Application of Direct Shear Test to Analysis of the Rate of Soil Improvement with Polyester Fibres
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Improvement of Soil Shear Strength Parameters
3.2. Influence of the Specimen Number on Test Results
3.3. Uncertainty of Shear Strength Parameters
4. Discussion
5. Conclusions
- The tested fibres improved the soil shear strength parameters differently; both the angle of internal friction and cohesion were increased for soil CI using 1.0% fibres and for soil CS1 using 0.5% fibres. For soil CS2, the angle of internal friction increased but cohesion decreased.
- SEM is a useful tool for exploring the fibre surface after shearing. Suitable fibre scratch resistance can significantly increase the shear strength parameters, but there are additional fibre properties contributing to the improvement rate, such as fibre surface roughness, adhesion of soil particles to the fibre surface, etc., which requires further study.
- It is not recommended to carry out DST with only three specimens since different combinations of three specimens provide different results.
- Improvement rates of shear strength parameters of soil using various materials require determination of their uncertainty so that the improvement can be confirmed. Determination of the uncertainty of shear strength parameters is also important in the case when they are used as guide values for the prediction of soil shear strength parameters using machine learning models.
- In this study, correlation coefficients between normal stresses and shear stresses existed and were not negative. Covariance between normal stresses and shear stresses has a negligible influence on shear strength parameter uncertainty.
- The worst-case strategy, considering linearly added uncertainty contributions and and not considering correlation coefficients, provides too high uncertainty and is not recommended.
- This study also has various limitations. The tests were carried out only for clayey soils with insufficient shear strength. It will be useful to carry out further tests for silty soils and sandy soils.
- A further limitation of this study is the focus of the research only on shear strength parameters, without dealing with deformation properties. Since soil mixed with fibres can be compacted to reach a maximum dry soil density obtained from a standard Proctor test, it is proposed that there will not be a problem with excessive deformation. It is planned to carry out an oedometer test of soil mixed with fibres using an oedometer with a diameter of 30 cm so that the deformation in practical applications can be quantified.
- This study presents the results of laboratory tests where the preparation of specimens can be different from the preparation of soil in practical applications. Using a modern soil stabiliser with a powerful milling and mixing rotor can minimise the difference. In the case of soil where the preparation of soil in practical applications does not provide similar conditions as in the laboratory, verification using in situ testing is required.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, C.S.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext Geomembr. 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Sarli, J.M.; Hadadi, F.; Bagheri, R.-A. Stabilizing Geotechnical Properties of Loess Soil by Mixing Recycled Polyester Fiber and Nano-SiO2. Geotech. Geol. Eng. 2020, 38, 1151–1163. [Google Scholar] [CrossRef]
- Valipour, M.; Shourijeh, P.; Mohammadinia, A. Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transp. Geotech. 2021, 27, 100474. [Google Scholar] [CrossRef]
- Urian, A.-M.; Ilies, N.-M.; Nemes, O.; Nagy, A.-C. Clayey Soil Improvement with Polyethylene Terephthalate (PET) Waste. Appl. Sci. 2023, 13, 12081. [Google Scholar] [CrossRef]
- Bao, X.; Bao, Z.; Li, L.; Li, Y.; Peng, P.; Chen, X. Investigation of the Water-Retention Characteristics and Mechanical Behavior of Fibre- Reinforced Unsaturated Sand. Appl. Sci. 2023, 13, 11337. [Google Scholar] [CrossRef]
- Tang, H.; Yang, Z.; Zhu, H.; Dong, H. Experimental Study on the Mechanical Properties of Xinyang Red Clay Improved by Lime and Fly. Ash. Appl. Sci. 2023, 13, 6271. [Google Scholar] [CrossRef]
- Khasib, I.A.; Daud, N.N.N.; Nasir, N.A.M. Strength Development and Microstructural Behavior of Soils Stabilized with Palm Oil Fuel Ash (POFA)-Based Geopolymer. Appl. Sci. 2021, 11, 3572. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Yang, Y.; Xu, P.; Dai, Z.; Yang, G.; Wang, H.; Wang, Z. Study on Improvement Characteristics of a Novel Geotextile with Stitched Transverse Ribs. Appl. Sci. 2023, 13, 1536. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Wang, H.; Jiang, M.; Zhu, J. Experimental Studies of Scale Effect on the Shear Strength of Coarse-Grained Soil. Appl. Sci. 2022, 12, 447. [Google Scholar] [CrossRef]
- Stacho, J.; Sulovska, M. Shear strength properties of coarse-grained soils determined using large-size direct shear test. Civ. Environ. Eng. 2022, 18, 244–257. [Google Scholar] [CrossRef]
- Zhu, L.; Liao, Q.; Wang, Z.; Chen, J.; Chen, Z.; Bian, Q.; Zhang, Q. Prediction of Soil Shear Strength Parameters Using Combined Data and Different Machine Learning Models. Appl. Sci. 2022, 12, 5100. [Google Scholar] [CrossRef]
- ASTM D3080/D3080M-11; Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 2012.
- STAS 8942/2-82; Foundation Ground. Determination of Earth Strength. By Direct Shearing. Romanian Institute for Standardization: Bucharest, Romania, 1982.
- AASHTO T 236-08; Standard Method of Test for Direct Shear Test of Soils under Consolidated Drained Conditions. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008.
- BS 1377: Part 7:1990; British Standard Methods of Test for Soils for Civil Engineering Purposes. Part 7: Shear Strength Tests (Total Stress). British Standards Institution: London, UK, 1990.
- ISO 17892-10:2018; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 10: Direct Shear Tests. International Organization for Standardization: Geneva, Switzerland, 2018.
- STN 72 1030: 1988; Laboratory Direct Shear Box Drained Test of Soils. ÚNM publishing house: Prague, Czech Republic, 1988.
- PN-88/B-04481; Building Soils—Laboratory Tests. Alfa Publishing House: Warsaw, Poland, 1988.
- Nguyen, G.; Hrubešová, E.; Voltr, A. Soil improvement using polyester fibres. Proceedia Eng. 2015, 111, 596–600. [Google Scholar] [CrossRef]
- Nguyen, G. Laboratory study of soils shear strength improvement by polyester fibers. Fibres Text East Eur. 2019, 27, 91–99. [Google Scholar] [CrossRef]
- Jakubík, L. Laboratory Testing of Mechanical Properties of Soil with Added Synthetic Material. Master’s Thesis, University of Žilina, Žilina, Slovakia, 2019. [Google Scholar]
- Ungureanu, C.; Priceputu, A.; Nguyen, G.; Pencea, I.; Turcu, R.N.; Popescu-Argeş, A.C. Hybrid OLS for uncertainties estimation in direct shear testing. Measurement 2021, 185, 110018. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, B.; Ng, C.W.W.; Tang, C. Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Eng. Geol. 2006, 87, 230–240. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Zhao, L.Z. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembr. 2010, 28, 54–62. [Google Scholar] [CrossRef]
- Rivera-Gómez, C.; Galán-Marín, C.; Bradley, F. Analysis of the Influence of the Fiber Type in Polymer Matrix/Fiber Bond Using Natural Organic Polymer Stabilizer. Polymers 2014, 6, 977–994. [Google Scholar] [CrossRef]
- Liu, W.; Liang, J.; Xu, T. Tunnelling-induced ground deformation subjected to the behavior of tail grouting materials. Tunn. Undergr. Space Technol. 2023, 140, 105253. [Google Scholar] [CrossRef]
- Oliveira, P.J.V.; Anunciação, G.R.; Correia, A.A.S. Effect of cyclic loading frequency on the behavior of a stabilized sand reinforced with polypropylene and sisal fibers. J. Mater. Civ. Eng. 2022, 34, 06021008. [Google Scholar] [CrossRef]
- Beskid Air. Available online: https://www.youtube.com/watch?v=3v_0rdgTyWc (accessed on 29 April 2024).
- BS 1377: 1990; Part 2: Methods of Test for Soils for Civil Engineering Purposes. Part 2. Classification Tests. British Standards Institution: London, UK, 1990.
- BS 5930:2015; Code of Practice for Ground Investigations. British Standards Institution: London, UK, 2015.
- EUROLAB. Technical Report 1/2006—Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results; EUROLAB: Paris, France, 2006. [Google Scholar]
Soil Parameters | CI | CS1 | CS2 |
---|---|---|---|
Water content (%) | 18.1 | 21.6 | 10.2 |
Plastic limit (%) | 20.6 | 27.8 | 19.7 |
Liquid limit (%) | 44.2 | 54.7 | 40.2 |
Plasticity index (%) | 23.6 | 26.9 | 20.5 |
Optimum water content (%) | 18.6 | 21.0 | 13.7 |
Maximum dry density (kg·m−3) | 1717 | 1630 | 1925 |
Polyester Fibre Parameters | TEXZEM PES 200 |
---|---|
Length (mm) | 70 |
Colour | White |
Density (g·cm−3) | 1.38 |
Mass density (dtex) | 2200 |
Tensile strength (cN/dtex) | 7.77 |
Elongation at break (%) | 10.6 |
Soil | Maximal Values of Shear Stress for Various Amounts of Fibres (kPa) | |||||||
---|---|---|---|---|---|---|---|---|
0% | 0.5% | 1.0% | 1.5% | |||||
Normal Stress σ (kPa) | Shear Stress τ (kPa) | Normal Stress σ (kPa) | Shear Stress τ (kPa) | Normal Stress σ (kPa) | Shear Stress τ (kPa) | Normal Stress σ (kPa) | Shear Stress τ (kPa) | |
CI | 50.1 | 85.667 | 50.1 | 94.667 | 50.1 | 91.111 | 50.3 | 110.333 |
100.3 | 125.889 | 100.2 | 123.778 | 100.2 | 143.889 | 100.3 | 168.889 | |
200.3 | 177.444 | 200.1 | 183.778 | 200.1 | 218.111 | 200.3 | 215.778 | |
300.4 | 246.778 | 300.1 | 241.556 | 300.2 | 274.222 | 300.3 | 257.444 | |
CS1 | 50.2 | 74.556 | 50.1 | 137.556 | 50.3 | 131.000 | 50.3 | 125.444 |
100.2 | 143.889 | 100.2 | 182.444 | 100.2 | 173.667 | 100.0 | 146.444 | |
200.1 | 171.111 | 200.1 | 248.111 | 200.1 | 207.556 | 200.2 | 183.778 | |
300.2 | 249.889 | 300.4 | 319.556 | 300.3 | 261.778 | 300.2 | 192.000 | |
CS2 | 50.3 | 71.111 | 50.3 | 80.333 | 50.3 | 75.889 | 50.3 | 72.222 |
100.1 | 107.000 | 100.2 | 122.222 | 100.2 | 109.778 | 100.2 | 114.444 | |
200.1 | 151.000 | 200.3 | 184.778 | 200.2 | 196.667 | 200.2 | 189.444 | |
300.1 | 167.222 | 300.2 | 228.889 | 300.2 | 259.889 | 300.3 | 263.444 |
Soil | Case No. | Fibre Amount | Strength Parameters | R-Value | Expanded Uncertainty | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Covariance (A) | With Covariance (B) | Worst-Case (C) | |||||||||||||||
φ | c | U(φ) | U(c) | U(φ) | U(c) | U(φ) | U(c) | ||||||||||
(%) | (°) | (kPa) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | |||
CI (4 specimens; No. 1, 2, 3, and 4) | 1 | 0.0 | 32.019 | 57.158 | 0.99752 | 0.524 | 1.64 | 1.603 | 2.81 | 0.520 | 1.62 | 1.604 | 2.81 | 1.052 | 3.29 | 3.593 | 6.29 |
0.5 | 30.502 | 65.141 | 0.99996 | 0.534 | 1.75 | 1.619 | 2.48 | 0.528 | 1.73 | 1.620 | 2.49 | 1.070 | 3.51 | 3.631 | 5.57 | ||
1.0 | 35.842 | 64.344 | 0.99296 | 0.542 | 1.51 | 1.811 | 2.82 | 0.540 | 1.51 | 1.820 | 2.83 | 1.086 | 3.03 | 4.190 | 6.51 | ||
1.5 | 29.097 | 97.507 | 0.97594 | 0.596 | 2.05 | 1.896 | 1.94 | 0.586 | 2.01 | 1.914 | 1.96 | 1.212 | 4.17 | 4.227 | 4.34 | ||
CI (3 specimens; No. 1, 2, and 3) | 2 | 0.0 | 30.858 | 59.821 | 0.99305 | 0.734 | 2.38 | 1.741 | 2.91 | 0.722 | 2.34 | 1.720 | 2.88 | 1.296 | 4.20 | 3.745 | 6.26 |
0.5 | 30.753 | 64.578 | 0.99997 | 0.760 | 2.47 | 1.814 | 2.81 | 0.746 | 2.43 | 1.784 | 2.76 | 1.328 | 4.32 | 3.829 | 5.93 | ||
1.0 | 39.758 | 53.869 | 0.99575 | 0.724 | 1.82 | 2.035 | 3.78 | 0.718 | 1.81 | 2.022 | 3.75 | 1.280 | 3.22 | 4.451 | 8.26 | ||
1.5 | 33.803 | 86.688 | 0.96794 | 0.842 | 2.49 | 2.214 | 2.55 | 0.828 | 2.45 | 2.186 | 2.52 | 1.506 | 4.46 | 4.750 | 5.48 | ||
CI (3 specimens; No. 2, 3, and 4) | 3 | 0.0 | 31.139 | 62.338 | 0.99644 | 0.738 | 2.37 | 3.030 | 4.86 | 0.728 | 2.34 | 2.994 | 4.80 | 1.268 | 4.07 | 6.092 | 9.77 |
0.5 | 30.506 | 65.122 | 0.99994 | 0.736 | 2.41 | 2.997 | 4.60 | 0.728 | 2.39 | 2.968 | 4.56 | 1.254 | 4.11 | 6.129 | 9.41 | ||
1.0 | 33.090 | 81.638 | 0.99675 | 0.794 | 2.40 | 3.454 | 4.23 | 0.784 | 2.37 | 3.422 | 4.19 | 1.368 | 4.13 | 7.105 | 8.70 | ||
1.5 | 23.883 | 125.349 | 0.99942 | 0.908 | 3.80 | 3.559 | 2.84 | 0.876 | 3.67 | 3.466 | 2.77 | 1.502 | 6.29 | 6.749 | 5.38 |
Soil | Case No. | Fibre Amount | Strength Parameters | R-Value | Expanded Uncertainty | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Covariance (A) | With Covariance (B) | Worst-Case (C) | |||||||||||||||
φ | c | U(φ) | U(c) | U(φ) | U(c) | U(φ) | U(c) | ||||||||||
(%) | (°) | (kPa) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | |||
CS1 (4 specimens; No. 1, 2, 3, and 4) | 1 | 0.0 | 32.398 | 56.633 | 0.97043 | 0.526 | 1.62 | 1.634 | 2.89 | 0.522 | 1.61 | 1.636 | 2.89 | 1.066 | 3.29 | 3.616 | 6.39 |
0.5 | 35.539 | 105.696 | 0.99886 | 0.634 | 1.78 | 2.245 | 2.12 | 0.622 | 1.75 | 2.250 | 2.13 | 1.276 | 3.59 | 4.953 | 4.69 | ||
1.0 | 26.252 | 113.245 | 0.98957 | 0.638 | 2.43 | 1.997 | 1.76 | 0.618 | 2.35 | 2.002 | 1.77 | 1.288 | 4.91 | 4.239 | 3.74 | ||
1.5 | 15.209 | 117.690 | 0.96082 | 0.568 | 3.73 | 1.693 | 1.44 | 0.540 | 3.55 | 1.712 | 1.45 | 1.132 | 7.44 | 3.525 | 2.99 | ||
CS1 (3 specimens; No. 1, 2, and 3) | 2 | 0.0 | 30.589 | 60.788 | 0.90622 | 0.722 | 2.36 | 1.738 | 2.86 | 0.714 | 2.33 | 1.728 | 2.84 | 1.316 | 4.30 | 3.831 | 6.30 |
0.5 | 35.968 | 104.608 | 0.99670 | 0.918 | 2.55 | 2.559 | 2.45 | 0.896 | 2.49 | 2.510 | 2.40 | 1.610 | 4.48 | 5.358 | 5.12 | ||
1.0 | 25.942 | 113.888 | 0.96729 | 0.960 | 3.70 | 2.322 | 2.04 | 0.926 | 3.57 | 2.264 | 1.99 | 1.684 | 6.49 | 4.761 | 4.18 | ||
1.5 | 21.144 | 106.703 | 0.99949 | 0.918 | 4.34 | 2.096 | 1.96 | 0.876 | 4.14 | 2.028 | 1.90 | 1.570 | 7.43 | 4.164 | 3.90 | ||
CS1 (3 specimens; No. 2, 3, and 4) | 3 | 0.0 | 27.928 | 82.190 | 0.96292 | 0.800 | 2.86 | 3.187 | 3.88 | 0.778 | 2.79 | 3.104 | 3.78 | 1.382 | 4.95 | 5.975 | 7.27 |
0.5 | 34.407 | 112.899 | 0.99973 | 0.900 | 2.62 | 4.120 | 3.65 | 0.880 | 2.56 | 4.050 | 3.59 | 1.520 | 4.42 | 8.132 | 7.20 | ||
1.0 | 23.768 | 126.168 | 0.99135 | 0.924 | 3.89 | 3.612 | 2.86 | 0.886 | 3.73 | 3.500 | 2.77 | 1.532 | 6.45 | 6.659 | 5.28 | ||
1.5 | 12.822 | 128.524 | 0.93839 | 0.798 | 6.22 | 2.913 | 2.27 | 0.754 | 5.88 | 2.814 | 2.19 | 1.308 | 10.20 | 5.337 | 4.15 |
Soil | Case No. | Fibre Amount | Strength Parameters | R-Value | Expanded Uncertainty | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Covariance (A) | With Covariance (B) | Worst-Case (C) | |||||||||||||||
φ | c | U(φ) | U(c) | U(φ) | U(c) | U(φ) | U(c) | ||||||||||
(%) | (°) | (kPa) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | |||
CS2 (4 specimens; No. 1, 2, 3, and 4) | 1 | 0.0 | 20.755 | 62.443 | 0.96472 | 0.450 | 2.17 | 1.236 | 1.98 | 0.442 | 2.13 | 1.250 | 2.00 | 0.904 | 4.36 | 2.830 | 4.53 |
0.5 | 30.510 | 58.150 | 0.99256 | 0.512 | 1.68 | 1.535 | 2.64 | 0.508 | 1.67 | 1.542 | 2.65 | 1.026 | 3.36 | 3.541 | 6.09 | ||
1.0 | 36.933 | 38.232 | 0.99776 | 0.498 | 1.35 | 1.609 | 4.21 | 0.496 | 1.34 | 1.612 | 4.22 | 0.980 | 2.65 | 3.753 | 9.82 | ||
1.5 | 37.257 | 36.098 | 0.99973 | 0.498 | 1.34 | 1.613 | 4.47 | 0.496 | 1.33 | 1.614 | 4.47 | 0.982 | 2.64 | 3.720 | 10.31 | ||
CS2 (3 specimens; No. 1, 2, and 3) | 2 | 0.0 | 27.469 | 48.963 | 0.99123 | 0.668 | 2.43 | 1.476 | 3.02 | 0.660 | 2.40 | 1.460 | 2.98 | 1.184 | 4.31 | 3.191 | 6.52 |
0.5 | 34.452 | 48.888 | 0.99703 | 0.704 | 2.04 | 1.742 | 3.56 | 0.698 | 2.03 | 1.728 | 3.53 | 1.244 | 3.61 | 3.791 | 7.76 | ||
1.0 | 39.172 | 32.197 | 0.99835 | 0.622 | 1.69 | 1.744 | 5.42 | 0.658 | 1.68 | 1.734 | 5.39 | 1.148 | 2.93 | 3.796 | 11.79 | ||
1.5 | 37.862 | 34.490 | 0.99953 | 0.662 | 1.75 | 1.706 | 4.95 | 0.660 | 1.74 | 1.698 | 4.92 | 1.162 | 3.07 | 3.746 | 10.86 | ||
CS2 (3 specimens; No. 2, 3, and 4) | 3 | 0.0 | 16.758 | 81.488 | 0.96632 | 0.648 | 3.87 | 2.313 | 2.84 | 0.630 | 3.76 | 2.268 | 2.78 | 1.108 | 6.61 | 4.568 | 5.61 |
0.5 | 28.074 | 71.832 | 0.99511 | 0.736 | 2.62 | 2.906 | 4.05 | 0.726 | 2.59 | 2.876 | 4.00 | 1.268 | 4.52 | 5.964 | 8.30 | ||
1.0 | 36.890 | 38.516 | 0.99588 | 0.683 | 1.85 | 3.087 | 8.01 | 0.681 | 1.85 | 3.080 | 8.00 | 1.192 | 3.23 | 6.646 | 17.25 | ||
1.5 | 36.672 | 40.012 | 0.99999 | 0.690 | 1.88 | 3.108 | 7.77 | 0.688 | 1.88 | 3.098 | 7.74 | 1.188 | 3.24 | 6.561 | 16.40 |
Soils | Improvement of Shear Strength Parameters by Various Amounts of Fibres | Differences in Strength Parameters | |||
---|---|---|---|---|---|
φ | c | ||||
(°) | (%) | (kPa) | (%) | ||
CI | Differences between 0.5% and 0.0% | −1.517 | −4.74 | 7.983 | 13.97 |
Differences between 1.0% and 0.0% | 3.823 | 11.94 | 7.186 | 12.57 | |
Differences between 1.5% and 0.0% | −2.922 | −9.13 | 40.349 | 70.59 | |
CS1 | Differences between 0.5% and 0.0% | 3.141 | 9.70 | 49.063 | 86.63 |
Differences between 1.0% and 0.0% | −6.146 | −18.97 | 56.612 | 99.96 | |
Differences between 1.5% and 0.0% | −17.189 | −53.06 | 61.057 | 107.81 | |
CS2 | Differences between 0.5% and 0.0% | 9.755 | 47.00 | −4.293 | −6.88 |
Differences between 1.0% and 0.0% | 16.178 | 77.95 | −24.211 | −38.77 | |
Differences between 1.5% and 0.0% | 16.502 | 79.51 | −26.345 | −42.19 |
Fibre Amount | Differences in Strength Parameters | ||||
---|---|---|---|---|---|
φ | c | ||||
(%) | (°) | (%) | (kPa) | (%) | |
Case No. 1 (4 specimens: No. 1, 2, 3, and 4)—Case No. 2 (3 specimens: No. 1, 2, and 3) (° or kPa, %) | 0.0 | 1.161 | 3.76 | −2.663 | −4.45 |
0.5 | −0.251 | −0.82 | 0.563 | 0.87 | |
1.0 | −3.916 | −9.85 | 10.475 | 19.45 | |
1.5 | −4.706 | −13.92 | 10.819 | 12.48 | |
Case No. 1 (4 specimens: No. 1, 2, 3, and 4)—Case No. 3 (3 specimens: No. 2, 4, and 4) (° or kPa, %) | 0.0 | 0.88 | 2.83 | −5.18 | −8.31 |
0.5 | −0.004 | −0.01 | 0.019 | 0.03 | |
1.0 | 2.752 | 8.32 | −17.294 | −21.18 | |
1.5 | 5.214 | 21.83 | −27.842 | −22.21 | |
Case No. 2 (3 specimens: No. 1, 2, and 3)—Case No. 3 (3 specimens: No. 2, 4, and 4) (° or kPa, %) | 0.0 | −0.281 | −0.90 | −2.517 | −4.04 |
0.5 | 0.247 | 0.81 | −0.544 | −0.84 | |
1.0 | 6.668 | 20.15 | −27.769 | −34.01 | |
1.5 | 9.920 | 41.54 | −38.661 | −30.84 |
Fibre Amount | Differences in Strength Parameters | ||||
---|---|---|---|---|---|
φ | c | ||||
(%) | (°) | (%) | (kPa) | (%) | |
Case No. 1 (4 specimens: No. 1, 2, 3, and 4)—Case No. 2 (3 specimens: No. 1, 2, and 3) (° or kPa, %) | 0.0 | 1.809 | 5.91 | −4.155 | −6.84 |
0.5 | −0.429 | −1.19 | 1.088 | 1.04 | |
1.0 | 0.31 | 1.19 | −0.643 | −0.56 | |
1.5 | −5.935 | −28.07 | 10.987 | 10.30 | |
Case No. 1 (4 specimens: No. 1, 2, 3, and 4)—Case No. 3 (3 specimens: No. 2, 4, and 4) (° or kPa, %) | 0.0 | 4.47 | 16.01 | −25.557 | −31.10 |
0.5 | 1.132 | 3.29 | −7.203 | −6.38 | |
1.0 | 2.484 | 10.45 | −12.923 | −10.24 | |
1.5 | 2.387 | 18.62 | −10.834 | −8.43 | |
Case No. 2 (3 specimens: No. 1, 2, and 3)—Case No. 3 (3 specimens: No. 2, 4, and 4) (° or kPa, %) | 0.0 | 2.661 | 9.53 | −21.402 | −26.04 |
0.5 | 1.561 | 4.54 | −8.291 | −7.34 | |
1.0 | 2.174 | 9.15 | −12.28 | −9.73 | |
1.5 | 8.322 | 64.90 | −21.821 | −16.98 |
Fibre Amount | Differences in Strength Parameters | ||||
---|---|---|---|---|---|
φ | c | ||||
(%) | (°) | (%) | (kPa) | (%) | |
Case No. 1 (4 specimens: No. 1, 2, 3, and 4)—Case No. 2 (3 specimens: No. 1, 2, and 3) (° or kPa, %) | 0.0 | −6.714 | −24.44 | 13.48 | 27.53 |
0.5 | −3.942 | −11.44 | 9.262 | 18.95 | |
1.0 | −2.239 | −5.72 | 6.035 | 18.74 | |
1.5 | −0.605 | −1.60 | 1.608 | 4.66 | |
Case No. 1 (4 specimens: No. 1, 2, 3, and 4)—Case No. 3 (3 specimens: No. 2, 4, and 4) (° or kPa, %) | 0.0 | 3.997 | 23.85 | −19.045 | −23.37 |
0.5 | 2.436 | 8.68 | −13.682 | −19.05 | |
1.0 | 0.043 | 0.12 | −0.284 | −0.74 | |
1.5 | 0.585 | 1.60 | −3.914 | −9.78 | |
Case No. 2 (3 specimens: No. 1, 2, and 3)—Case No. 3 (3 specimens: No. 2, 4, and 4) (° or kPa, %) | 0.0 | 10.711 | 63.92 | −32.525 | −39.91 |
0.5 | 6.378 | 22.72 | −22.944 | −31.94 | |
1.0 | 2.282 | 6.19 | −6.319 | −16.41 | |
1.5 | 1.19 | 3.24 | −5.522 | −13.80 |
Soil | Case No. | Fibre Amount | Differences in Expanded Uncertainty | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case B—Case A | Case C—Case A | Case C—Case B | ||||||||||||
ΔU(φ) | ΔU(c) | ΔU(φ) | ΔU(c) | ΔU(φ) | ΔU(c) | |||||||||
(%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | ||
CI (4 specimens; No. 1, 2, 3, and 4) | 1 | 0.0 | −0.004 | −0.76 | 0.001 | 0.06 | 0.528 | 100.76 | 1.990 | 124.14 | 0.532 | 102.31 | 1.989 | 124.00 |
0.5 | −0.006 | −1.12 | 0.001 | 0.06 | 0.536 | 100.37 | 2.012 | 124.27 | 0.542 | 102.65 | 2.011 | 124.14 | ||
1.0 | −0.002 | −0.37 | 0.009 | 0.50 | 0.544 | 100.37 | 2.379 | 131.36 | 0.546 | 101.11 | 2.37 | 130.22 | ||
1.5 | −0.010 | −1.68 | 0.018 | 0.95 | 0.616 | 103.36 | 2.331 | 122.94 | 0.626 | 106.83 | 2.313 | 120.85 | ||
CI (3 specimens; No. 1, 2, and 3) | 2 | 0.0 | −0.012 | −1.63 | −0.021 | −1.21 | 0.562 | 76.57 | 2.004 | 115.11 | 0.574 | 79.50 | 2.025 | 117.73 |
0.5 | −0.014 | −1.84 | −0.030 | −1.65 | 0.568 | 74.74 | 2.015 | 111.08 | 0.582 | 78.02 | 2.045 | 114.63 | ||
1.0 | −0.006 | −0.83 | −0.013 | −0.64 | 0.556 | 76.80 | 2.416 | 118.72 | 0.562 | 78.27 | 2.429 | 120.13 | ||
1.5 | −0.014 | −1.66 | −0.028 | −1.26 | 0.664 | 78.86 | 2.536 | 114.54 | 0.678 | 81.88 | 2.564 | 117.29 | ||
CI (3 specimens; No. 2, 3, and 4) | 3 | 0.0 | −0.010 | −1.36 | −0.036 | −1.19 | 0.530 | 71.82 | 3.062 | 101.06 | 0.540 | 74.18 | 3.098 | 103.47 |
0.5 | −0.008 | −1.09 | −0.029 | −0.97 | 0.518 | 70.38 | 3.132 | 104.50 | 0.526 | 72.25 | 3.161 | 106.50 | ||
1.0 | −0.010 | −1.26 | −0.032 | −0.93 | 0.574 | 72.29 | 3.651 | 105.70 | 0.584 | 74.49 | 3.683 | 107.63 | ||
1.5 | −0.032 | −3.52 | −0.093 | −2.61 | 0.594 | 65.42 | 3.190 | 89.63 | 0.626 | 71.46 | 3.283 | 94.72 |
Soil | Case No. | Fibre Amount | Differences in Expanded Uncertainty | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case B—Case A | Case C—Case A | Case C—Case B | ||||||||||||
ΔU(φ) | ΔU(c) | ΔU(φ) | ΔU(c) | ΔU(φ) | ΔU(c) | |||||||||
(%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | ||
CS1 (4 specimens; No. 1, 2, 3, and 4) | 1 | 0.0 | −0.004 | −0.76 | 0.002 | 0.12 | 0.540 | 102.66 | 1.982 | 121.30 | 0.544 | 104.21 | 1.980 | 121.03 |
0.5 | −0.012 | −1.89 | 0.005 | 0.22 | 0.642 | 101.26 | 2.708 | 120.62 | 0.654 | 105.14 | 2.703 | 120.13 | ||
1.0 | −0.020 | −3.13 | 0.005 | 0.25 | 0.650 | 101.88 | 2.242 | 112.27 | 0.670 | 108.41 | 2.237 | 111.74 | ||
1.5 | −0.028 | −4.93 | 0.019 | 1.12 | 0.564 | 99.30 | 1.832 | 108.21 | 0.592 | 109.63 | 1.813 | 105.90 | ||
CS1 (3 specimens; No. 1, 2, and 3) | 2 | 0.0 | −0.008 | −1.11 | −0.010 | −0.58 | 0.594 | 82.27 | 2.093 | 120.43 | 0.602 | 84.31 | 2.103 | 121.70 |
0.5 | −0.022 | −2.40 | −0.049 | −1.91 | 0.692 | 75.38 | 2.799 | 109.38 | 0.714 | 79.69 | 2.848 | 113.47 | ||
1.0 | −0.034 | −3.54 | −0.058 | −2.50 | 0.724 | 75.42 | 2.439 | 105.04 | 0.758 | 81.86 | 2.497 | 110.29 | ||
1.5 | −0.042 | −4.58 | −0.068 | −3.24 | 0.652 | 71.02 | 2.068 | 98.66 | 0.694 | 79.22 | 2.136 | 105.33 | ||
CS1 (3 specimens; No. 2, 3, and 4) | 3 | 0.0 | −0.022 | −2.75 | −0.083 | −2.60 | 0.582 | 72.75 | 2.788 | 87.48 | 0.604 | 77.63 | 2.871 | 92.49 |
0.5 | −0.020 | −2.22 | −0.070 | −1.70 | 0.620 | 68.89 | 4.012 | 97.38 | 0.604 | 72.73 | 4.082 | 100.79 | ||
1.0 | −0.038 | −4.11 | −0.112 | −3.10 | 0.608 | 65.80 | 3.047 | 84.36 | 0.646 | 72.91 | 3.159 | 90.26 | ||
1.5 | −0.044 | −5.51 | −0.099 | −3.40 | 0.510 | 63.91 | 2.424 | 83.21 | 0.554 | 73.47 | 2.523 | 89.66 |
Soil | Case No. | Fibre Amount | Differences in Expanded Uncertainty | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case B—Case A | Case C—Case A | Case C—Case B | ||||||||||||
ΔU(φ) | ΔU(c) | ΔU(φ) | ΔU(c) | ΔU(φ) | ΔU(c) | |||||||||
(%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | (°) | (%) | (kPa) | (%) | ||
CS2 (4 specimens; No. 1, 2, 3, and 4) | 1 | 0.0 | −0.008 | −1.78 | 0.014 | 1.13 | 0.454 | 100.89 | 1.594 | 128.96 | 0.462 | 104.52 | 1.58 | 126.40 |
0.5 | −0.004 | −0.78 | 0.007 | 0.46 | 0.514 | 100.39 | 2.006 | 130.68 | 0.518 | 101.97 | 1.999 | 129.64 | ||
1.0 | −0.002 | −0.40 | 0.003 | 0.19 | 0.482 | 96.79 | 2.144 | 133.25 | 0.484 | 97.58 | 2.141 | 132.82 | ||
1.5 | −0.002 | −0.40 | 0.001 | 0.06 | 0.484 | 97.19 | 2.107 | 130.63 | 0.486 | 97.98 | 2.106 | 130.48 | ||
CS2 (3 specimens; No. 1, 2, and 3) | 2 | 0.0 | −0.008 | −1.20 | −0.016 | −1.08 | 0.516 | 77.25 | 1.715 | 116.19 | 0.524 | 79.39 | 1.731 | 118.56 |
0.5 | −0.006 | −0.85 | −0.014 | −0.80 | 0.540 | 76.70 | 2.049 | 117.62 | 0.546 | 78.22 | 2.063 | 119.39 | ||
1.0 | −0.040 | −0.60 | −0.010 | −0.57 | 0.526 | 84.57 | 2.052 | 117.66 | 0.490 | 74.47 | 2.062 | 118.92 | ||
1.5 | −0.002 | −0.30 | −0.008 | −0.47 | 0.500 | 75.53 | 2.040 | 119.58 | 0.502 | 76.06 | 2.048 | 120.61 | ||
CS2 (3 specimens; No. 2, 3, and 4) | 3 | 0.0 | −0.018 | −2.78 | −0.045 | −1.95 | 0.460 | 70.99 | 2.255 | 97.49 | 0.478 | 75.87 | 2.300 | 101.41 |
0.5 | −0.010 | −1.36 | −0.030 | −1.03 | 0.532 | 72.28 | 3.058 | 105.23 | 0.542 | 74.66 | 3.088 | 107.37 | ||
1.0 | −0.002 | −0.29 | −0.007 | −0.23 | 0.509 | 74.52 | 3.559 | 115.29 | 0.511 | 75.04 | 3.566 | 115.78 | ||
1.5 | −0.002 | −0.29 | −0.010 | −0.32 | 0.498 | 72.17 | 3.453 | 111.10 | 0.500 | 72.67 | 3.463 | 111.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, G.; Masarovičová, S.; Gago, F.; Grzybowska-Pietras, J. Application of Direct Shear Test to Analysis of the Rate of Soil Improvement with Polyester Fibres. Appl. Sci. 2024, 14, 4601. https://doi.org/10.3390/app14114601
Nguyen G, Masarovičová S, Gago F, Grzybowska-Pietras J. Application of Direct Shear Test to Analysis of the Rate of Soil Improvement with Polyester Fibres. Applied Sciences. 2024; 14(11):4601. https://doi.org/10.3390/app14114601
Chicago/Turabian StyleNguyen, Giang, Soňa Masarovičová, Filip Gago, and Joanna Grzybowska-Pietras. 2024. "Application of Direct Shear Test to Analysis of the Rate of Soil Improvement with Polyester Fibres" Applied Sciences 14, no. 11: 4601. https://doi.org/10.3390/app14114601
APA StyleNguyen, G., Masarovičová, S., Gago, F., & Grzybowska-Pietras, J. (2024). Application of Direct Shear Test to Analysis of the Rate of Soil Improvement with Polyester Fibres. Applied Sciences, 14(11), 4601. https://doi.org/10.3390/app14114601