Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network
Abstract
:1. Introduction
2. Corrosion Mechanism and Experimental Study of Anchor Bolts
2.1. Corrosion Theoretical Model of Anchor Bolts
2.1.1. Electrochemical Corrosion Principle
2.1.2. Corrosion Current Calculation
2.2. Electrochemical-Accelerated Corrosion Experiment
2.3. Electrochemical-Accelerated Corrosion Results
3. Propagation Mechanism and Signal Processing of Guided Waves in Anchor Bolts
3.1. Propagation of Ultrasonic Guided Waves in Anchor Bolts
3.2. Propagation of Guided Waves in Anchor Bolts with Corrosive Defects
4. Multi-Scale Convolutional Neural Networks for Anchor Bolt Corrosion Recognition
4.1. CNN for 1D Signals
4.2. Multi-Scale Convolutional Neural Network Model Design
4.2.1. Construction of MS-CNN
4.2.2. MS-CNN Network Architecture
5. Experiment Results and Analysis
5.1. Experiment on Non-Destructive Testing of Anchor Bolts
5.1.1. Anchor Bolt and Anchoring
5.1.2. IEPE Piezoelectric Acceleration Sensor
5.2. Ultrasonic Guided Wave Test Waveform
5.2.1. Experimental Ultrasonic Guided Waveforms
5.2.2. The Uncertainty of Waveforms at the Same Position
5.3. Comparison with the Latest Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NDT | non-destructive testing; |
FFT | fast Fourier transform; |
MS-CNN | multi-scale convolutional neural network; |
CNN | convolutional neural networks. |
References
- Hime, W.; Backus, L.; Li, C. Modeling time-to-corrosion cracking in chloride contaminated reinforced concrete structures. Discussions and closure. ACI Mater. J. 1999, 96, 611–613. [Google Scholar]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Critical chloride content in reinforced concrete—A review. Cem. Concr. Res. 2009, 39, 1122–1138. [Google Scholar] [CrossRef]
- Wang, B.; Guo, X.; Jin, H.; Li, F.; Song, Y. Experimental study on degradation behaviors of rock bolt under the coupled effect of stress and corrosion. Constr. Build. Mater. 2019, 214, 37–48. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, X.; Li, D.; Zhang, P.; Sun, C. Corrosion monitoring of rock bolt by using a low coherent fiber-optic interferometry. Opt. Laser Technol. 2015, 67, 137–142. [Google Scholar] [CrossRef]
- Ding, W.; Huang, X.; Wang, Z.; Chen, L. Experimental study on the shear performance of a prestressed anchored jointed rock-like mass under different corrosion levels. Int. J. Rock Mech. Min. Sci. 2022, 158, 105209. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ruan, T.; Yuan, J. Inspection of reinforced concrete interface delamination using ultrasonic guided wave non-destructive test technique. Sci. China Technol. Sci. 2012, 55, 2893–2901. [Google Scholar] [CrossRef]
- Majhi, S.; Asilo, L.K.; Mukherjee, A.; George, N.V.; Uy, B. Multimodal Monitoring of Corrosion in Reinforced Concrete for Effective Lifecycle Management of Built Facilities. Sustainability 2022, 14, 9696. [Google Scholar] [CrossRef]
- Sriramadasu, R.C.; Banerjee, S.; Lu, Y. Detection and assessment of pitting corrosion in rebars using scattering of ultrasonic guided waves. NDT E Int. 2019, 101, 53–61. [Google Scholar] [CrossRef]
- Talakokula, V.; Bhalla, S.; Gupta, A. Corrosion assessment of reinforced concrete structures based on equivalent structural parameters using electro-mechanical impedance technique. J. Intell. Mater. Syst. Struct. 2014, 25, 484–500. [Google Scholar] [CrossRef]
- Lei, Z.; Xianbiao, M.; Zhanqing, C.; Peng, Z.; Zhijian, L.I. Study on Multiscale Entropy Evaluation Method of Bolt Anchorage Quality. Saf. Coal Mines 2016, 47, 64–67. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Zhang, X.; Elmaimouni, L. Study on propagation characteristics of ultrasonic guided wave and detection of the defect in resin bolts. Appl. Acoust. 2022, 195, 108843. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Dong, B.; Ma, H. Quantitative evaluation of steel corrosion induced deterioration in rubber concrete by integrating ultrasonic testing, machine learning and mesoscale simulation. Cem. Concr. Compos. 2022, 128, 104426. [Google Scholar] [CrossRef]
- McCann, M.T.; Jin, K.H.; Unser, M. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Process. Mag. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Feng, W.; Tarakbay, A.; Memon, S.A.; Tang, W.; Cui, H. Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: A comparative review. Constr. Build. Mater. 2021, 289, 123165. [Google Scholar] [CrossRef]
- Bhargava, K.; Ghosh, A.; Mori, Y.; Ramanujam, S. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures. Cem. Concr. Res. 2005, 35, 2203–2218. [Google Scholar] [CrossRef]
- Meeker, T.; Meitzler, A. Guided wave propagation in elongated cylinders and plates. Phys. Acoust. 1964, 1, 111–167. [Google Scholar]
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing 2020, 417, 36–63. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Mane, S.A.M.; Shinde, A. StressNet: Hybrid model of LSTM and CNN for stress detection from electroencephalogram signal (EEG). Results Control Optim. 2023, 11, 100231. [Google Scholar] [CrossRef]
- Li, Z.; Xu, R.; Luo, X.; Cao, X.; Sun, H. Short-term wind power prediction based on modal reconstruction and CNN-BiLSTM. Energy Rep. 2023, 9, 6449–6460. [Google Scholar] [CrossRef]
Corrosion Time (h) | Remaining Mass (g) | Mass Loss (g) | Corrosion Percentage | Corresponding Actual Corrosion Time (d) |
---|---|---|---|---|
0 | 3477.8 | 0 | 0 | 0 |
12 | 3452.7 | 25.1 | 0.72% | ≥200 |
24 | 3424.2 | 53.6 | 1.54% | ≥400 |
36 | 3394.6 | 83.2 | 2.39% | ≥600 |
48 | 3369.4 | 108.4 | 3.12% | ≥800 |
60 | 3345.2 | 132.6 | 3.81% | ≥1000 |
72 | 3322.6 | 155.2 | 4.46% | ≥1200 |
Layer Number | Structure Type | Parameter |
---|---|---|
1 | Input layer | 762 waveforms |
2 | Convolutional layer 1 | 3 × 1 |
3 | Convolutional layer 2 | 4 × 1 |
4 | Convolutional layer 3 | 5 × 1 |
5 | Concat layer | — |
6 | Convolutional layer 4 | 3 × 1 |
7 | Dropout layer | Probability is 0.5 |
8 | Fully connected layer | — |
9 | Output layer | — |
Type | Length/m | Diameter/mm | Poisson Ratio | Elasticity Modulus/GPa | Density kg/m3 |
---|---|---|---|---|---|
Anchor Bolt | 1.5 | 20 | 0.3 | 210 | 7850 |
Anchor agent | 1.0 | 32 | 0.2 | 25 | 2300 |
Surrounding rock | 1.0 | 200 | 0.25 | 60 | 2600 |
Training Set | Test Set | Degree of Corrosion | |
---|---|---|---|
Dataset 1 | 101 | 25 | 0.72% |
Dataset 2 | 101 | 25 | 1.54% |
Dataset 3 | 101 | 25 | 2.39% |
Dataset 4 | 101 | 25 | 3.12% |
Dataset 5 | 102 | 26 | 3.81% |
Dataset 6 | 102 | 26 | 4.46% |
Method | Accuary | MSE | Precision Ratio | Recall Ratio | F1 Score |
---|---|---|---|---|---|
SqueezeNet | 92.3 | 3.293 | 0.934 | 0.913 | 0.919 |
TI-CNN | 97.0 | 0.694 | 0.970 | 0.970 | 0.970 |
CNN-LSTM | 96.1 | 0.568 | 0.960 | 0.961 | 0.960 |
CNN-BiLSTM-SE | 98.6 | 0.262 | 0.989 | 0.988 | 0.988 |
MS-CNN | 99.4 | 0.026 | 0.994 | 0.993 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, G.; Lv, S.; Tao, Z.; Sun, X.; Du, B. Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network. Appl. Sci. 2024, 14, 5069. https://doi.org/10.3390/app14125069
Han G, Lv S, Tao Z, Sun X, Du B. Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network. Applied Sciences. 2024; 14(12):5069. https://doi.org/10.3390/app14125069
Chicago/Turabian StyleHan, Guang, Shuangcheng Lv, Zhigang Tao, Xiaoyun Sun, and Bowen Du. 2024. "Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network" Applied Sciences 14, no. 12: 5069. https://doi.org/10.3390/app14125069
APA StyleHan, G., Lv, S., Tao, Z., Sun, X., & Du, B. (2024). Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network. Applied Sciences, 14(12), 5069. https://doi.org/10.3390/app14125069