A Comparison Study on the Metabolites in PC-3, RWPE-1, and Chrysin-Treated PC-3 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Chemical
2.2. Cell Culture and GC-MS
2.3. Identification and Quantification of Metabolites
2.4. Statistical Data Analysis
3. Results
3.1. Profiling of Metabolites
3.2. Multivariate Analysis
3.3. Metabolic Difference between Groups RWPE-1 and PC-3 Cells
3.4. Metabolic Difference between Groups PC-3 and Chrysin-Treated PC-3 Cells
3.5. Metabolic Difference between Groups RWPE-1, PC-3, and Chrysin-Treated PC-3 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. (In English) [Google Scholar] [CrossRef] [PubMed]
- Humphrey, M. Prostate Cancer: Diagnosis & Treatment. Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/prostate-cancer/diagnosis-treatment/drc-20353093 (accessed on 23 December 2022).
- Evans, A.A.; Chen, G.; Ross, E.A.; Shen, F.-M.; Lin, W.-Y.; London, W.T. Eight-year follow-up of the 90,000-person Haimen City cohort: I. Hepatocellular carcinoma mortality, risk factors, and gender differences. Cancer Epidemiol. Biomark. Prev. 2002, 11, 369–376. [Google Scholar]
- Athersuch, T. Metabolome analyses in exposome studies: Profiling methods for a vast chemical space. Arch. Biochem. Biophys. 2016, 589, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Heiden, M.G.V.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Bailey, N.J.; Johnson, H.E. Measuring the metabolome: Current analytical technologies. Analyst 2005, 130, 606–625. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; He, J.; Yu, W.; Xiao, J.; Guo, Y.; Zhu, X.; Liu, Y. Synthesis and biological evaluation of amino acid derivatives containing chrysin that induce apoptosis. Nat. Prod. Res. 2021, 35, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Park, W. Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnol. Bioprocess Eng. 2015, 20, 1026–1034. [Google Scholar] [CrossRef]
- Samarghandian, S.; Afshari, J.T.; Davoodi, S. Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics 2011, 66, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Lee, S.-O.; Xu, Y.; Kim, J.-E.; Lee, H.-J. SPHK/HIF-1α Signaling Pathway Has a Critical Role in Chrysin-Induced Anticancer Activity in Hypoxia-Induced PC-3 Cells. Cells 2022, 11, 2787. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. A J. Chemom. Soc. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Azmi, A.S.; Bao, B.; Sarkar, F.H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 2013, 32, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Hannafon, B.N.; Ding, W.-Q. Intercellular communication by exosome-derived microRNAs in cancer. Int. J. Mol. Sci. 2013, 14, 14240–14269. [Google Scholar] [CrossRef] [PubMed]
- Roma-Rodrigues, C.; Fernandes, A.R.; Baptista, P.V. Exosome in tumour microenvironment: Overview of the crosstalk between normal and cancer cells. BioMed Res. Int. 2014, 2014, 179486. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.D.; Wu, Y.; Shen, H.Y.; Lv, M.M.; Chen, W.X.; Zhang, X.H.; Zhong, S.L.; Tang, J.H.; Zhao, J.H. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015, 106, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, S.; Teng, X.; Melamud, E.; Lazar, M.A.; White, E.; Rabinowitz, J.D. LC-MS and GC-MS based metabolomics platform for cancer research. Cancer Metab. 2014, 2, 41. [Google Scholar] [CrossRef]
- Abel, S.D.; Dadhwal, S.; Gamble, A.B.; Baird, S.K. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ 2018, 6, e5115. [Google Scholar] [CrossRef]
- Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol. 2017, 232, 3786–3797. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Xue, J.; Li, Z.; Shi, X.; Jiang, B.-H.; Fang, J. Chrysin inhibits expression of hypoxia-inducible factor-1α through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis. Mol. Cancer Ther. 2007, 6, 220–226. [Google Scholar] [CrossRef]
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Simal-Gandara, J.; Kopustinskiene, D.M.; Bernatoniene, J.; Samarghandian, S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int. 2021, 21, 214. [Google Scholar] [CrossRef] [PubMed]
- Dereziński, P.; Klupczynska, A.; Sawicki, W.; Pałka, J.A.; Kokot, Z.J. Amino acid profiles of serum and urine in search for prostate cancer biomarkers: A pilot study. Int. J. Med. Sci. 2017, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 2014, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Phang, J.M. Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment. Autophagy 2012, 8, 1407–1409. [Google Scholar] [CrossRef] [PubMed]
- Franko, A.; Shao, Y.; Heni, M.; Hennenlotter, J.; Hoene, M.; Hu, C.; Liu, X.; Zhao, X.; Wang, Q.; Birkenfeld, A.L.; et al. Human prostate cancer is characterized by an increase in urea cycle metabolites. Cancers 2020, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, J.; Qu, Z.; Yang, Z.; Jia, X.; Lin, Y.; He, Q.; Zhang, L.; Luo, Y. Causal associations between serum urea and cancer: A mendelian randomization study. Genes 2021, 12, 498. [Google Scholar] [CrossRef] [PubMed]
Compounds | RT 1 (min) | RWPE-1 2 | PC3 | PC3_C | Quantitative Ion | TMS 3 | RI 4 |
---|---|---|---|---|---|---|---|
Alcohols (6) | |||||||
Threitol | 28.36 | 31.63 | 37.27 | 34.02 | 147 | 4 | 1494 |
Arabinitol | 35.42 | 2.92 | 3.87 | 2.84 | 103 | 5 | 1706 |
Arabitol | 35.66 | 1.95 | 2.91 | 2.36 | 103 | 5 | 1711 |
Mannitol (1) | 45.13 | 2.44 | 2.91 | 2.36 | 147 | 6 | 1918 |
Mannitol (2) | 45.43 | 38.93 | 55.18 | 46.76 | 147 | 6 | 1925 |
Myoinositol | 51.53 | 103.67 | 172.86 | 155.84 | 305 | 6 | 2080 |
Amino acids (7) | |||||||
Valine | 16.87 | 22.43 | 32.95 | N.D. | 72 | 1 | 1085 |
Leucine | 18.93 | 9.28 | 58.63 | N.D. | 86 | 1 | 1152 |
Isoleucine (1) | 19.58 | 24.89 | 73.19 | N.D. | 86 | 1 | 1174 |
Proline | 19.66 | N.D. 5 | 78.04 | N.D. | 70 | 1 | 1177 |
Isoleucine (2) | 22.81 | N.D. | 92.82 | N.D. | 158 | 2 | 1285 |
Glycine | 23.20 | N.D. | 113.34 | N.D. | 174 | 3 | 1299 |
Pyroglutamic acid | 28.93 | 144.13 | 637.21 | 13.40 | 156 | 2 | 1515 |
Carboxylic acids (7) | |||||||
Propionic acid | 15.56 | 11.68 | 23.74 | 5.66 | 174 | 1 | 1043 |
2-Hydroxybutyric acid | 17.91 | 9.73 | 4.84 | 4.25 | 131 | 2 | 1119 |
Pentanoic acid | 19.51 | 8.28 | 6.78 | N.D. | 89 | 1 | 1172 |
2-Keto-3-methylpentanoic acid | 20.11 | 0.97 | 2.41 | N.D. | 89 | 1 | 1192 |
2-Ketoisocaproic acid | 20.54 | 2.92 | 4.84 | N.D. | 89 | 1 | 1206 |
2-Pyrrolidone-5-carboxylic acid | 28.48 | 167.95 | 8.24 | 159.85 | 84 | 1 | 1499 |
2,3,4-Trihydroxybutyric acid | 29.30 | 3.41 | 8.23 | 8.53 | 147 | 4 | 1528 |
Organic acids (5) | |||||||
Lactic acid | 15.86 | 11,412.12 | 13,860.03 | 13,449.80 | 147 | 2 | 1052 |
Oxalic acid | 18.37 | 9.73 | 43.08 | N.D. | 147 | 2 | 1134 |
Succinic acid | 23.43 | 40.90 | 53.30 | 36.89 | 147 | 2 | 1307 |
Malic acid | 27.94 | 4.38 | 8.24 | 4.73 | 147 | 3 | 1478 |
2-Hydroxyglutaric acid | 30.29 | 0.97 | 12.59 | N.D. | 129 | 3 | 1562 |
Sugar acid (1) | |||||||
Glyceric acid | 23.78 | 0.97 | 0.97 | 6.15 | 189 | 3 | 1320 |
Sugars (7) | |||||||
Tagatofuranose | 39.42 | 2.42 | 20.18 | 0.48 | 217 | 5 | 1972 |
Fructopyranose | 39.98 | 2.43 | 35.23 | N.D. | 204 | 5 | 1804 |
Fructose (1) | 42.58 | 255.01 | 250.75 | 245.14 | 103 | 5 | 1861 |
Fructose (2) | 43.02 | 182.02 | 165.35 | 191.22 | 103 | 5 | 1871 |
Glucose (1) | 43.69 | 0.48 | 192.41 | 170.02 | 319 | 5 | 1885 |
Glucose (2) | 44.54 | N.D. | 24.22 | 20.78 | 319 | 5 | 1904 |
Glucose (3) | 47.49 | N.D. | 86.82 | 4.74 | 204 | 5 | 1972 |
Others (2) | |||||||
Urea | 21.37 | N.D. | 210.52 | N.D. | 147 | 2 | 1235 |
Phosphoric acid | 22.18 | 996.83 | 1210.09 | 1281.87 | 299 | 3 | 1263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, J.-E.; Lee, E.-O.; Lee, H.-J. A Comparison Study on the Metabolites in PC-3, RWPE-1, and Chrysin-Treated PC-3 Cells. Appl. Sci. 2024, 14, 4255. https://doi.org/10.3390/app14104255
Lee J-H, Kim J-E, Lee E-O, Lee H-J. A Comparison Study on the Metabolites in PC-3, RWPE-1, and Chrysin-Treated PC-3 Cells. Applied Sciences. 2024; 14(10):4255. https://doi.org/10.3390/app14104255
Chicago/Turabian StyleLee, Jae-Hyeon, Jung-Eun Kim, Eun-Ok Lee, and Hyo-Jeong Lee. 2024. "A Comparison Study on the Metabolites in PC-3, RWPE-1, and Chrysin-Treated PC-3 Cells" Applied Sciences 14, no. 10: 4255. https://doi.org/10.3390/app14104255
APA StyleLee, J.-H., Kim, J.-E., Lee, E.-O., & Lee, H.-J. (2024). A Comparison Study on the Metabolites in PC-3, RWPE-1, and Chrysin-Treated PC-3 Cells. Applied Sciences, 14(10), 4255. https://doi.org/10.3390/app14104255