Solvent Bar Microextraction Method Based on a Natural Deep Eutectic Solvent and Multivariate Optimization for Determination of Steroid Hormones in Urine and Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Materials
2.2. Synthesis of HDEs
2.3. Preparation of Standard Solutions
2.4. Urine and Water Samples
2.5. HDE-SBME Procedure
2.6. Instrumentation
2.7. Method Validation
2.8. Computational Methods
2.9. Experimental Design
3. Results and Discussion
3.1. Selection of HDEs
3.1.1. HDE Characterization
3.1.2. Interaction of the 4:1 HDEs and Selected Steroids Based on Computational Methods
3.2. Optimize the Sample pH
3.3. Optimize Parameters Using a Chemometric Approaches
2.0862AC + 1.2078AD + 0.79794BC + 3.7513BD − 3.9001CD − 21.147A2 −
16.705B2 − 4.8185C2 − 1.5980D2 (R2 = 0.9239)
2.7738AC + 1.9213AD + 0.77775BC + 5.0723BD − 3.9554CD − 25.545A2 −
19.826B2 − 2.4962C2 − 6.2847D2 (R2 = 0.9108)
5.21419AB + 2.79081AC + 1.93831AD + 0.52206BC + 4.91131BD − 3.83681CD
− 21.93324 A2 − 18.87824B2 − 4.70274C2 − 6.13174D2 (R2 = 0.9177)
3.4. Method Performance and Application
3.5. Method Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, W.H.; Cooke, P.S. Functions of steroid hormones in the male reproductive tract as revealed by mouse models. Int. J. Mol. Sci. 2023, 24, 2748. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.M.; Bohn, K.; Alyamani, M.; Chung, Y.-M.; Klein, E.A.; Sharifi, N. Rapid and structure-specific cellular uptake of selected steroids. PLoS ONE 2019, 14, e0224081. [Google Scholar] [CrossRef] [PubMed]
- Zubeldia-Brenner, L.; Roselli, C.E.; Recabarren, S.E.; Gonzalez Deniselle, M.C.; Lara, H.E. Developmental and functional effects of steroid hormones on neuroendocrine axis and spinal cord. J. Neuroendocrinol. 2016, 28, 7. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, C.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Ojoghoro, J.O.; Scrimshaw, M.D.; Sumpter, J.P. Steroid hormones in the aquatic environment. Sci. Total Environ. 2021, 792, 148306. [Google Scholar] [CrossRef] [PubMed]
- Luque-Córdoba, D.; Priego-Capote, F. Fully automated method for quantitative determination of steroids in serum: An approach to evaluate steroidogenesis. Talanta 2021, 224, 121923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fent, K. Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Sci. Total Environ. 2018, 610–611, 1164–1172. [Google Scholar]
- Liu, W.; Yuan, D.; Han, M.; Huang, J.; Xie, Y. Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of thirteen steroid hormones in human serum and its application to the study of type 2 diabetes mellitus. J. Pharma. Biomed. Anal. 2021, 199, 114059. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cai, Z. Determination of hormones in human urine by ultra-high performance liquid chromatography/triple-quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 34, e8583. [Google Scholar] [CrossRef]
- McDonald, J.G.; Matthew, S.; Auchus, R.J. Steroid profiling by gas chromatography-mass spectrometry and high performance liquid chromatography-mass spectrometry for adrenal diseases. Horm. Ther. Cancer 2011, 2, 324–332. [Google Scholar] [CrossRef]
- Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef]
- Appa, R.; Mhaisalker, V.A.; Bafana, A.; Devi, S.S.; Krishnamurthi, K.K.; Chakrabarti, T.; Naoghare, P. Simultaneous quantitative monitoring of four indicator contaminants of emerging concern (CEC) in different water sources of central India using, SPE/LC-(ESI)MS-MS. Environ. Monit. Assess 2018, 190, 489. [Google Scholar] [CrossRef]
- Luque-Córdoba, D.; López-Bascón, M.A.; Priego-Capote, F. Development of a quantitative method for determination of steroids in human plasma by gas chromatography-negative chemical ionization-tandem mass spectrometry. Talanta 2020, 220, 121415. [Google Scholar] [CrossRef]
- Li, Z.-M.; Kannan, K. Determination of 19 steroid hormones in human serum and urine using liquid chromatography-tandem mass spectrometry. Toxics 2022, 10, 687. [Google Scholar] [CrossRef]
- Temerdashev, A.; Nesterenko, P.; Dmitrieva, E.; Zhurkina, K.; Feng, Y.-Q. GC-MS/MS determination of steroid hormones in urine using solid-phase derivatization as an alternative to conventional methods. Molecules 2022, 27, 5796. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical application of hollow fiber membrane liquid-phase microextraction: A review. Anal. Chim. Acta 2008, 624, 254–268. [Google Scholar] [CrossRef]
- Jiang, X.; Lee, H.K. Solvent bar microextraction. Anal. Chem. 2004, 76, 5591–5596. [Google Scholar] [CrossRef]
- Prosen, H. Application of hollow-fiber and related microextraction techniques for the determination of pesticides in environmental and food samples-a mini review. Separation 2019, 6, 57. [Google Scholar] [CrossRef]
- Van Osh, D.J.; Dietz, C.H.; Warrag, S.E.; Kroon, M.C. The curious case of hydrophobic deep eutectic solvents: A story on the discovery, design and application. ACS Sustain. Chem. Eng. 2020, 8, 10591–10612. [Google Scholar] [CrossRef]
- Florindo, C.; Romero, L.; Rintoul, I.; Branco, L.; Marrucho, I.M. From phase change materials to green solvent: Hydrophobic low viscous fatty acid-based deep eutectic solvents. ACS Sustain. Chem. Eng. 2018, 6, 3888–3895. [Google Scholar] [CrossRef]
- Hansen, B.; Horton, A.; Chen, B.; Poe, D.; Zhang, Y.; Spittle, S.; Klein, J.; Adhikari, L.; Zelovich, T.; Doherty, B.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Naik, P.K.; Kundu, D.; Bairagva, P.; Banerjee, T. Phase behavior of water-menthol based deep eutectic solvent-dodecane system. Chem. Therm. Therm. Anal. 2021, 3–4, 100011. [Google Scholar] [CrossRef]
- Křížek, T.; Bursová, M.; Horsley, R.; Kuchař, M.; Tůma, P. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. J. Clean. Prod. 2018, 193, 391–396. [Google Scholar] [CrossRef]
- Fan, T.; Yan, Z.; Yan, C.; Qiu, S.; Peng, X.; Zhang, J.; Hu, L.; Chen, L. Preparation of menthol-based hydrophobic deep eutectic solvents for the extraction of triphenylmethane dyes: Quantitative properties and extraction mechanism. Analyst 2012, 146, 1996–2008. [Google Scholar] [CrossRef]
- Verma, R.; Banerjee, T. Liquid-liquid extraction of lower alcohols using menthol-based hydrophobic deep eutectic solvent: Experiments and COSMO-SAC prediction. Ind. Eng. Chem. Res. 2018, 57, 3371–3381. [Google Scholar] [CrossRef]
- Silva, J.; Pereira, C.; Mano, F.; Silva, E.; Castro, V.; Sá-Nogueira, I.; Reis, R.; Paiva, A.; Matias, A.; Duarte, A. Therapeutic role of deep eutectic solvents based on menthol and saturated fatty acids on wound healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [Google Scholar] [CrossRef]
- Gonzalo-Lumbreras, R.; Pimentel-Trapero, D.; Izquierdo-Hornillos, R. Development and method validation for testosterone and epitestosterone in human urine samples by liquid chromatography applications. J. Chromatogr. Sci. 2003, 41, 261–266. [Google Scholar] [CrossRef]
- Naldi, A.; Fayad, P.; Prévost, M.; Sauvé, S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J. 2016, 10, 349–360. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Method for the determination of limit of detection and limit of quantification of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Parrish, D.; Zhurova, E.; Kirschbaum, K.; Pinkerton, A. Experimental charge density study of estrogens: 17β-estradiol urea. J. Phys. Chem. B. 2006, 110, 26442–26447. [Google Scholar] [CrossRef]
- Roberts, P.; Pettersen, R.; Sheldrick, G.; Isaacs, N.; Kennard, O. Crystal and molecular structure of 17β-hydroxyandrost-4-en-3-one (testosterone). J. Chem. Soc. Perkin Trans. 1999, 2, 2655–2657. [Google Scholar] [CrossRef]
- Lancaster, R.; Karamertzanis, P.; Hulme, A.; Tocher, D.; Lewis, T.; Price, S. The polymorphism of progesterone: Stabilization of a ‘disappearing’ polymorph by co-crystallization. J. Pharm. Sci. 2007, 96, 3419–3431. [Google Scholar] [CrossRef]
- Corvis, Y.; Négrier, P.; Massip, S.; Leger, J.-M.; Espeau, P. Insights into the crystal structure, polymorphism and thermal behavior of menthol optical isomers and racemates. CrystEngComm 2012, 14, 7055–7064. [Google Scholar] [CrossRef]
- Lipkowski, J.; Komarov, V.; Radionova, T.; Aladko, L. X-ray investigation of compounds crystallized in aqueous solution of tetrabutylammonium laurate. The structure of (C4H9)4N(C11H23COO)3C11H23COOH.4H2O. J. Struct. Chem. 2005, 46, S51–S57. [Google Scholar] [CrossRef]
- AL-Hashimi, N.; AL-Degs, Y.; Al Momany, E.; El-Sheikh, A.; Alqudah, A.; Oqal, M.; Abdelghani, J. Solvent bar microextraction combined with HPLC-DAD and multivariate optimization for simultaneous determination of three antiarrhythmic drugs in human urine and plasma samples. Talanta Open 2022, 6, 100140. [Google Scholar] [CrossRef]
- Neale, P.A.; Escher, B.I.; Schäfer, A.I. PH depesndence of steroid hormone-organic matter interactions at environmental concentrations. Sci. Total Environ. 2009, 407, 1164–1173. [Google Scholar] [CrossRef]
- Selahle, S.; Nqombolo, A.; Nomngongo, P. From polyethylene waste bottles to UIO-66 (Zr) for preconcentration of steroid hormones from river water. Sci. Rep. 2023, 13, 6808. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, H. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal. Chem. 2002, 74, 2486–2492. [Google Scholar] [CrossRef]
- Suslick, K.S. Sonochemistry. Science 1990, 247, 1439–1445. [Google Scholar] [CrossRef]
- Sampaio, N.; Castilhos, N.; Silva, B.; Riegel-Vidotti, I.; Silva, B. Evaluation of polyvinyl alcohol/pectin-based hydrogel disks as extraction phase for determination of steroidal hormones in aqueous sample by GC-MS/MS. Molecules 2019, 24, 40. [Google Scholar] [CrossRef]
- Lia, K.; Mei, M.; Li, H.; Huang, X.; Wu, C. Multiple monolithic fiber solid-phase microextraction based on a polymeric ionic liquid with high-performance liquid chromatography for the determination of steroid sex hormones in water and urine. J. Sep. Sci. 2016, 39, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Juszczak, R.; Skrzypek, S.; Gadzała-Kopciuch, R. Molecularly imprinted polymer film grafted from porous silica for efficient enrichment of steroid hormones in water samples. J. Sep. Sci. 2019, 42, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Ričanyová, J.; Gadzała-Kopciuch, R.; Reiffova, K.; Bazel, Y.; Buszewski, B. Molecularly imprinted adsorbents for preconcentration and isolation of progesterone and testosterone by solid phase extraction combined with HPLC. Adsorption 2010, 16, 473–483. [Google Scholar] [CrossRef]
- Studzińska, S.; Buszewski, B. Fast method for the resolution and determination of sex steroids in urine. J. Chromatogr. B 2013, 927, 158–163. [Google Scholar] [CrossRef] [PubMed]
Test | Influence Factors | Analyte Response (EE%) | |||||
---|---|---|---|---|---|---|---|
A: Number of HDE-SBME Devices | B: Extraction Time (min) | C: Volume of Elution (μL) | D: Elution Time (min) | BES | TES | PRO | |
1 | 5 | 10 | 300 | 2 | 27.33 | 32.50 | 32.51 |
2 | 1 | 10 | 300 | 2 | 17.11 | 19.18 | 22.35 |
3 | 3 | 30 | 200 | 8 | 70.21 | 82.92 | 81.36 |
4 | 3 | 50 | 200 | 5 | 70.63 | 86.65 | 83.21 |
5 | 1 | 10 | 100 | 8 | 11.28 | 13.41 | 14.23 |
6 | 3 | 30 | 200 | 5 | 73.26 | 90.39 | 87.92 |
7 | 5 | 50 | 100 | 8 | 61.89 | 75.45 | 71.70 |
8 | 3 | 30 | 200 | 5 | 73.26 | 90.39 | 87.92 |
9 | 3 | 30 | 200 | 5 | 73.26 | 90.39 | 87.92 |
10 | 5 | 10 | 300 | 8 | 32.43 | 39.44 | 40.01 |
11 | 1 | 50 | 300 | 8 | 13.42 | 16.02 | 17.01 |
12 | 5 | 50 | 300 | 2 | 59.42 | 67.45 | 65.67 |
13 | 5 | 50 | 300 | 8 | 67.11 | 82.63 | 81.47 |
14 | 3 | 30 | 200 | 5 | 73.26 | 90.39 | 87.92 |
15 | 1 | 50 | 100 | 8 | 32.43 | 39.21 | 40.23 |
16 | 1 | 10 | 300 | 8 | 9.67 | 11.44 | 12.83 |
17 | 3 | 30 | 200 | 2 | 68.38 | 73.41 | 70.73 |
18 | 1 | 50 | 300 | 2 | 8.77 | 10.52 | 11.74 |
19 | 3 | 30 | 300 | 5 | 70.26 | 88.45 | 83.25 |
20 | 1 | 50 | 100 | 2 | 6.11 | 8.47 | 9.35 |
21 | 3 | 10 | 200 | 5 | 37.74 | 42.59 | 43.38 |
22 | 5 | 30 | 200 | 5 | 72.26 | 88.63 | 85.65 |
23 | 1 | 10 | 100 | 2 | 3.26 | 5.74 | 6.623 |
24 | 5 | 10 | 100 | 8 | 35.66 | 40.59 | 40.03 |
25 | 5 | 10 | 100 | 2 | 30.14 | 36.51 | 35.16 |
26 | 3 | 30 | 200 | 5 | 73.26 | 90.39 | 87.92 |
27 | 5 | 50 | 100 | 2 | 29.33 | 34.76 | 34.61 |
28 | 3 | 30 | 100 | 5 | 61.89 | 75.45 | 71.70 |
29 | 1 | 30 | 200 | 5 | 27.23 | 29.18 | 34.84 |
HNDE Ratio of Menthol–Lauric Acid | Peak Area | ||
---|---|---|---|
BES | TES | PRO | |
2:1 | 1.081 | 5.309 | 3.864 |
3:1 | 1.757 | 4.467 | 5.236 |
4:1 | 1.760 | 4.608 | 5.523 |
5:1 | 1.741 | 4.184 | 5.308 |
BES | TES | PRO | |
---|---|---|---|
Binding Mode 1 | −11.5 | −13.9 | −13.3 |
Binding Mode 2 | −11.4 | −15.8 | −15.8 |
Parameters | Water | Urine | ||||
---|---|---|---|---|---|---|
BES | TES | PRO | BES | TES | PRO | |
Calibration curve | PA = 0.5917x − 0.1226 | PA = 1.2458x + 0.0538 | PA = 1.7164x − 0.3684 | PA = 0.5779x − 0.1481 | PA = 1.2149x + 0.0359 | PA = 1.6629x − 0.3086 |
Correlation coefficient (R2) | 0.999 | 0.997 | 0.998 | 0.995 | 0.996 | 0.994 |
Standard deviation, n = 3 | 1.07–3.44 | 2.13–3.42 | 1.54–4.08 | 1.52–3.81 | 2.76–3.90 | 1.82–5.13 |
Inter precision (RSD%, n = 5) | 2.71–3.04 | 1.90–3.67 | 1.43–4.21 | 3.51–4.32 | 2.22–4.46 | 2.13–5.09 |
Intra precision (RSD%, n = 5) | 2.43–5.32 | 2.71–5.83 | 1.98–5.11 | 2.71–7.11 | 3.06–6.21 | 2.78–6.53 |
LOD (µg L−1) | 0.269 | 0.337 | 0.171 | 0.407 | 0.401 | 0.278 |
LOQ (µg L−1) | 0.899 | 1.124 | 0.573 | 1.357 | 1.337 | 0.929 |
Linear range (µg L−1) | 0.899–104 | 1.124–104 | 0.573–104 | 1.357–104 | 1.337–104 | 0.929–104 |
Matrix | Level | Spiked Concentration (μg L−1, n = 3) | Steroids | Mean Extracted Concentration (μg L−1, n = 3) | Accuracy RE % | Recovery % |
---|---|---|---|---|---|---|
Water | 1 | 10 | BES | 698.2 | −4.68 | 95.32 |
TES | 880.3 | −2.58 | 97.41 | |||
PRO | 852.9 | −2.98 | 97.01 | |||
2 | 10 | BES | 704.3 | −3.84 | 96.16 | |
TES | 890.9 | −1.43 | 98.58 | |||
PRO | 862.2 | −1.93 | 98.06 | |||
3 | 10 | BES | 687.8 | −6.09 | 93.91 | |
TES | 876.6 | −2.99 | 97.00 | |||
PRO | 839.0 | −4.57 | 95.43 | |||
Steroids-free urine | 1 | 10 | BES | 675.6 | −7.75 | 92.24 |
TES | 852.3 | −5.68 | 94.31 | |||
PRO | 814.2 | −7.38 | 92.61 | |||
2 | 10 | BES | 688.8 | −5.95 | 94.04 | |
TES | 862.4 | −4.57 | 95.42 | |||
PRO | 828.7 | −5.73 | 94.26 | |||
3 | 10 | BES | 673.1 | −8.09 | 91.90 | |
TES | 845.1 | −6.48 | 93.51 | |||
PRO | 806.2 | −8.29 | 91.70 |
Method | Matrix | Steroid | Linear Range (μg L−1) | LOD (μg L−1) | Recovery (%) | Refs. |
---|---|---|---|---|---|---|
HDE-SBME-HPLC-DAD | Water | BES | 0.89–104 | 0.269 | 93.9–96.1 | This work |
TES | 1.12–104 | 0.337 | 97.0–98.5 | |||
PRO | 0.57–104 | 0.171 | 95.4–98.0 | |||
Urine | BES | 1.357–104 | 0.407 | 91.9–94 | ||
TES | 1.337–104 | 0.401 | 93.5–95.4 | |||
PRO | 0.929–104 | 0.278 | 91.7–94.2 | |||
a PVOHD-GC-MS/MS | Water | BES | 0.5 | 0.5–100 | - | [40] |
BES | 1 | 1–100 | - | |||
PRO | 1 | 1–100 | - | |||
b AMED-MMF-SPME-HPLC-DAD | Water and urine | BES | 0.10–200 | 0.027 | 78.1–115 | [41] |
TES | 0.50–200 | 0.085 | 77.3–113 | |||
PRO | 0.50–200 | 0.12 | 77.0–116 | |||
c MISPE-HPLC-DAD | Water | BES | 5 × 103−105 | 39.6–76.1 | >90 | [42] |
TES | 5 × 103−105 | 24.0–89.8 | >90 | |||
PRO | 5 × 103−105 | 59.4–77.7 | >90 | |||
d MISPE-LC-DAD | Urine | BES | 0.05–0.5 | 0.003 | 97–107 | [43] |
TES | 0.005–0.5 | 0.002 | 93–107 | |||
PRO | 0.025–0.75 | 0.008 | 87–107 | |||
e UHPLC-DAD | Urine | BES | 0.116–10.447 | 0.034 | - | [44] |
TES | 0.089–4.456 | 0.026 | - | |||
PRO | 0.102–9.029 | 0.030 | - | |||
f LLE-UHPLC-MS/MS | Urine | BES | 0.2–200 | 0.40 | 103 | [9] |
TES | 0.2–200 | 0.20 | 109 | |||
PRO | 0.2–200 | 0.33 | 94 | |||
g LLE-LC-MS/MS | Serum and urine | BES | 0.04 | 0.14–200 | 93.3–120 | [14] |
TES | 0.14 | 0.46–200 | 113–119 | |||
PRO | 0.15 | 0.5–200 | 117–141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Hashimi, N.N.; Abed Alfattah, H.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Ale-nezi, H.M.; Sunjuk, M.S.; Fahelelbom, K.M. Solvent Bar Microextraction Method Based on a Natural Deep Eutectic Solvent and Multivariate Optimization for Determination of Steroid Hormones in Urine and Water. Appl. Sci. 2024, 14, 4438. https://doi.org/10.3390/app14114438
AL-Hashimi NN, Abed Alfattah H, El-Barghouthi MI, El-Sheikh AH, Ale-nezi HM, Sunjuk MS, Fahelelbom KM. Solvent Bar Microextraction Method Based on a Natural Deep Eutectic Solvent and Multivariate Optimization for Determination of Steroid Hormones in Urine and Water. Applied Sciences. 2024; 14(11):4438. https://doi.org/10.3390/app14114438
Chicago/Turabian StyleAL-Hashimi, Nabil N., Husam Abed Alfattah, Musa I. El-Barghouthi, Amjad H. El-Sheikh, Hanan M. Ale-nezi, Mahmoud S. Sunjuk, and Khairi M. Fahelelbom. 2024. "Solvent Bar Microextraction Method Based on a Natural Deep Eutectic Solvent and Multivariate Optimization for Determination of Steroid Hormones in Urine and Water" Applied Sciences 14, no. 11: 4438. https://doi.org/10.3390/app14114438
APA StyleAL-Hashimi, N. N., Abed Alfattah, H., El-Barghouthi, M. I., El-Sheikh, A. H., Ale-nezi, H. M., Sunjuk, M. S., & Fahelelbom, K. M. (2024). Solvent Bar Microextraction Method Based on a Natural Deep Eutectic Solvent and Multivariate Optimization for Determination of Steroid Hormones in Urine and Water. Applied Sciences, 14(11), 4438. https://doi.org/10.3390/app14114438