Inversion of Chlorophyll-a Concentration in Wuliangsu Lake Based on OGolden-DBO-XGBoost
Abstract
:1. Introduction
- Due to the fact that there are seasonal characteristics of the nutrient status of Wuliangsu Lake, this paper investigates the influence of monthly characteristics on the inversion of Chl-a concentration in Wuliangsu Lake.
- Introducing the Obl to optimize the population initialization of the dung beetle optimization algorithm, which increases the diversity of the initial population and improves the global search ability of the dung beetle optimization algorithm.
- Incorporating the Gold-SA to improve the dancing strategy of DBO, which promotes the exchange of information between the individuals and the best individual, and improves the local search ability of the algorithm.
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.2.1. Measured Chl-a Concentration Data
2.2.2. Remote-Sensing Data
2.3. Data Preprocessing
2.3.1. Remote-Sensing Image Data Preprocessing
2.3.2. Monthly Feature
3. Methods
3.1. Dung Beetle Optimization Algorithm
3.2. Improved Dung Beetle Optimization Algorithm
3.2.1. Opposition-Based-Learning Strategy to Improve Population Initialization
3.2.2. Golden Sine Algorithm Update Location
3.2.3. OGolden-DBO-XGBoost Chl-a Concentration Inversion Model
- (1)
- Input of the remotely sensed image data of Wuliangsu Lake and the measured data of Chl-a concentration.
- (2)
- Building of the XGBoost inversion model.
- (3)
- Initialization of the dung beetle population and parameters.
- (4)
- According to Figure 3, calculation of the reverse population of the dung beetle population, and selection of the better individuals from the dung beetle population and its reverse population to form new population.
- (5)
- Updating of position of dung beetle population based on improved rolling (Equation (10)), spawning, foraging and stealing behavioural strategies. Then calculation of fitness of population.
- (6)
- Updating of the location and fitness of the best dung beetle.
- (7)
- Determination of whether the stopping condition is satisfied; if the condition is satisfied execute step (8), otherwise execute step (5).
- (8)
- Outputting of the location of the best dung beetle (the best parameters of the XGBoost Chl-a concentration inversion model).
- (9)
- Training of the XGBoost Chl-a concentration inversion model based on the best parameters obtained by the OGolden-DBO algorithm.
- (10)
- Obtaining of the Chl-a concentration inversion results for Wuliangsu Lake and calculation of the model rating index R2, RMSE, and MAE to evaluate the model performance.
3.3. Model Evaluation Metrics
4. Results and Discussion
4.1. Model Parameter Setting
4.2. Analysis of the Effect of Monthly Feature
4.3. Intelligent Optimization Algorithm to Optimize XGBoost Parameters
4.4. Comparison and Analysis of Improvement Strategies
4.5. Spatial and Temporal Distribution of Chl-a Concentration in the Study Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Feng, L.; Dai, Y.; Hu, C.; Gibson, L.; Tang, J.; Lee, Z.; Wang, Y.; Cai, X.; Liu, J.; et al. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 2022, 15, 130–134. [Google Scholar] [CrossRef]
- Yan, Y.; Yueyue, W.; Duxian, F.; Jie, R.; Ying, W. Bacterial diversity and influencing factors of surface sediments in Baiyangdian. J. Environ. Eng. 2021, 15, 1121–1130. [Google Scholar]
- Xue, G.; Shuailong, W.; Peirong, S.; Chutian, X.; Dapeng, L.; Yong, H. Phosphorus occurrence characteristics and environmental significance in the grass-algae lake area of Taihu Lake. Environ. Sci. 2019, 40, 5358–5366. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images With Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9132–9146. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, W.; Deng, Y.; Ling, Z.; Deng, Y. Long Time Series Water Extent Analysis for SDG 6.6.1 Based on the GEE Platform: A Case Study of Dongting Lake. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 490–503. [Google Scholar] [CrossRef]
- Liu, F.; Tang, S. Evaluation of Red-Peak Algorithms for Chlorophyll Measurement in the Pearl River Estuary. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8928–8936. [Google Scholar] [CrossRef]
- Tian-shi, F.; Zhi-guo, P.; Wei, J. Remote Sensing Retrieval of Chlorophyall-a Concentration in Lake Chaohu Based on Zhuhai-1 Hyperspectral Satellite. Spetroscopy Spectr. Anal. 2022, 42, 2642–2648. [Google Scholar]
- Zolfaghari, K.; Pahlevan, N.; Binding, C.; Gurlin, D.; Simis, S.G.H.; Verdú, A.R.; Li, L.; Crawford, C.J.; Vanderwoude, A.; Errera, R.; et al. Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Pengfei, X.; Qian, C.; Pingbin, J. Research on remote sensing retrieval of chlorophyll a in clean water bodies of Qiandao Lake based on neural network model. Yangtze River Basin Resour. Environ. 2021, 30, 1670–1679. [Google Scholar]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Tingting, X.; Yunzhi, C.; Wenfang, L.; Xiaoqin, W. For GF-1 Research on chlorophyll a inversion model of WFV data in the lower reaches of Minjiang River. J. Environ. Sci. 2019, 39, 4276–4283. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Wang, C.; Li, D.; Peng, Y.; Wang, L.; Jiang, H.; Zheng, Q. Remote Sensing Estimation of Chlorophyll-A in Case-II Waters of Coastal Areas: Three-Band Model Versus Genetic Algorithm–Artificial Neural Networks Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3640–3658. [Google Scholar] [CrossRef]
- Wang, Y.S.; Rong, N.; Hou, J. Characteristics and Influencing Factors Analysis of Water Exchange in the Wuliangsuhai Lake. Water Resour. Power 2021, 39, 39–42, 88. [Google Scholar]
- Liu, H.Y.; Lu, J.P.; Zhao, S.N.; Shi, X.H.; Sun, B.; Zhang, X.J.; Shi, Z.Y.; Mi, J.H. Water environment change trend and ecological water replenishment of Lake Wuliangsuhai and other key driving factors analysis based on long time series (2011–2020). J. Lake Sci. 2023, 35, 1939–1948. [Google Scholar]
- Shi, R.; Zhao, J.; Shi, W.; Song, S.; Wang, C. Comprehensive Assessment of Water Quality and Pollution Source Apportionment in Wuliangsuhai Lake, Inner Mongolia, China. Int. J. Environ. Res. Public Health 2020, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wen, Y.; Wang, Z. Water quality analysis and pollution assessment of Wuliangsuhai drainage ditch into the lake. Proc. Yangtze River Acad. Sci. 2023, 40, 63–69. [Google Scholar]
- Yue, C.P.; Li, X.; Bao, L.S.; Wei, J.T. Using Remote Sensing to Estimate Seasonal Variation in Phytoplankton Biomasses in the Lake Wuliangsuhai. J. Irrig. Drain. 2020, 39, 122–128. [Google Scholar] [CrossRef]
- Yunfan, L.; Caixia, L.; Xiang, J.; Jing, W.; Xiaoli, Z.; Xiaoli, M.; Ruoning, Z.; Dong, W. Spatiotemporal Changes and Causes of Ecological Vulnerability in Ulansuhai Basin. J. Geo-Inf. Sci. 2023, 25, 2039–2054. [Google Scholar]
- Feifei, L.; Yong, Z.; Xue, L.; Cheng, C. Discussion on Wetland Protection and Restoration Along Wuliangsuhai Basin. For. Resour. Manag. 2019, 5, 23–27, 67. [Google Scholar] [CrossRef]
- Song, S.; Li, C.; Shi, X.; Zhao, S.; Tian, W.; Li, Z.; Bai, Y.; Cao, X.; Wang, Q.; Huotari, J.; et al. Under-ice metabolism in a shallow lake in a cold and arid climate. Freshw. Biol. 2019, 64, 1710–1720. [Google Scholar] [CrossRef]
- Shi, X.; Yu, H.; Zhao, S.; Sun, B.; Liu, Y.; Huo, J.; Wang, S.; Wang, J.; Wu, Y.; Wang, Y.; et al. Impacts of environmental factors on Chlorophyll-a in lakes in cold and arid regions: A 10-year study of Wuliangsuhai Lake, China. Ecol. Indic. 2023, 148, 110133. [Google Scholar] [CrossRef]
- Yu, H.; Shi, X.; Zhao, S.; Sun, B.; Liu, Y.; Arvola, L.; Li, G.; Wang, Y.; Pan, X.; Wu, R.; et al. Primary productivity of phytoplankton and its influencing factors in cold and arid regions: A case study of Wuliangsuhai Lake, China. Ecol. Indic. 2022, 144, 109545. [Google Scholar] [CrossRef]
- Agency, E.S. Sentinel-2 User Handbook; European Space Agency: Noordwijk, The Netherlands, 2021. [Google Scholar]
- Sun, R.; Wang, J.; Cheng, Q.; Mao, Y.; Ochieng, W.Y. A new IMU-aided multiple GNSS fault detection and exclusion algorithm for integrated navigation in urban environments. GPS Solut. 2021, 25, 147. [Google Scholar] [CrossRef]
- Du, D.D.; Li, C.Y.; Shi, X.H.; Zhao, S.; Quan, D.; Yang, Z. Seasonal changes of nutritional status of lake Wuliangsuhai. J. Arid Land Resour. Environ. 2019, 33, 186–192. [Google Scholar] [CrossRef]
- Yu, H.; Shi, X.; Wang, S.; Zhao, S.; Sun, B.; Liu, Y.; Yang, Z. Trophic status of a shallow lake in Inner Mongolia: Long-term, seasonal, and spatial variation. Ecol. Indic. 2023, 156, 111167. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Friedman, F.J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2002, 29, 1189–1232. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, X.; Zhao, S. Analysis of Pollution Sources and Evaluation of Water Quality Changes of Ulan Suhai Lake during Frozen and Non-frozen Periods from 2016 to 2021. Wetl. Sci. 2022, 20, 829–837. [Google Scholar] [CrossRef]
- Hu, H.; Fu, X.; Li, H.; Wang, F.; Duan, W.; Zhang, L.; Liu, M. Prediction of lake chlorophyll concentration using the BP neural network and Sentinel-2 images based on time features. Water Sci. Technol. 2023, 87, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, C.; Shi, X.; Sun, B.; Zhao, S.; Sun, C. Spatial and temporal distribution of chlorophyll-a concentration and its relationships with environmental factors in Lake Ulansuhai. Ecol. Environ. Sci. 2019, 28, 964–973. [Google Scholar] [CrossRef]
Standard Grade | Chl-a (μg/L) | Nutritional Level |
---|---|---|
I | <1.6 | Light nutrition |
II | 1.6~10 | Middle nutrition |
III | 10.0~26 | Light eutrophication |
IV | 26.0~64 | Middle eutrophication |
V | 64.0~160 | Severe eutrophication |
ShoddyV | >160 | Extreme eutrophication |
Measured Data | Remote-Sensing Image Data | Sampling Point | Measured Chl-a Concentration (μg/L) | Nutritional Level |
---|---|---|---|---|
2015.09.25 | 2015.09.25 | O10 | 13.958 | Light eutrophication |
2016.06.20 | 2016.06.21 | S6 | 4.704 | Middle nutrition |
2017.06.25 | 2017.06.26 | R7 | 3.214 | Middle nutrition |
2017.08.29 | 2017.08.30 | P9 | 30.283 | Middle eutrophication |
2017.09.25 | 2017.09.24 | Q10 | 22.587 | Light eutrophication |
2018.07.26 | 2018.07.26 | M14 | 7.4513 | Middle nutrition |
Number | Sentinel-2A | Sentinel-2B | Spatial Resolution (m) | ||
---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | ||
Band 1 | 433.9 | 27 | 442.3 | 45 | 60 |
Band 2 | 496.6 | 98 | 492.1 | 98 | 10 |
Band 3 | 560.0 | 45 | 559.0 | 46 | 10 |
Band 4 | 664.5 | 38 | 665.0 | 39 | 10 |
Band 5 | 703.9 | 19 | 703.8 | 20 | 20 |
Band 6 | 740.2 | 18 | 739.1 | 18 | 20 |
Band 7 | 782.5 | 28 | 779.7 | 28 | 20 |
Band 8 | 835.1 | 145 | 833.0 | 133 | 10 |
Band 8A | 864.8 | 33 | 864.0 | 32 | 20 |
Band 9 | 945.0 | 26 | 943.2 | 27 | 60 |
Band 10 | 1373.5 | 75 | 1376.9 | 76 | 60 |
Band 11 | 1613.7 | 143 | 1610.4 | 141 | 20 |
Band 12 | 2202.4 | 242 | 2185.7 | 238 | 20 |
Number | June | July | August | September | B01 | B02 | … | B12 | Measured Chl-a Concentration (μg/L) |
---|---|---|---|---|---|---|---|---|---|
Data1 | 0 | 0 | 0 | 1 | 61 | 152 | … | 40 | 12.018 |
Data2 | 1 | 0 | 0 | 0 | 176 | 165 | … | 60 | 10.095 |
Data3 | 0 | 0 | 1 | 0 | 158 | 254 | … | 197 | 20.012 |
Data4 | 0 | 1 | 0 | 0 | 120 | 213 | … | 53 | 3.6673 |
Parameters | Meaning |
---|---|
n_estimators | Number of iterations |
max_depth | Maximum depth |
learning_rate | Learning rate |
gamma | Coefficient of the number of leaf nodes |
reg_alpha | L1 regular term coefficient |
reg_lambda | L2 regular term coefficient |
min_child_weight | Sum of sample weights of minimum leaf nodes |
Parameter | DBO | OGolden-DBO |
---|---|---|
Maximum iterations number | 10 | 10 |
Population size | 50 | 50 |
b | 0.4 | 0.4 |
k | 0.2 | 0.2 |
Model | Monthly Feature | Training Set | Test Set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (μg/L) | MAE (μg/L) | R2 | RMSE (μg/L) | MAE (μg/L) | ||
XGBoost | Yes | 0.8183 | 4.0982 | 2.5775 | 0.7711 | 4.1845 | 3.3462 |
No | 0.5799 | 6.2315 | 4.1351 | 0.4783 | 6.3177 | 4.5693 | |
SVR | Yes | 0.7465 | 4.8409 | 2.6262 | 0.7434 | 4.4309 | 3.6722 |
No | 0.6331 | 5.8235 | 3.1678 | 0.4116 | 6.7095 | 4.9062 | |
Linear regression | Yes | 0.6903 | 5.3507 | 3.7161 | 0.6370 | 5.2700 | 4.5299 |
No | 0.4416 | 7.1845 | 4.9852 | 0.51368 | 6.0999 | 4.7047 |
Model | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE (μg/L) | MAE (μg/L) | R2 | RMSE (μg/L) | MAE (μg/L) | |
XGBoost | 0.8183 | 4.0982 | 2.5775 | 0.7711 | 4.1845 | 3.3462 |
SSA-XGBoost | 0.8515 | 3.7048 | 2.2391 | 0.8396 | 3.5027 | 2.7974 |
WOA-Xgboost | 0.8445 | 3.7912 | 2.1312 | 0.8434 | 3.4611 | 2.7737 |
DBO-XGBoost | 0.8578 | 3.6259 | 2.1346 | 0.8490 | 3.3987 | 2.7216 |
Model | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE (μg/L) | MAE (μg/L) | R2 | RMSE (μg/L) | MAE (μg/L) | |
DBO-XGBoost | 0.8578 | 3.6259 | 2.1346 | 0.8490 | 3.3987 | 2.7216 |
Obl-DBO-XGBoost | 0.8679 | 3.4949 | 1.9804 | 0.8618 | 3.2515 | 2.6637 |
Golden-DBO-XGBoost | 0.8645 | 3.5395 | 2.0696 | 0.8602 | 3.2708 | 2.5824 |
OGolden-DBO-XGBoost | 0.8936 | 3.1353 | 1.8918 | 0.8850 | 2.9659 | 2.4282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Fu, X.; Li, H. Inversion of Chlorophyll-a Concentration in Wuliangsu Lake Based on OGolden-DBO-XGBoost. Appl. Sci. 2024, 14, 4798. https://doi.org/10.3390/app14114798
Zhou H, Fu X, Li H. Inversion of Chlorophyll-a Concentration in Wuliangsu Lake Based on OGolden-DBO-XGBoost. Applied Sciences. 2024; 14(11):4798. https://doi.org/10.3390/app14114798
Chicago/Turabian StyleZhou, Hao, Xueliang Fu, and Honghui Li. 2024. "Inversion of Chlorophyll-a Concentration in Wuliangsu Lake Based on OGolden-DBO-XGBoost" Applied Sciences 14, no. 11: 4798. https://doi.org/10.3390/app14114798
APA StyleZhou, H., Fu, X., & Li, H. (2024). Inversion of Chlorophyll-a Concentration in Wuliangsu Lake Based on OGolden-DBO-XGBoost. Applied Sciences, 14(11), 4798. https://doi.org/10.3390/app14114798