Unusual Animal Behavior as a Possible Candidate of Earthquake Prediction
Abstract
:1. Introduction
2. Review of General Studies of Unusual Animal Behavior in Association with EQs
3. Electromagnetic Effects as the Major Component of Short-Term EQ Prediction
4. Recent Work on Dairy Cows’ Milk Yield Changes
5. Our Latest Result for a Particular Tokyo EQ on 7 October 2021
5.1. The EQ Treated in This Paper
5.2. Monitoring Stations of Dairy Cows’ Milk Yields and Observational Results
5.2.1. Monitoring Stations
5.2.2. Observational Results
Chiba Station (D = 15 km)
Isumi Station
Asahi Station
Minami-Boso Station
5.2.3. Summary of the Observed Results on Cows’ Milk Yield
- (a)
- Conspicuous changes in daily cows’ milk yields at the closest station of Chiba-shi with D = 15 km were observed. At this station, a very clear depletion in cows’ milk yield was detected during a period of a few days from 26 September to 28 September. The maximum depletion was observed on 27 September (or 9 days before the EQ), and the degree of depletion was the greatest, exceeding −3σ, definitely because of the shortest distance from the EQ epicenter.
- (b)
- On the other hand, the behavior of cows’ milk yields at farther stations of Isumi (D = 43 km), Asahi (D = 57 km), and Minami-boso (D = 63 km) looks very variable, in such a way that Minami-boso, at the farthest distance, yielded a significant anomaly and Isumi exhibited a small anomaly exceeding −1.5σ, with no effect at Asahi.
- (c)
- (d)
- Multi-stationed monitoring of cows’ milk yields is of crucial importance as a means of short-term EQ prediction.
5.2.4. Sensory Mechanism of Animals Based on a Comparison of Anomalies of Cows’ Milk Yield with Electromagnetic Anomalies for This EQ
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-Term Earthquake Prediction: Current Status of Seismo-Electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y. Current Status of Seismo-Electromagnetics for Short-Term Earthquake Prediction. Geomat. Nat. Hazards Risk 2010, 1, 115–155. [Google Scholar] [CrossRef]
- Hayakawa, M. Earthquake Prediction with Radio Techniques; Wiley: Singapore, 2016; ISBN 978-1-118-77016-0. [Google Scholar]
- Hayakawa, M. Earthquake Precursor Studies in Japan. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; American Geophysical Union (AGU): Washington, DC, USA, 2018; pp. 7–18. ISBN 978-1-119-15694-9. [Google Scholar]
- Pulinets, S.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-540-20839-6. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M. Seismo-Electromagnetics and Related Phenomena: History and Latest Results; Terrapub: Tokyo, Japan, 2008; ISBN 978-4-88704-143-1. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; American Geophysical Union: Hoboken, NJ, USA, 2018; ISBN 978-1-119-15693-2. [Google Scholar]
- Sorokin, V.M.; Chmyrev, V.M.; Hayakawa, M. Electrodynamic Coupling of Lithosphere—Atmosphere—Ionosphere of the Earth; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Evernden, J. Abnormal Animal Behavior Prior to Earthquakes; U.S. Geological Survey Office of Earthquake Studies, U.S. Department of Commerce, National Technical Information Service: Alexandria, VA, USA, 1976.
- Buskirk, R.E.; Frohlich, C.; Latham, G.V. Unusual Animal Behavior before Earthquakes: A Review of Possible Sensory Mechanisms. Rev. Geophys. 1981, 19, 247–270. [Google Scholar] [CrossRef]
- Tributsch, H. When the Snakes Awake: Animals and Earthquake Prediction; MIT Press: Cambridge, MA, USA, 1984; ISBN 978-0-262-70025-2. [Google Scholar]
- Kirschvink, J.L. Earthquake Prediction by Animals: Evolution and Sensory Perception. Bull. Seismol. Soc. Am. 2000, 90, 312–323. [Google Scholar] [CrossRef]
- Bhargava, N.; Katiyar, V.; Sharma, M.; Pradhan, P. Earthquake Prediction through Animal Behavior: A Review. Indian J. Biomech. Spec. Issue 2009, 7–8. [Google Scholar]
- Rikitake, T. Biosystem Behaviour as an Earthquake Precursor. Tectonophysics 1978, 51, 1–20. [Google Scholar] [CrossRef]
- Skidmore, W.D.; Baum, S.J. Biological Effects in Rodents Exposed to 108 Pulses of Electromagnetic Radiation. Health Phys. 1974, 26, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Gawthrop, W.H.; Johnson, R.; Haberman, R.E.; Wyss, M. Preliminary Experiments on the Behavior of Mice before Rock Fracture in the Laboratory. In Abnormal Animal Behavior Prior to Earthquakes, I; U.S. Department of Commerce, National Technical Information Service: Alexandria, VA, USA, 1976; pp. 205–212. [Google Scholar]
- Mulilis, J.; White, M. Behaviors of the Catfish Corydoras Aeneus for Use in Earthquake Prediction. Earthq. Predict. Res. 1986, 4, 47–67. [Google Scholar]
- Rikitake, T. Nature of Macro-Anomaly Precursory to an Earthquake. J. Phys. Earth 1994, 42, 149–163. [Google Scholar] [CrossRef]
- Asano, M. Catfish Can Sense Electricity. Earthq. J. 1998, 26, 52–59. [Google Scholar]
- Yamanaka, C.; Asahara, H.; Matsumoto, H.; Ikeya, M. Wideband Environmental Electromagnetic Wave Observation Searching for Seismo-Electromagnetic Signals and Simultaneous Observation of Catfish Behavior -The Cases for the Western Tottori and the Geiyo Earthquakes-. J. Atmos. Electr. 2002, 22, 277–290. [Google Scholar] [CrossRef]
- Rikitake, T. Predictions and Precursors of Major Earthquakes: The Science of Macro-Anomaly Precursory to an Earthquake; Terra Scientific Publishing Company: Tokyo, Japan, 2001. [Google Scholar]
- Hayakawa, M. Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake. Animals 2013, 3, 19–32. [Google Scholar] [CrossRef]
- Yokoi, S.; Ikeya, M.; Yagi, T.; Nagai, K. Mouse Circadian Rhythm before the Kobe Earthquake in 1995. Bioelectromagnetics 2003, 24, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Ikeya, M. Earthquakes and Animals: From Folk Legends to Science; World Scientific Pub Co., Inc.: Hackensack, NJ, USA, 2004; ISBN 978-981-238-591-8. [Google Scholar]
- Li, Y.; Liu, Y.; Jiang, Z.; Guan, J.; Yi, G.; Cheng, S.; Yang, B.; Fu, T.; Wang, Z. Behavioral Change Related to Wenchuan Devastating Earthquake in Mice. Bioelectromagnetics 2009, 30, 613–620. [Google Scholar] [CrossRef]
- Grant, R.A.; Halliday, T. Predicting the Unpredictable; Evidence of Pre-Seismic Anticipatory Behaviour in the Common Toad. J. Zool. 2010, 281, 263–271. [Google Scholar] [CrossRef]
- Fidani, C. Biological Anomalies around the 2009 L’Aquila Earthquake. Animals 2013, 3, 693–721. [Google Scholar] [CrossRef]
- Wikelski, M.; Mueller, U.; Scocco, P.; Catorci, A.; Desinov, L.V.; Belyaev, M.Y.; Keim, D.; Pohlmeier, W.; Fechteler, G.; Martin Mai, P. Potential Short-Term Earthquake Forecasting by Farm Animal Monitoring. Ethology 2020, 126, 931–941. [Google Scholar] [CrossRef]
- Nishimura, T.; Okano, H.; Tada, H.; Nishimura, E.; Sugimoto, K.; Mohri, K.; Fukushima, M. Lizards Respond to an Extremely Low-Frequency Electromagnetic Field. J. Exp. Biol. 2010, 213, 1985–1990. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Hayakawa, M. A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere. Open J. Earthq. Res. 2020, 9, 113–141. [Google Scholar] [CrossRef]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-Atmosphere-Ionosphere Coupling as Governing Mechanism for Preseismic Short-Term Events in Atmosphere and Ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) Model—A Unified Concept for Earthquake Precursors Validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Freund, F. Stress-Activated Positive Hole Charge Carriers in Rocks and the Generation of Pre-Earthquake Signals. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 41–96. [Google Scholar]
- Hayakawa, M.; Asano, T.; Rozhnoi, A.; Solovieva, M. Very-Low- to Low-Frequency Sounding of Ionospheric Perturbations and Possible Association with Earthquakes. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; American Geophysical Union (AGU): Washington, DC, USA, 2018; pp. 275–304. ISBN 978-1-119-15694-9. [Google Scholar]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary Joint Statistical Seismic Influence on Ionospheric Parameters Recorded by the CSES and DEMETER Satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi Precursors Analysis Associated with the Powerful Ecuador (MW = 7.8) Earthquake of 16 April 2016 Using Swarm Satellites Data in Conjunction with Other Multi-Platform Satellite and Ground Data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory Worldwide Signatures of Earthquake Occurrences on Swarm Satellite Data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed]
- Freund, F.; Mignan, A.; Ouillon, G.; Sornette, D. The Global Earthquake Forecasting System: Towards Using Non-Seismic Precursors for the Prediction of Large Earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 1–490. [Google Scholar]
- Liu, J.-Y.T.; Shen, X.; Chang, F.-Y.; Chen, Y.-I.; Sun, Y.-Y.; Chen, C.-H.; Pulinets, S.; Hattori, K.; Ouzounov, D.; Tramutoli, V.; et al. Spatial Analyses on Pre-Earthquake Ionospheric Anomalies and Magnetic Storms Observed by China Seismo-Electromagnetic Satellite in August 2018. Geosci. Lett. 2024, 11, 4. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- Sasmal, S.; Chowdhury, S.; Kundu, S.; Politis, D.Z.; Potirakis, S.M.; Balasis, G.; Hayakawa, M.; Chakrabarti, S.K. Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere 2021, 12, 1059. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling Effects Prior to the 2018 Mw = 7.5 Indonesia Earthquake from Seismic, Atmospheric and Ionospheric Data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, T.J.Y.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and Ionospheric Coupling Phenomena Associated with Large Earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Hayakawa, M.; Izutsu, J.; Schekotov, A.; Yang, S.-S.; Solovieva, M.; Budilova, E. Lithosphere–Atmosphere–Ionosphere Coupling Effects Based on Multiparameter Precursor Observations for February–March 2021 Earthquakes (M~7) in the Offshore of Tohoku Area of Japan. Geosciences 2021, 11, 481. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.-S.; Solovieva, M.; Hobara, Y. Multi-Parameter Observations of Seismogenic Phenomena Related to the Tokyo Earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- D’Arcangelo, S.; Regi, M.; De Santis, A.; Perrone, L.; Cianchini, G.; Soldani, M.; Piscini, A.; Fidani, C.; Sabbagh, D.; Lepidi, S.; et al. A Multiparametric-Multilayer Comparison of the Preparation Phase of Two Geophysical Events in the Tonga-Kermadec Subduction Zone: The 2019 M7.2 Kermadec Earthquake and 2022 Hunga Ha’apai Eruption. Front. Earth Sci. 2023, 11, 1267411. [Google Scholar] [CrossRef]
- Qidong, D.; Pu, J.; Jones, L.M.; Molnar, P. A Preliminary Analysis of Reported Changes in Ground Water and Anom alous Animal Behavior Before the 4 February 1975 Haicheng Earthquake. In Earthquake Prediction; American Geophysical Union (AGU): Washington, DC, USA, 1981; pp. 543–565. ISBN 978-1-118-66574-9. [Google Scholar]
- Nikonov, A.A. Abnormal Animal Behaviour as a Precursor of the 7 December 1988 Spitak, Armenia, Earthquake. Nat. Hazards 1992, 6, 1–10. [Google Scholar] [CrossRef]
- Rushen, J.; de Passillé, A.M.B.; Munksgaard, L. Fear of People by Cows and Effects on Milk Yield, Behavior, and Heart Rate at Milking1. J. Dairy Sci. 1999, 82, 720–727. [Google Scholar] [CrossRef]
- Rushen, J.; Munksgaard, L.; Marnet, P.G.; DePassillé, A.M. Human Contact and the Effects of Acute Stress on Cows at Milking. Appl. Anim. Behav. Sci. 2001, 73, 1–14. [Google Scholar] [CrossRef]
- Yamauchi, H.; Uchiyama, H.; Ohtani, N.; Ohta, M. Unusual Animal Behavior Preceding the 2011 Earthquake off the Pacific Coast of Tohoku, Japan: A Way to Predict the Approach of Large Earthquakes. Animals 2014, 4, 131–145. [Google Scholar] [CrossRef]
- Yamauchi, H.; Hayakawa, M.; Asano, T.; Ohtani, N.; Ohta, M. Statistical Evaluations of Variations in Dairy Cows’ Milk Yields as a Precursor of Earthquakes. Animals 2017, 7, 19. [Google Scholar] [CrossRef]
- Hayakawa, M.; Asano, T.; Schekotov, A.; Yamauchi, H. A Study on the Correlation of Milk Yield of Cows with Seismicity and ULF Magnetic Field Variations. Open J. Earthq. Res. 2016, 5, 206–218. [Google Scholar] [CrossRef]
- Woith, H.; Petersen, G.M.; Hainzl, S.; Dahm, T. Review: Can Animals Predict Earthquakes? Bull. Seismol. Soc. Am. 2018, 108, 1031–1045. [Google Scholar] [CrossRef]
- Hayakawa, M.; Yamauchi, H.; Ohtani, N.; Ohta, M.; Tosa, S.; Asano, T.; Schekotov, A.; Izutsu, J.; Potirakis, S.M.; Eftaxias, K. On the Precursory Abnormal Animal Behavior and Electromagnetic Effects for the Kobe Earthquake (M~6) on April 12, 2013. Open J. Earthq. Res. 2016, 5, 165–171. [Google Scholar] [CrossRef]
- Schekotov, A.; Fedorov, E.; Molchanov, O.A.; Hayakawa, M. Low Frequency Electromagnetic Precursors as a Prospect for Earthquake Prediction. Earthq. Predict. Stud. Seismo Electromagn. 2013, 81–99. [Google Scholar]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P.; Hobara, Y. Seismogenic ULF/ELF Wave Phenomena: Recent Advances and Future Perspectives. Open J. Earthq. Res. 2023, 12, 45–113. [Google Scholar] [CrossRef]
- Hattori, K. ULF Geomagnetic Changes Associated with Major Earthquakes. In Earthquake Prediction Studies Seismo Electromagnetics; Hayakawa, M., Ed.; Terrapub: Tokyo, Japan, 2013; pp. 129–152. [Google Scholar]
- Hayakawa, M.; Hattori, K.; Ohta, K. Monitoring of ULF (Ultra-Low-Frequency) Geomagnetic Variations Associated with Earthquakes. Sensors 2007, 7, 1108–1122. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Yamaguchi, H.; Hobara, Y. Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling. Atmosphere 2023, 14, 1255. [Google Scholar] [CrossRef]
- Panagopoulos, D.J.; Balmori, A.; Chrousos, G.P. On the Biophysical Mechanism of Sensing Upcoming Earthquakes by Animals. Sci. Total Environ. 2020, 717, 136989. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, M.; Yamauchi, H. Unusual Animal Behavior as a Possible Candidate of Earthquake Prediction. Appl. Sci. 2024, 14, 4317. https://doi.org/10.3390/app14104317
Hayakawa M, Yamauchi H. Unusual Animal Behavior as a Possible Candidate of Earthquake Prediction. Applied Sciences. 2024; 14(10):4317. https://doi.org/10.3390/app14104317
Chicago/Turabian StyleHayakawa, Masashi, and Hiroyuki Yamauchi. 2024. "Unusual Animal Behavior as a Possible Candidate of Earthquake Prediction" Applied Sciences 14, no. 10: 4317. https://doi.org/10.3390/app14104317
APA StyleHayakawa, M., & Yamauchi, H. (2024). Unusual Animal Behavior as a Possible Candidate of Earthquake Prediction. Applied Sciences, 14(10), 4317. https://doi.org/10.3390/app14104317