Addressing the Non-Stationarity and Complexity of Time Series Data for Long-Term Forecasts
Abstract
:1. Introduction
- We propose a generalized deep learning model capable of addressing both univariate and multivariate forecasting problems.
- We present a novel “weak-stationarizing” block, which utilizes PSD values at different frequency levels to determine the appropriate number of rollbacks before differencing, effectively rendering the time series weak-stationary. The “non-stationarity restoring” black is employed to restore non-stationarity, ensuring information preservation for final predictions. Ablation studies demonstrate the significant performance improvement achieved with these blocks.
- We modify the ConvMixer architecture for use in TSF, which operates on the spectral decompositions of the time series to produce high-quality forecasts.
- The proposed overall architecture obtains an average of 21% and up to 64.6% of relative improvements compared to the previous state-of-the-art methods on six real-world datasets, ETT, electricity, traffic, weather, ILI, and exchange, in various settings.
1.1. Related Works
1.1.1. Distribution Shift and Non-Stationary Time Series
1.1.2. Spectral Decomposition
2. Methodology
2.1. Problem Formulation
2.2. Spectral Decomposition
2.3. Weak-Stationarizing Block and Non-Stationarity Restoring Block
2.4. ConvMixer
2.5. Architecture Overview
3. Experiments
3.1. Datasets
- ETT [4]: It consists of oil temperature readings of electrical transformers and six other factors affecting the temperature; collected from July 2016 and July 2018.
- Exchange [57]: It includes daily exchange rates of eight different currencies collected from 1990 to 2016.
- Electricity (https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014, accessed on 22 September 2021): This dataset contains electricity consumption recordings of 321 customers from 2012 to 2014.
- Weather (https://www.bgc-jena.mpg.de/wetter/, accessed on 22 September 2021): A collection of measurements of 21 different meteorological indicators, such as air temperature and humidity, collected every 10 min throughout 2020.
- Traffic (https://pems.dot.ca.gov/, accessed on 22 September 2021): Records of readings collected hourly from sensors on San Francisco Bay area freeways, indicating the occupancy rate of roads; provided by the California Department of Transportation.
- ILI (https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html, accessed on 22 September 2021): This dataset was collected by the Center for Disease Control and Prevention of the United States; it consists of the weekly counts of patients displaying influenza-like illness symptoms between 2002 and 2021.
3.2. Implementation Details
3.3. Results
3.3.1. Results for Multivariate Setting
3.3.2. Results for Univariate Setting
3.4. Ablation Study
3.4.1. Impact of Processing the Time Series in the Spectral Domain and the Usage of “Weak-Stationarizing” and “Non-Stationarity Restoring” Blocks
3.4.2. Impact of Varying the Number of ConvMixer Layers
3.4.3. Analysis of the Generalization Capabilities
3.5. Efficiency Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TSF | Time series forecasting |
ARIMA | Auto regressive integrated moving average |
LSTF | Long-sequence time series forecasting |
TCN | Temporal convolutional network |
PSD | Power spectral density |
FFT | Fast Fourier transform |
DFFT | Discrete fast Fourier transform |
SOTA | State of the art |
RNN | Recurrent neural network |
DA | Domain adaptation |
DG | Domain generalization |
GNN | Graph neural network |
ORV | Optimum roll back value |
WSO | Weak-stationary output |
NSO | Non-stationary output |
WS | Weak stationarizing |
NSR | Non-stationarity restoring |
DW | Depthwise convolution |
PW | Pointwise convolution |
LWL | Look-back window length |
MSE | Mean squared error |
MAE | Mean average error |
References
- Laptev, N.; Yosinski, J.; Li, L.E.; Smyl, S. Time-series extreme event forecasting with neural networks at uber. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 34, pp. 1–5. [Google Scholar]
- Song, H.; Rajan, D.; Thiagarajan, J.J.; Spanias, A. Attend and diagnose: Clinical time series analysis using attention models. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Churpek, M.M.; Adhikari, R.; Edelson, D.P. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016, 102, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021. [Google Scholar]
- de Bézenac, E.; Rangapuram, S.S.; Benidis, K.; Bohlke-Schneider, M.; Kurle, R.; Stella, L.; Hasson, H.; Gallinari, P.; Januschowski, T. Normalizing kalman filters for multivariate time series analysis. Adv. Neural Inf. Process. Syst. 2020, 33, 2995–3007. [Google Scholar]
- Tuncel, K.S.; Baydogan, M.G. Autoregressive forests for multivariate time series modeling. Pattern Recognit. 2018, 73, 202–215. [Google Scholar] [CrossRef]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Van Den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.W.; Kavukcuoglu, K. WaveNet: A generative model for raw audio. SSW 2016, 125, 2. [Google Scholar]
- Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional time series forecasting with convolutional neural networks. arXiv 2017, arXiv:1703.04691. [Google Scholar]
- Sen, R.; Yu, H.F.; Dhillon, I.S. Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 914–921. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Koopmans, L.H. The Spectral Analysis of Time Series; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Cao, D.; Wang, Y.; Duan, J.; Zhang, C.; Zhu, X.; Huang, C.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; et al. Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17766–17778. [Google Scholar]
- Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.H.; Choo, J. Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021. [Google Scholar]
- Du, Y.; Wang, J.; Feng, W.; Pan, S.; Qin, T.; Xu, R.; Wang, C. Adarnn: Adaptive learning and forecasting of time series. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual, 1–5 November 2021; pp. 402–411. [Google Scholar]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar]
- Liu, M.; Zeng, A.; Xu, Z.; Lai, Q.; Xu, Q. Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction. arXiv 2021, arXiv:2106.09305. [Google Scholar]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Trockman, A.; Kolter, J.Z. Patches Are All You Need? arXiv 2022, arXiv:2201.09792. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; MacGregor, J.F. Some recent advances in forecasting and control. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1974, 23, 158–179. [Google Scholar] [CrossRef]
- Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [Google Scholar] [CrossRef]
- Winters, P.R. Forecasting sales by exponentially weighted moving averages. Manag. Sci. 1960, 6, 324–342. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wen, R.; Torkkola, K.; Narayanaswamy, B.; Madeka, D. A multi-horizon quantile recurrent forecaster. arXiv 2017, arXiv:1711.11053. [Google Scholar]
- Qin, Y.; Song, D.; Chen, H.; Cheng, W.; Jiang, G.; Cottrell, G. A dual-stage attention-based recurrent neural network for time series prediction. arXiv 2017, arXiv:1704.02971. [Google Scholar]
- Maddix, D.C.; Wang, Y.; Smola, A. Deep factors with gaussian processes for forecasting. arXiv 2018, arXiv:1812.00098. [Google Scholar]
- Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph wavenet for deep spatial-temporal graph modeling. arXiv 2019, arXiv:1906.00121. [Google Scholar]
- Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17804–17815. [Google Scholar]
- Huang, R.; Huang, C.; Liu, Y.; Dai, G.; Kong, W. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan, 7–15 January 2021; pp. 2355–2361. [Google Scholar]
- Li, M.; Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 4189–4196. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 2030–2096. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176. [Google Scholar]
- Wang, J.; Chen, Y.; Feng, W.; Yu, H.; Huang, M.; Yang, Q. Transfer learning with dynamic distribution adaptation. ACM Trans. Intell. Syst. Technol. (TIST) 2020, 11, 1–25. [Google Scholar] [CrossRef]
- Wang, J.; Feng, W.; Chen, Y.; Yu, H.; Huang, M.; Yu, P.S. Visual domain adaptation with manifold embedded distribution alignment. In Proceedings of the 26th ACM International Conference on MULTIMEDIA, Seoul, Republic of Korea, 22–26 October 2018; pp. 402–410. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Zeng, W.; Qin, T. Generalizing to unseen domains: A survey on domain generalization. arXiv 2021, arXiv:2103.03097. [Google Scholar]
- Balaji, Y.; Sankaranarayanan, S.; Chellappa, R. Metareg: Towards domain generalization using meta-regularization. In Proceedings of the Advances in Neural Information Processing Systems 31 (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Li, H.; Pan, S.J.; Wang, S.; Kot, A.C. Domain generalization with adversarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5400–5409. [Google Scholar]
- Muandet, K.; Balduzzi, D.; Schölkopf, B. Domain generalization via invariant feature representation. In Proceedings of the International Conference on Machine Learning. PMLR, Atlanta, GA, USA, 16–21 June 2013; pp. 10–18. [Google Scholar]
- Hadjidimitriou, S.K.; Hadjileontiadis, L.J. Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans. Biomed. Eng. 2012, 59, 3498–3510. [Google Scholar] [CrossRef] [PubMed]
- Kepesi, M.; Weruaga, L. Adaptive chirp-based time–frequency analysis of speech signals. Speech Commun. 2006, 48, 474–492. [Google Scholar] [CrossRef]
- Tu, G.; Dong, X.; Chen, S.; Zhao, B.; Hu, L.; Peng, Z. Iterative nonlinear chirp mode decomposition: A Hilbert-Huang transform-like method in capturing intra-wave modulations of nonlinear responses. J. Sound Vib. 2020, 485, 115571. [Google Scholar] [CrossRef]
- Guo, L.; van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, D.; He, Q. River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. J. Geophys. Res. Ocean. 2015, 120, 3499–3521. [Google Scholar] [CrossRef]
- Lin, Y.H.; Tsai, M.S. Development of an improved time–frequency analysis-based nonintrusive load monitor for load demand identification. IEEE Trans. Instrum. Meas. 2013, 63, 1470–1483. [Google Scholar] [CrossRef]
- Mezić, I. On applications of the spectral theory of the Koopman operator in dynamical systems and control theory. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 7034–7041. [Google Scholar]
- Cooley, J.W.; Lewis, P.A.; Welch, P.D. The fast Fourier transform and its applications. IEEE Trans. Educ. 1969, 12, 27–34. [Google Scholar] [CrossRef]
- Brigham, E.O. The Fast Fourier Transform and its Applications; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Lange, H.; Brunton, S.L.; Kutz, J.N. From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction. J. Mach. Learn. Res. 2021, 22, 1–38. [Google Scholar]
- Percival, D.B.; Walden, A.T. Spectral Analysis for Physical Applications; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Chatfield, C. Time-Series Forecasting; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 95–104. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kitaev, N.; Kaiser, Ł.; Levskaya, A. Reformer: The efficient transformer. arXiv 2020, arXiv:2001.04451. [Google Scholar]
- Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv 2019, arXiv:1905.10437. [Google Scholar]
Model’s | Ours | Autoformer [20] | SCINet [21] | Informer [4] | LogTrans [15] | Reformer [59] | LSTNet [57] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
ETTm2 | 96 | 0.183 | 0.259 | 0.255 | 0.339 | 0.413 | 0.470 | 0.365 | 0.453 | 0.768 | 0.642 | 0.658 | 0.619 | 3.142 | 1.365 |
192 | 0.245 | 0.303 | 0.281 | 0.340 | 0.433 | 0.481 | 0.533 | 0.563 | 0.989 | 0.757 | 1.078 | 0.827 | 3.154 | 1.369 | |
336 | 0.307 | 0.348 | 0.339 | 0.372 | 0.633 | 0.580 | 1.363 | 0.887 | 1.334 | 0.872 | 1.549 | 0.972 | 3.160 | 1.369 | |
720 | 0.405 | 0.404 | 0.422 | 0.419 | 0.864 | 0.680 | 3.379 | 1.388 | 3.048 | 1.328 | 2.631 | 1.242 | 3.171 | 1.368 | |
Electricity | 96 | 0.154 | 0.249 | 0.201 | 0.317 | 0.212 | 0.321 | 0.274 | 0.368 | 0.258 | 0.357 | 0.312 | 0.402 | 0.680 | 0.645 |
192 | 0.166 | 0.261 | 0.222 | 0.334 | 0.242 | 0.345 | 0.296 | 0.386 | 0.266 | 0.368 | 0.348 | 0.433 | 0.725 | 0.676 | |
336 | 0.177 | 0.275 | 0.231 | 0.338 | 0.248 | 0.354 | 0.300 | 0.394 | 0.280 | 0.380 | 0.350 | 0.433 | 0.828 | 0.727 | |
720 | 0.231 | 0.326 | 0.254 | 0.361 | 0.270 | 0.368 | 0.373 | 0.439 | 0.283 | 0.376 | 0.340 | 0.420 | 0.957 | 0.811 | |
Exchange | 96 | 0.082 | 0.203 | 0.197 | 0.323 | 0.309 | 0.412 | 0.847 | 0.752 | 0.968 | 0.812 | 1.065 | 0.829 | 1.551 | 1.058 |
192 | 0.149 | 0.283 | 0.300 | 0.369 | 1.354 | 0.783 | 1.204 | 0.895 | 1.040 | 0.851 | 1.188 | 0.906 | 1.477 | 1.028 | |
336 | 0.243 | 0.368 | 0.509 | 0.524 | 1.656 | 0.888 | 1.678 | 1.036 | 1.659 | 1.081 | 1.357 | 0.976 | 1.507 | 1.031 | |
720 | 0.509 | 0.559 | 1.447 | 0.941 | 1.272 | 0.855 | 2.478 | 1.310 | 1.941 | 1.127 | 1.510 | 1.016 | 2.285 | 1.243 | |
Traffic | 96 | 0.516 | 0.316 | 0.613 | 0.388 | 0.690 | 0.440 | 0.719 | 0.391 | 0.684 | 0.384 | 0.732 | 0.423 | 1.107 | 0.685 |
192 | 0.499 | 0.307 | 0.616 | 0.382 | 0.708 | 0.453 | 0.696 | 0.379 | 0.685 | 0.390 | 0.733 | 0.420 | 1.157 | 0.685 | |
336 | 0.525 | 0.327 | 0.622 | 0.337 | 0.752 | 0.474 | 0.777 | 0.420 | 0.733 | 0.408 | 0.742 | 0.420 | 1.216 | 0.730 | |
720 | 0.557 | 0.337 | 0.660 | 0.408 | 0.812 | 0.494 | 0.864 | 0.472 | 0.717 | 0.396 | 0.755 | 0.423 | 1.481 | 0.805 | |
Weather | 96 | 0.206 | 0.230 | 0.266 | 0.336 | 0.190 | 0.258 | 0.300 | 0.384 | 0.458 | 0.490 | 0.689 | 0.596 | 0.594 | 0.587 |
192 | 0.242 | 0.264 | 0.307 | 0.367 | 0.235 | 0.298 | 0.598 | 0.544 | 0.658 | 0.586 | 0.752 | 0.638 | 0.560 | 0.587 | |
336 | 0.283 | 0.299 | 0.359 | 0.395 | 0.292 | 0.343 | 0.578 | 0.523 | 0.797 | 0.652 | 0.639 | 0.596 | 0.597 | 0.587 | |
720 | 0.341 | 0.342 | 0.419 | 0.428 | 0.377 | 0.401 | 1.059 | 0.741 | 0.869 | 0.675 | 1.130 | 0.792 | 0.618 | 0.599 | |
ILI | 24 | 2.564 | 1.034 | 3.483 | 1.287 | 11.293 | 2.576 | 5.764 | 1.677 | 4.480 | 1.444 | 4.400 | 1.382 | 6.026 | 1.770 |
36 | 2.165 | 0.945 | 3.103 | 1.148 | 10.817 | 2.468 | 4.755 | 1.467 | 4.799 | 1.467 | 4.783 | 1.448 | 5.340 | 1.668 | |
48 | 2.323 | 0.994 | 2.669 | 1.085 | 10.982 | 2.467 | 4.763 | 1.469 | 4.800 | 1.468 | 4.832 | 1.465 | 6.080 | 1.787 | |
60 | 2.293 | 0.998 | 2.770 | 1.125 | 10.967 | 2.479 | 5.264 | 1.564 | 5.278 | 1.560 | 4.882 | 1.483 | 5.548 | 1.720 |
Model’s | Our Method | Autoformer [20] | SCINet [21] | Informer [4] | LogTrans [15] | N-BEATS [60] | DeepAR [32] | ARIMA [7] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
ETTm2 | 96 | 0.071 | 0.190 | 0.065 | 0.189 | 0.082 | 0.217 | 0.088 | 0.225 | 0.082 | 0.217 | 0.082 | 0.219 | 0.099 | 0.237 | 0.211 | 0.362 |
192 | 0.104 | 0.237 | 0.118 | 0.256 | 0.187 | 0.341 | 0.132 | 0.283 | 0.133 | 0.284 | 0.120 | 0.268 | 0.154 | 0.310 | 0.261 | 0.406 | |
336 | 0.134 | 0.277 | 0.154 | 0.305 | 0.171 | 0.324 | 0.180 | 0.336 | 0.201 | 0.361 | 0.226 | 0.370 | 0.277 | 0.428 | 0.317 | 0.448 | |
720 | 0.180 | 0.326 | 0.182 | 0.335 | 0.198 | 0.346 | 0.300 | 0.435 | 0.268 | 0.407 | 0.188 | 0.338 | 0.332 | 0.468 | 0.366 | 0.487 | |
Exchange | 96 | 0.092 | 0.228 | 0.241 | 0.387 | 0.207 | 0.362 | 0.591 | 0.615 | 0.279 | 0.441 | 0.156 | 0.299 | 0.417 | 0.515 | 0.112 | 0.245 |
192 | 0.184 | 0.348 | 0.273 | 0.403 | 0.395 | 0.497 | 1.183 | 0.912 | 1.950 | 1.048 | 0.669 | 0.665 | 0.813 | 0.735 | 0.304 | 0.404 | |
336 | 0.326 | 0.451 | 0.508 | 0.539 | 0.659 | 0.640 | 1.367 | 0.984 | 2.438 | 1.262 | 0.611 | 0.605 | 1.331 | 0.962 | 0.736 | 0.598 | |
720 | 1.036 | 0.791 | 0.991 | 0.768 | 1.223 | 0.875 | 1.872 | 1.072 | 2.010 | 1.247 | 1.111 | 0.860 | 1.894 | 1.181 | 1.871 | 0.935 |
Model | With WS and NSR Blocks | Without WS and NSR Blocks | |||||||
---|---|---|---|---|---|---|---|---|---|
Variation’s | Spectral Domain | Time Domain | With Skip Connection | Without Skip Connection | |||||
Dataset | Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
ETTm1 | 24 | 0.253 | 0.313 | 0.256 | 0.314 | 0.232 | 0.300 | 0.260 | 0.330 |
48 | 0.308 | 0.340 | 0.321 | 0.349 | 0.327 | 0.360 | 0.368 | 0.401 | |
96 | 0.338 | 0.354 | 0.341 | 0.360 | 0.342 | 0.373 | 0.462 | 0.474 | |
288 | 0.402 | 0.397 | 0.404 | 0.369 | 0.406 | 0.404 | 0.541 | 0.530 | |
672 | 0.474 | 0.439 | 0.477 | 0.441 | 0.489 | 0.460 | 0.717 | 0.635 | |
ECL | 96 | 0.163 | 0.260 | 0.183 | 0.274 | 0.183 | 0.282 | 0.310 | 0.398 |
192 | 0.177 | 0.276 | 0.188 | 0.280 | 0.196 | 0.294 | 0.332 | 0.413 | |
336 | 0.194 | 0.295 | 0.202 | 0.295 | 0.215 | 0.320 | 0.310 | 0.388 | |
720 | 0.238 | 0.330 | 0.248 | 0.339 | 0.242 | 0.338 | 0.325 | 0.399 | |
Exchange | 96 | 0.086 | 0.207 | 0.092 | 0.215 | 0.298 | 0.417 | 1.048 | 0.830 |
192 | 0.153 | 0.283 | 0.154 | 0.285 | 0.364 | 0.482 | 1.591 | 1.031 | |
336 | 0.243 | 0.368 | 0.252 | 0.378 | 0.397 | 0.475 | 1.984 | 1.114 | |
720 | 0.920 | 0.715 | 0.827 | 0.684 | 0.947 | 0.730 | 2.579 | 1.220 |
Number of Layers | 1 | 2 | 3 | 4 | 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
ETTm1 | 24 | 0.253 | 0.313 | 0.322 | 0.347 | 0.252 | 0.314 | 0.257 | 0.316 | 0.251 | 0.311 |
48 | 0.308 | 0.340 | 0.316 | 0.345 | 0.305 | 0.338 | 0.316 | 0.346 | 0.310 | 0.342 | |
96 | 0.338 | 0.354 | 0.344 | 0.361 | 0.347 | 0.363 | 0.339 | 0.358 | 0.353 | 0.365 | |
288 | 0.402 | 0.397 | 0.402 | 0.395 | 0.406 | 0.397 | 0.406 | 0.398 | 0.415 | 0.404 | |
672 | 0.474 | 0.439 | 0.471 | 0.435 | 0.478 | 0.442 | 0.468 | 0.434 | 0.479 | 0.443 | |
ECL | 96 | 0.163 | 0.260 | 0.158 | 0.256 | 0.156 | 0.254 | 0.156 | 0.253 | 0.154 | 0.251 |
192 | 0.176 | 0.276 | 0.171 | 0.271 | 0.167 | 0.267 | 0.168 | 0.267 | 0.166 | 0.265 | |
336 | 0.194 | 0.295 | 0.185 | 0.286 | 0.194 | 0.295 | 0.184 | 0.287 | 0.183 | 0.285 | |
720 | 0.238 | 0.330 | 0.220 | 0.319 | 0.218 | 0.318 | 0.213 | 0.313 | 0.222 | 0.321 | |
Exchange | 96 | 0.086 | 0.207 | 0.085 | 0.204 | 0.086 | 0.207 | 0.085 | 0.205 | 0.087 | 0.209 |
192 | 0.153 | 0.283 | 0.154 | 0.285 | 0.163 | 0.289 | 0.156 | 0.287 | 0.154 | 0.283 | |
336 | 0.243 | 0.368 | 0.244 | 0.374 | 0.249 | 0.374 | 0.252 | 0.379 | 0.243 | 0.373 | |
720 | 0.921 | 0.715 | 0.887 | 0.698 | 0.932 | 0.719 | 1.008 | 0.209 | 0.903 | 0.707 |
Test Set | 1 | 2 | 3 | 4 | 5 | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
ETTm1 | 24 | 0.244 | 0.306 | 0.246 | 0.3072 | 0.253 | 0.313 | 0.281 | 0.332 | 0.267 | 0.323 | 0.258 | 0.316 |
48 | 0.308 | 0.341 | 0.305 | 0.338 | 0.308 | 0.340 | 0.317 | 0.348 | 0.328 | 0.355 | 0.313 | 0.344 | |
96 | 0.336 | 0.353 | 0.343 | 0.3672 | 0.338 | 0.354 | 0.342 | 0.359 | 0.348 | 0.364 | 0.343 | 0.360 | |
288 | 0.402 | 0.397 | 0.403 | 0.400 | 0.402 | 0.397 | 0.404 | 0.398 | 0.417 | 0.407 | 0.406 | 0.400 | |
672 | 0.473 | 0.441 | 0.481 | 0.445 | 0.474 | 0.440 | 0.482 | 0.444 | 0.485 | 0.447 | 0.479 | 0.443 | |
ECL | 96 | 0.165 | 0.258 | 0.166 | 0.261 | 0.165 | 0.260 | 0.163 | 0.261 | 0.167 | 0.261 | 0.165 | 0.260 |
192 | 0.176 | 0.277 | 0.173 | 0.270 | 0.175 | 0.272 | 0.177 | 0.276 | 0.175 | 0.277 | 0.175 | 0.274 | |
336 | 0.191 | 0.293 | 0.192 | 0.294 | 0.193 | 0.293 | 0.194 | 0.295 | 0.206 | 0.311 | 0.195 | 0.297 | |
720 | 0.233 | 0.328 | 0.235 | 0.328 | 0.234 | 0.326 | 0.238 | 0.330 | 0.235 | 0.331 | 0.235 | 0.329 | |
Exchange | 96 | 0.082 | 0.204 | 0.093 | 0.212 | 0.086 | 0.207 | 0.084 | 0.205 | 0.083 | 0.204 | 0.086 | 0.206 |
192 | 0.169 | 0.292 | 0.158 | 0.285 | 0.153 | 0.283 | 0.149 | 0.283 | 0.155 | 0.288 | 0.157 | 0.286 | |
336 | 0.275 | 0.385 | 0.248 | 0.372 | 0.243 | 0.368 | 0.252 | 0.375 | 0.250 | 0.378 | 0.254 | 0.376 | |
720 | 0.837 | 0.684 | 0.914 | 0.712 | 0.921 | 0.715 | 0.880 | 0.696 | 0.867 | 0.715 | 0.884 | 0.704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baidya, R.; Lee, S.-W. Addressing the Non-Stationarity and Complexity of Time Series Data for Long-Term Forecasts. Appl. Sci. 2024, 14, 4436. https://doi.org/10.3390/app14114436
Baidya R, Lee S-W. Addressing the Non-Stationarity and Complexity of Time Series Data for Long-Term Forecasts. Applied Sciences. 2024; 14(11):4436. https://doi.org/10.3390/app14114436
Chicago/Turabian StyleBaidya, Ranjai, and Sang-Woong Lee. 2024. "Addressing the Non-Stationarity and Complexity of Time Series Data for Long-Term Forecasts" Applied Sciences 14, no. 11: 4436. https://doi.org/10.3390/app14114436
APA StyleBaidya, R., & Lee, S. -W. (2024). Addressing the Non-Stationarity and Complexity of Time Series Data for Long-Term Forecasts. Applied Sciences, 14(11), 4436. https://doi.org/10.3390/app14114436