 | 11 | 33 | 3 | 17 | 10 | 14 | 7 | 19 | 1 | 8 | ||
average | 75 | 63 | 17 | 52 | 13 | 72 | 0.107 2 | 40 | 56 | 20 | 54 | 10 | 84 | 0.411 2 |
good/very good | 27 | 23 | 5 | 15 | 2 | 11 | 21 | 30 | 10 | 27 | 1 | 8 | ||
Physical activity—self-assessment (%) | ||||||||||||||
now/low | 81 | 68 | 28 | 85 | 17 | 95 | 0.017 2 | 55 | 77 | 25 | 68 | 10 | 83 | 0.413 2 |
moderate/high | 38 | 32 | 5 | 15 | 1 | 5 | 16 | 23 | 12 | 32 | 2 | 17 | ||
Economic status—self-assessment (%) | ||||||||||||||
very poor/poor | 12 | 10 | 3 | 9 | 4 | 22 | 4 | 6 | 6 | 16 | 1 | 8 | ||
average | 66 | 56 | 23 | 70 | 9 | 50 | 0.302 2 | 35 | 49 | 13 | 35 | 9 | 75 | 0.078 2 |
good/very good | 41 | 34 | 7 | 21 | 5 | 28 | 32 | 45 | 18 | 49 | 2 | 17 | ||
BMI (kg/m2) | 28.06 ± 7.74 26.00 a | 33.35 ± 7.40 32.70 b | 35.31 ± 7.91 34.3 b | 0.001 1 | 28.51 ± 5.19 28.20 a | 32.64 ± 5.47 31.50 b | 35.02 ± 6.24 34.30 b | 0.009 1 | ||||||
BMI (%) | ||||||||||||||
<18.5 (kg/m2) | 9 | 8 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | ||
18.5–24.9 (kg/m2) | 44 | 37 | 4 | 12 | 2 | 11 | 18 | 25 | 0 | 0 | 0 | 0 | ||
25.0–29.9 (kg/m2) | 23 | 19 | 6 | 18 | 2 | 11 | 24 | 34 | 14 | 38 | 3 | 25 | ||
30.0–34.9 (kg/m2) | 19 | 16 | 10 | 30 | 6 | 33 | 0.009 2 | 19 | 27 | 13 | 35 | 3 | 25 | 0.011 2 |
35.0–39.9 (kg/m2) | 13 | 11 | 6 | 18 | 3 | 17 | 8 | 11 | 4 | 11 | 4 | 33 | ||
≥40.0 (kg/m2) | 11 | 9 | 7 | 22 | 5 | 28 | 0 | 0 | 6 | 16 | 2 | 17 | ||
DPs (%) | ||||||||||||||
ProHealthy | 58 | 49 | 13 | 40 | 8 | 45 | 17 | 24 | 11 | 29 | 2 | 17 | ||
High Sweet | 7 | 6 | 3 | 9 | 0 | 0 | 0.855 2 | 16 | 23 | 8 | 22 | 4 | 33 | 0.855 2 |
Prudent | 22 | 18 | 7 | 21 | 4 | 22 | 16 | 23 | 10 | 27 | 2 | 17 | ||
Low Sweet | 32 | 27 | 10 | 30 | 6 | 33 | 22 | 30 | 8 | 22 | 4 | 33 |
Variable | Women (n = 170) | p-Value | Men (n = 120) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
MetS 3 (n = 119) | MetS 4 (n = 33) | MetS 5 (n = 18) | MetS 3 (n = 71) | MetS 4 (n = 37) | MetS 5 (n = 12) | |||
Tea | 6.3 ± 1.1 | 6.5 ± 1.6 | 6.3 ± 1.5 | 0.849 | 6.2 ± 1.5 | 6.9 ± 1.3 | 5.5 ± 1.1 | 0.516 |
Coffee | 5.4 ± 1.5 | 4.8 ± 1.5 | 5.2 ± 1.9 | 0.302 | 4.8 ± 1.0 | 3.9 ± 0.9 | 4.1 ± 1.2 | 0.174 |
Milk | 3.8 ± 1.9 | 3.2 ± 1.0 | 3.9 ± 1.1 | 0.524 | 3.2 ± 0.8 | 3.6 ± 0.7 | 1.9 ± 0.2 | 0.199 |
Natural fermented milk drinks | 3.6 ± 1.3 | 3.9 ± 1.2 | 4.6 ± 1.1 | 0.238 | 3.5 ± 0.9 | 3.7 ± 0.7 | 2.9 ± 0.4 | 0.662 |
Flavoured fermented milk drinks | 1.1 ± 0.5 | 0.6 ± 0.2 | 0.9 ± 0.4 | 0.275 | 0.7 ± 0.4 | 0.5 ± 0.2 | 0.8 ± 0.4 | 0.824 |
Carbonated mineral water | 2.0 ± 0.6 | 1.9 ± 0.3 | 2.1 ± 0.4 | 0.964 | 3.6 ± 0.7 | 3.5 ± 0.8 | 3.3 ± 0.6 | 0.986 |
Non-carbonated mineral water | 5.8 ± 1.2 | 5.2 ± 1.5 | 2.9 ± 1.7 | 0.313 | 4.8 ± 1.6 | 4.9 ± 1.7 | 5.5 ± 1.4 | 0.811 |
Fruit juices | 1.6 ± 0.3 | 1.4 ± 0.3 | 1.8 ± 0.5 | 0.814 | 1.4 ± 0.1 | 1.6 ± 0.3 | 1.1 ± 0.6 | 0.618 |
Vegetable juices | 0.9 ± 0.3 | 1.0 ± 0.4 | 1.4 ± 0.6 | 0.481 | 0.6 ± 0.2 | 1.4 ± 0.3 | 0.7 ± 0.4 | 0.580 |
Fruit and vegetable juices | 1.6 ± 0.3 | 1.4 ± 0.4 | 1.8 ± 0.5 | 0.653 | 1.4 ± 0.3 | 1.9 ± 0.5 | 2.3 ± 0.6 | 0.036 |
Fruit nectars | 0.5 ± 0.2 | 0.5 ± 0.3 | 0.2 ± 0.1 | 0.823 | 0.4 ± 0.2 | 0.6 ± 0.3 | 0.2 ± 0.1 | 0.517 |
Non-carbonated fruit drinks | 0.6 ± 0.4 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.552 | 0.3 ± 0.1 | 0.7 ± 0.4 | 1.1 ± 0.7 | 0.316 |
Sweetened carbonated drinks | 0.4 ± 0.2 | 0.5 ± 0.3 | 0.2 ± 0.1 | 0.795 | 1.0 ± 0.5 | 1.1 ± 0.7 | 0.7 ± 0.4 | 0.239 |
Tea drinks | 1.3 ± 0.1 | 1.8 ± 0.3 | 1.2 ± 0.1 | 0.048 | 0.6 ± 0.4 | 0.5 ± 0.2 | 0.3 ± 0.2 | 0.930 |
Cola drinks | 0.8 ± 0.3 | 1.3 ± 0.4 | 0.9 ± 0.3 | 0.092 | 2.0 ± 0.6 | 1.0 ± 0.5 | 3.0 ± 0.9 | 0.114 |
Energy drinks | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.402 | 0.7 ± 0.4 | 0.3 ± 0.1 | 0.6 ± 0.3 | 0.608 |
Isotonic drinks | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.592 | 0.9 ± 0.3 | 0.5 ± 0.2 | 0.8 ± 0.3 | 0.207 |
Dietary patterns (%) | ||||||||
ProHealthy | 49 | 39 | 44 | 24 | 30 | 17 | ||
High Sweet | 6 | 9 | 0 | 0.856 | 23 | 22 | 33 | 0.758 |
Prudent | 19 | 21 | 22 | 23 | 27 | 17 | ||
Low Sweet | 26 | 31 | 34 | 30 | 21 | 33 |
Variable | Women (n = 170) | p-Value | Men (n = 120) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
MetS 3 (n = 119) | MetS 4 (n = 33) | MetS 5 (n = 18) | MetS 3 (n = 71) | MetS 4 (n = 37) | MetS 5 (n = 12) | |||
Blood pressure and anthropometric measurements | ||||||||
SBP (mmHG) | 129.7 ± 18.3 125.0 a | 139.7 ± 15.9 137.0 b | 149.2 ± 14.8 146.0 c | <0.001 | 129.4 ± 16.8 125.0 a | 138.2 ± 17.3 138.0 b | 150.1 ± 18.5 143.5 b | 0.001 |
BMI (kg/m2) | 28.05 ± 7.74 26.00 a | 33.35 ± 7.40 32.7 b | 35.31 ± 7.91 34.3 b | <0.001 | 28.51 ± 5.19 28.20 a | 32.64 ± 5.47 31.50 b | 35.02 ± 6.25 34.30 b | 0.002 |
HGS (kg) | 27.38 ± 7.02 28.00 a | 26.85 ± 5.99 28.00 a | 25.94 ± 7.04 27.00 a | 0.705 | 43.8 ± 10.9 42.0 a | 42.9 ± 10.9 41.0 a | 41.8 ± 10.5 43.0 a | 0.850 |
TBW (%) | 47.59 ± 7.55 47.2 a | 42.77 ± 5.63 41.5 b | 42.34 ± 5.89 41.2 b | 0.001 | 55.24 ± 6.13 55.20 a | 51.62 ± 5.14 51.90 b | 50.90 ± 4.95 50.75 b | 0.002 |
TBW (L) | 35.40 ± 5.23 35.60 a | 37.14 ± 5.21 37.00 a | 38.45 ± 5.37 37.15 a | 0.063 | 49.02 ± 7.47 48.20 a | 52.72 ± 7.76 51.40 a | 54.75 ± 11.23 53.4 a | 0.073 |
Blood | ||||||||
HCT (%) | 38.35 ± 4.78 38.80 a | 38.30 ± 5.16 38.80 a | 38.89 ± 5.14 38.00 a | 0.927 | 40.51 ± 6.51 41.20 a | 40.37 ± 5.78 41.30 a | 39.97 ± 6.65 40.70 a | 0.922 |
Uric acid (mg/dL) | 5.09 ± 1.63 5.20 a | 6.00 ± 2.29 5.90 b | 5.28 ± 1.39 5.80 b | 0.050 | 6.05 ± 1.80 6.00 a | 6.56 ± 2.29 6.20 a | 6.53 ± 1.92 6.95 a | 0.468 |
Na (mmol/L) | 139.88 ± 3.59 140.00 a | 139.93 ± 3.48 141.00 a | 138.56 ± 2.57 139.00 a | 0.086 | 138.49 ± 5.35 140.00 a | 138.54 ± 4.93 139.00 a | 139.58 ± 3.61 140.00 a | 0.698 |
K (mmol/L) | 4.23 ± 0.41 4.20 a | 4.26 ± 0.38 4.20 a | 4.50 ± 0.55 4.32 a | 0.165 | 4.34 ± 0.50 4.30 a | 4.35 ± 0.65 4.40 a | 4.22 ± 0.32 4.16 a | 0.725 |
Creatinine (mg/dL) | 0.85 ± 0.53 0.70 a | 0.95 ± 0.47 0.80 a | 0.87 ± 0.34 0.80 a | 0.201 | 1.05 ± 0.42 1.00 a | 1.03 ± 0.42 1.00 a | 1.39 ± 0.85 1.00 a | 0.683 |
Urea (mg/dL) | 35.1 ± 19.8 32.0 a | 43.1 ± 21.4 40.0 b | 43.3 ± 28.8 36.0 b | 0.049 | 43.5 ± 27.4 36.0 a | 40.8 ± 20.0 36.0 a | 52.7 ± 40.9 37.0 a | 0.883 |
Sosm (mOsm/kg) | 286.16 ± 6.28 285.00 a | 287.61 ± 6.38 287.00 a | 285.72 ± 6.34 285.00 a | 0.421 | 287.51 ± 4.99 287.00 a | 287.11 ± 5.86 287.00 a | 290.83 ± 4.84 291.00 a | 0.076 |
Urine | ||||||||
Uosm (mOsm/kg) | 536 ± 228 515 | 504 ± 221 471 | 479 ± 239 404 | 0.554 | 597 ± 258 577 a | 498 ± 153 514 a | 635 ± 281 745 a | 0.080 |
pH | 6.1 ± 0.70 6.0 a | 6.0 ± 0.7 6.0 a | 5.9 ± 0.6 6.0 a | 0.648 | 6.1 ± 0.7 6.0 a | 5.9 ± 0.7 6.0 a | 5.6 ± 0.9 5.5 b | 0.026 |
USG (g/cm3) | 1.017 ± 0.015 1.015 a | 1.019 ± 0.010 1.020 a | 1.014 ± 0.008 1.010 a | 0.133 | 1.017 ± 0.008 1.015 a | 1.020 ± 0.008 1.020 a | 1.015 ± 0.009 1.010 b | 0.045 |
Variables | SBP | DBP | BMI | WC | HGS | TBW | HCT | Uric Acid | Na | K | Creatinine | Urea | Sosm | Uosm | pH | USG | MetS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood pressure and anthropometric measurements | |||||||||||||||||
SBP | 1.000 | 0.576 *** | 0.150 * | 0.176 * | 0.134 * | −0.095 | −0.002 | −0.002 | 0.074 | 0.019 | −0.086 | −0.027 | 0.066 | 0.026 | 0.082 | −0.029 | 0.347 ** |
DBP | 0.576 *** | 1.000 | 0.267 * | 0.258 * | 0.152 * | −0.239 * | 0.091 | 0.010 | 0.067 | 0.027 | −0.190 * | −0.186 * | −0.057 | 0.020 | 0.079 | 0.050 | 0.247 * |
BMI (km/m2) | 0.150 * | 0.267 * | 1.000 | 0.891 *** | 0.171 * | −0.833 *** | 0.181 * | 0.361 ** | 0.052 | −0.001 | 0.022 | 0.032 | 0.079 | 0.168 * | −0.148 * | 0.026 | 0.475 *** |
WC | 0.176 * | 0.258 * | 0.891 *** | 1.000 | 0.187 * | −0.812 *** | 0.141 * | 0.396 ** | 0.062 | −0.029 | 0.031 | 0.014 | 0.036 | 0.126 * | −0.133 * | 0.054 | 0.553 *** |
HGS | 0.134 * | 0.152 * | 0.171 * | 0.187 * | 1.000 | −0.173 * | 0.122 | 0.092 | 0.158 * | 0.045 | 0.060 | −0.059 | 0.151 * | 0.126 | 0.122 | −0.071 | 0.073 |
TBW | −0.095 | −0.239 * | −0.833 *** | −0.812 *** | −0.173 * | 1.000 | −0.186 * | −0.280 * | −0.068 | 0.011 | −0.013 | −0.000 | −0.045 | −0.170 * | 0.039 | −0.023 | −0.414 *** |
Blood | |||||||||||||||||
HCT | −0.002 | 0.091 | 0.181 * | 0.141 * | 0.122 | −0.186 * | 1.000 | 0.091 | −0.012 | 0.084 | −0.100 | −0.127 * | −0.013 | 0.137 * | 0.070 | −0.018 | 0.118 |
Uric acid (mg/dL) | −0.002 | 0.010 | 0.361 ** | 0.396 ** | 0.092 | −0.280 * | 0.091 | 1.0000 | 0.127 * | −0.075 | 0.195 * | 0.205 * | 0.057 | −0.017 | −0.066 | −0.008 | 0.170 * |
Na (mmol/L) | 0.074 | 0.067 | 0.052 | 0.062 | 0.158 * | −0.068 | −0.012 | 0.127 * | 1.000 | −0.049 | −0.081 | −0.026 | 0.127 * | 0.131 * | 0.046 | 0.114 | −0.022 |
K (mmol/L) | 0.019 | 0.027 | −0.001 | −0.029 | 0.045 | 0.011 | 0.084 | −0.075 | −0.049 | 1.000 | 0.217 * | 0.152 * | 0.008 | −0.053 | −0.070 | −0.014 | 0.052 |
Creatinine (mg/dL) | −0.086 | −0.190 * | 0.022 | 0.031 | 0.060 | −0.013 | −0.100 | 0.195 * | −0.081 | 0.217 * | 1.000 | 0.796 *** | 0.229 * | −0.173 * | −0.105 | −0.114 | 0.053 |
Urea (mg/dL) | −0.027 | −0.186 * | 0.032 | 0.014 | −0.059 | −0.000 | −0.127 * | 0.205 * | −0.026 | 0.152 * | 0.796 *** | 1.000 | 0.223 * | −0.075 | −0.101 | −0.019 | 0.028 |
Sosm (mOsm/kg) | 0.066 | −0.057 | 0.079 | 0.036 | 0.151 * | −0.045 | −0.013 | 0.057 | 0.127 * | 0.008 | 0.229 ** | 0.223 * | 1.000 | 0.077 | −0.056 | −0.131 * | 0.043 |
Urine | |||||||||||||||||
Uosm (mOsm/kg) | 0.026 | 0.020 | 0.168 * | 0.126 * | 0.126 | −0.170 * | 0.137 * | −0.017 | 0.131 * | −0.053 | −0.173 * | −0.075 | 0.077 | 1.000 | −0.052 | 0.166 * | −0.028 |
pH | 0.082 | 0.079 | −0.148 * | −0.133 * | 0.122 | 0.039 | 0.070 | −0.066 | 0.046 | −0.070 | −0.105 | −0.100 | −0.056 | −0.052 | 1.000 | −0.170 * | −0.143 * |
USG (g/cm3) | −0.029 | 0.050 | 0.026 | 0.054 | −0.071 | −0.023 | −0.018 | −0.008 | 0.1149 | −0.014 | −0.114 | −0.019 | −0.131 * | 0.166 * | −0.170 * | 1.000 | 0.016 |
Other | |||||||||||||||||
MetS | 0.347 ** | 0.247 * | 0.475 *** | 0.553 *** | 0.073 | −0.414 *** | 0.118 | 0.170 * | −0.022 | 0.052 | 0.053 | 0.028 | 0.043 | −0.028 | −0.143 * | 0.016 | 1.000 |
DPs | −0.071 | −0.083 | 0.017 | 0.014 | 0.043 | −0.014 | −0.058 | −0.003 | 0.058 | −0.042 | 0.033 | 0.039 | 0.075 | −0.059 | −0.011 | −0.073 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frąckiewicz, J.; Białkowska, A.; Drywień, M.E.; Hamulka, J. Association between Biochemical Parameters, Especially Hydration Status and Dietary Patterns, and Metabolic Alterations in Polish Adults with Metabolic Syndrome. Appl. Sci. 2024, 14, 4254. https://doi.org/10.3390/app14104254
Frąckiewicz J, Białkowska A, Drywień ME, Hamulka J. Association between Biochemical Parameters, Especially Hydration Status and Dietary Patterns, and Metabolic Alterations in Polish Adults with Metabolic Syndrome. Applied Sciences. 2024; 14(10):4254. https://doi.org/10.3390/app14104254
Chicago/Turabian StyleFrąckiewicz, Joanna, Agnieszka Białkowska, Małgorzata Ewa Drywień, and Jadwiga Hamulka. 2024. "Association between Biochemical Parameters, Especially Hydration Status and Dietary Patterns, and Metabolic Alterations in Polish Adults with Metabolic Syndrome" Applied Sciences 14, no. 10: 4254. https://doi.org/10.3390/app14104254
APA StyleFrąckiewicz, J., Białkowska, A., Drywień, M. E., & Hamulka, J. (2024). Association between Biochemical Parameters, Especially Hydration Status and Dietary Patterns, and Metabolic Alterations in Polish Adults with Metabolic Syndrome. Applied Sciences, 14(10), 4254. https://doi.org/10.3390/app14104254