Effect of Spacing on Growth, Yield and Chemical Composition of Stevia Plants (Stevia rebaudiana Bert.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analytical Methods
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulczyński, B.; Gramza-Michałowska, A.; Człapka-Matyasik, M. Dietary characteristics of Stevia- current state of knowledge. Bromat. Chem. Toksykol. 2015, 47, 11–18. [Google Scholar]
- Bugaj, B.; Leszczyńska, T.; Pysz, M.; Kopeć, A.; Pacholarz, J.; Pysz-Izdebska, K. Profile and pro-health properties of Stevia rebaudiana Bertoni. Żywn. Nauka. Technol. Jakość. 2013, 3, 27–38. [Google Scholar]
- Bastaki, S. Pharmacotherapy of nonnutritive sweeteners in diabetes mellitus. Int. J. Diabetes Metab. 2015, 23, 11–22. [Google Scholar] [CrossRef]
- Sharangi, A.B.; Bhutia, P.H. Stevia: Medicinal Miracles and therapeutic magic. Int. J. Crop Sci. Technol. 2016, 2, 45–59. [Google Scholar]
- Ferreira, E.B.; Neves, F.D.A.R.; da Costa, M.A.D.; do Prado, W.A.; Ferri, L.D.A.F.; Bazotte, R.B. Comparative effects of Stevia rebaudiana leaves and stevioside on glycaemia and hepatic gluconeogenesis. Planta Med. 2006, 72, 691–696. [Google Scholar] [CrossRef]
- Aswar, U.; Gogawale, V.; Miniyar, P.; Patil, Y. Beneficial effects of Stevioside on AGEs, blood glucose, lipid profile and renal status in streptozotocin-induced diabetic rats. J. Appl. Biomed. 2019, 17, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Marcinek, K.; Krejpcio, Z. Stevia rebaudiana Bertoni: Health promoting properties and therapeutic applications. J Verbrauch Leb. 2016, 11, 3–8. [Google Scholar] [CrossRef]
- Mohd-Radzman, N.H.; Ismail, W.I.W.; Jaapar, S.S.; Adam, Z.; Adam, A. Stevioside from Stevia rebaudiana Bertoni increases insulin sensitivity in 3T3-L1 adipocytes. Evid.-Based Complement. Altern. Med. 2013, 2013, 938081. [Google Scholar] [CrossRef]
- Saravanan, R.; Vengatash Babu, K.; Ramachandran, V. Effect of Rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats. J. Physiol. Biochem. 2012, 68, 421–431. [Google Scholar] [CrossRef]
- Khatun, M.C.S.; Muhit, M.A.; Hossain, M.J.; Al-Mansur, M.A.; Rahman, S.A. Isolation of phytochemical constituents from Stevia rebaudiana (Bert.) and evaluation of their anticancer, antimicrobial and antioxidant properties via in vitro and in silico approaches. Heliyon 2021, 7, e08475. [Google Scholar] [CrossRef]
- Atas, M.; Eruygur, N.; Ucar, E.; Ozyigit, Y.; Turgut, K. The Effects of different nitrogen doses on antioxidant and antimicrobial activity of Stevia (Stevia rebaudiana Bert.). Cell Mol. Biol. 2018, 64, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Vishvakarma, P.; Mandal, S.; Pandey, J.; Bhatt, A.K.; Banerjee, V.B.; Gupta, J.K. An Analysis of the Most Recent Trends in Flavoring Herbal Medicines in Today’s Market. J. Pharm Negat. Results 2022, 13, 9189–9198. [Google Scholar]
- Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020, 177, 1227–1240. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, C.A.; Vikhe, D.N.; Jadhav, R.S. Global and domestic market of herbal medicines: A review. Res. J. Sci. Technol. 2020, 12, 327–330. [Google Scholar] [CrossRef]
- Samuel, P.; Ayoob, K.T.; Magnuson, B.A.; Wölwer-Rieck, U.; Jeppesen, P.B.; Rogers, P.J.; Rowland, I.; Mathews, R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J. Nutr. 2018, 148, 1186S–1205S. [Google Scholar] [CrossRef] [PubMed]
- Enthoven, L.; Van den Broeck, G. Local food systems: Reviewing two decades of research. Agric. Syst. 2021, 193, 103226. [Google Scholar] [CrossRef]
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Peake, A.S.; Bell, K.L.; Fischer, R.A.; Gardner, M.; Das, B.T.; Poole, N.; Mumford, M. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: Optimising plant growth regulator use, N application timing, row spacing and sowing date. Front. Plant Sci. 2020, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Haegele, J.W.; Becker, R.J.; Henninger, A.S.; Below, F.E. Row arrangement, phosphorus fertility, and hybrid contributions to managing increased plant density of maize. Agron. J. 2014, 106, 1838–1846. [Google Scholar] [CrossRef]
- Craine, J.M.; Dybzinski, R. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 2013, 27, 833–840. [Google Scholar] [CrossRef]
- PN-90/A-75101/03:1990; Determination of Dry Matter Content. The Polish Committee for Standardization: Warsaw, Poland, 1990.
- PN-90/A-75101/11; Determination of Vitamin C Content. The Polish Committee for Standardization: Warsaw, Poland, 1990.
- Rumińska, A.; Suchorska, K.; Węglarz, Z. Medicinal and Special Plants; SGGW-AR: Warszawa, Poland, 1990. [Google Scholar]
- PN-90/A-75101/07:1990; Determination of Sugar Content. The Polish Committee for Standardization: Warsaw, Poland, 1990.
- Slinghart, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual method. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Nowosielski, O. Methods for Determining Fertilizer Requirements; PWRiL: Warszawa, Poland, 1974; pp. 1–91. [Google Scholar]
- Kumar, R.; Sood, S.; Sharma, S.; Kasana, R.C.; Pathania, V.L.; Singh, B.; Singh, R.D. Effect of plant sparing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 2014, 8, 311–334. [Google Scholar]
- Ramesh, K.; Singh, V.; Megeji, N.W. Cultivation of Stevia [Stevia rebaudiana (Bert.) Bertoni]: A comprehensive review. Adv. Agron. 2006, 89, 137–177. [Google Scholar] [CrossRef]
- Tan, S.L.; Muhammad Ghawas, M.; Mohamad Najib, M.Y.; Zawayi, M. Preliminary evaluation and selection of stevia under Malaysian conditions. J Trop. Agric. Food Sci. 2008, 36, 171–177. [Google Scholar]
- Liu, X.; Ren, G.; Shi, Y. The effect of organic manure and chemical fertilizer on growth and development of Stevia rebaudiana Bertoni. Energy Procedia 2011, 5, 1200–1204. [Google Scholar] [CrossRef]
- Kumari, S.; Ghosh, G.; Meshram, M.R. TSS, yield and energetics of stevia as influenced by nitrogen levels and spacing under eastern UP conditions. Agric. Sci. Dig. 2021, 41, 319–323. [Google Scholar] [CrossRef]
- Tadesse, N.; Gebere, A.; Lulie, B.; Hordofa, M. Influence of plant population density on growth and yield of Stevia (Stevia rebaudiana Bertoni L.) at Wondo Genet South Ethiopia. Acad. Res. J. Agri. Sci. Res. 2016, 4, 321–329. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Kaur, A. Agro-production, processing and utilization of Stevia rebaudiana as natural sweetener. J. Agric. Eng. Food Technol. 2014, 1, 28–31. [Google Scholar]
- Taleie, N.; Hamidoghli, Y.; Rabiei, B.; Hamidoghli, S. Effects of plant density and transplanting date on herbage, stevioside, phenol and flavonoid yield of Stevia rebaudiana Bertoni. Int. J. Agric. Crop Sci. 2012, 4, 298–302. [Google Scholar]
- Kumar, R.; Sharma, S.; Ramesh, K.; Ramesh, K.; Singh, B. Effects of shade regimes and planting geometry on growth, yield and quality of the natural sweetener plant Stevia (Stevia rebaudiana Bertoni) in North- western Himalaya. Arch. Agron. Soil Sci. 2013, 59, 963–979. [Google Scholar] [CrossRef]
- Mordalski, R.; Kucharski, W.A.; Gryszczyńska, A.; Buchwald, W. Impact of raw sparing on the yield of Chelidonium majus L. herb and biological value of raw material. Post. Fitoter. 2014, 3, 150–154. [Google Scholar]
- Kumar, R.; Sharma, S.; Sood, S. Yield components, light interception and marker compound accumulation of Stevia (Stevia rebaudiana Bertoni) affected by planting material and plant density under western Himalayan conditions. Arch. Agron. Soil Sci. 2014, 60, 1731–1745. [Google Scholar] [CrossRef]
- Śniegowska, J.; Biesiada, A.; Gasiński, A. Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland. Molecules 2024, 29, 1865. [Google Scholar] [CrossRef]
- Villalbazo-García, T.D.C.; Hernández-Zárate, G.; Trejo-Téllez, L.I.; Bello-Bello, J.J. Endomycorrhizal fungi inoculation improves development of Stevia (Stevia rebaudiana Bertoni) plantlets during ex vitro acclimatization. Symbiosis 2023, 90, 53–60. [Google Scholar] [CrossRef]
- Kruczek, A. Chemical composition of sucro- sorghum in dependence of the sowing term, plants density and distance of rows. Nauka Przyr. Technol. 2014, 8, 1–10. [Google Scholar]
- Olanite, J.A.; Anele, U.Y.; Arigbede, O.M.; Jolaosho, A.O.; Onifade, O.S. Effect of plant spacing and nitrogen fertilizer levels on the growth, dry-matter yield and nutritive quality of Columbus grass (Sorghum almum Stapf) in southwest Nigeria. Grass Forage Sci. 2010, 65, 369–375. [Google Scholar] [CrossRef]
- Grabowska, A.; Sękara, A.; Kunicki, E.; Kalisz, A. Content of macroelements in index part of broccoli in relation to cultivation metod and sparing. Acta Agroph. 2013, 20, 295–314. [Google Scholar]
- Dunbabin, V.; Diggle, A.; Rengel, Z. Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Env. 2003, 26, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Riad, G.; Ghoname, A.; Ahmed, A.; El-Baky, M.A.; Hegazi, A. Cabbage nutritional quality as influenced by planting density and nitrogen fertilization. Fruit Veg. Cereal Sci. Biotechnol. 2009, 3, 68–74. [Google Scholar]
- Mujahid, A.M.; Gupta, A.J. Effect of plant spacing, organic manures and inorganic fertilizers and their combinations on growth, yield and quality of lettuce (Lactuca sativa). Indian J. Agric. Sci. 2010, 80, 177–181. [Google Scholar]
- Rekowska, E.; Skupień, K. Estimation of yield and chemical composition of winter garlic grown for bunch-harvest. J. Cent. Eur. Agric. 2008, 9, 711–714. [Google Scholar]
- Ren, B.; Liu, W.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Sci. Nat. 2017, 104, 12. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.A.; Hecht, V.L.; Hikosaka, K.; Nord, E.A.; Pons, T.L.; Poorter, H. Dividing the pie: A quantitative review on plant density responses. Plant Cell Environ. 2021, 44, 1072–1094. [Google Scholar] [CrossRef] [PubMed]
Month | Decade of the Month | Year 2014 | Year 2015 | Year 2016 | Average in Years 1981–2010 | ||||
---|---|---|---|---|---|---|---|---|---|
[°C] | [mm] | [°C] | [mm] | [°C] | [mm] | [°C] | [mm] | ||
May | 1st | 11.4 | 30.3 | 13.3 | 12.3 | 15.4 | 14.0 | 14.2 | 57 |
2nd | 12.2 | 33.6 | 13.0 | 14.0 | 15.5 | 12.0 | |||
3rd | 17.3 | 42.8 | 14.0 | 0.5 | 20.9 | 0.0 | |||
Monthly average | 13.8 | 106.7 | 13.4 | 26.8 | 17.3 | 26.0 | |||
June | 1st | 18.4 | 8.2 | 18.1 | 11.0 | 21.1 | 9.4 | 17 | 69.9 |
2nd | 16.6 | 0.3 | 16.4 | 23.1 | 18.5 | 59.0 | |||
3rd | 15.7 | 15.4 | 15.8 | 32.2 | 23.8 | 0.8 | |||
Monthly average | 16.9 | 23.9 | 16.8 | 66.3 | 21.1 | 69.2 | |||
July | 1st | 20.5 | 20.0 | 20.5 | 11.0 | 20.5 | 39.5 | 19.2 | 83.4 |
2nd | 22.5 | 0.0 | 20.3 | 38.9 | 20.1 | 70.5 | |||
3rd | 22.6 | 26.1 | 19.9 | 3.3 | 23.8 | 24.5 | |||
Monthly average | 21.9 | 46.1 | 20.2 | 53.2 | 21.5 | 134.5 | |||
August | 1st | 21.7 | 17.5 | 27.2 | 0.0 | 20.4 | 5.8 | 18.5 | 71 |
2nd | 17.4 | 13.1 | 25.2 | 0.0 | 19.7 | 5.0 | |||
3rd | 15.9 | 35.0 | 23.1 | 2.1 | 21.3 | 13.3 | |||
Monthly average | 18.3 | 65.6 | 25.2 | 2.1 | 20.5 | 24.1 | |||
September | 1st | 17.2 | 24.1 | 17.1 | 16.4 | 21.2 | 11.5 | 13.9 | 45.2 |
2nd | 18.6 | 21.6 | 18.8 | 0.0 | 19.3 | 45.8 | |||
3rd | 14.0 | 14.3 | 14.1 | 0.0 | 15.0 | 0.0 | |||
Monthly average | 16.6 | 60.0 | 16.7 | 16.4 | 18.5 | 57.3 |
Spacing | Yield of Stevia Plants [kg·m−2] 1 | Yield of Stevia Leaves [kg·m−2] | Yield of Stevia Shoots [kg·m−2] | Yield of Plant Waste [kg·m−2] |
---|---|---|---|---|
50 cm × 30 cm | 1.62 ± 0.10 b | 0.87 ± 0.11 b | 0.75 ± 0.09 a | 0.01 ± 0.01 a |
45 cm × 25 cm | 2.04 ± 0.15 a | 1.26 ± 0.22 a | 0.77 ± 0.07 a | 0.01 ± 0.01 a |
30 cm × 30 cm | 1.89 ± 0.12 a | 1.08 ± 0.10 a | 0.81 ± 0.11 a | 0.00 ± 0.00 a |
Spacing 1 | 50 cm × 30 cm | 45 cm × 25 cm | 30 cm × 30 cm | |
---|---|---|---|---|
July | Plant height [cm] | 28.65 ± 2.94 a | 28.69 ± 3.15 a | 27.65 ± 2.56 a |
Lateral width [cm] | 20.50 ± 2.18 a | 21.00 ± 3.27 a | 20.00 ± 2.41 a | |
Number of shoots of the first order | 7.89 ± 1.52 a | 7.56 ± 2.16 a | 6.74 ± 1.58 a | |
Number of leaves on the lowest lateral shoot | 12.33 ± 2.94 a | 12.74 ± 3.08 a | 11.30 ± 1.98 a | |
September | Plant height [cm] | 57.61 ± 4.52 a | 59.35 ± 4.88 a | 59.15 ± 5.12 a |
Lateral width [cm] | 29.05 ± 1.04 a | 27.00 ± 0.95 b | 26.05 ± 1.64 b | |
Number of shoots of the first order | 16.8 ± 1.96 a | 12.23 ± 1.52 b | 10.23 ± 1.07 b | |
Number of leaves on the lowest lateral shoot | 26.44 ± 3.66 a | 28.56 ± 3.42 a | 25.41 ± 2.98 a |
Spacing 1 | N-NO3 | P | K | Ca | Mg | |
---|---|---|---|---|---|---|
(mg·kg−1 d.m.) | (mg·100 g−1 d.m.) | |||||
July | 50 cm × 30 cm | 1360.99 ± 143.11 a | 134.58 ± 14.48 a | 2648.61 ± 84.12 a | 836.11 ± 21.49 a | 166.11 ± 5.92 a |
45 cm × 25 cm | 1343.82 ± 125.52 a | 126.39 ± 17.45 a | 2554.17 ± 59.04 a | 841.67 ± 19.83 a | 168.89 ± 10.14 a | |
30 cm × 30 cm | 1003.1 ± 97.43 b | 117.5 ± 19.83 a | 2465.28 ± 49.51 b | 791.67 ± 12.90 b | 143.89 ± 6.43 b | |
September | 50 cm × 30 cm | 1856.18 ± 194.44 a | 234.17 ± 11.80 a | 2828.93 ± 68.39 a | 861.94 ± 95.23 a | 176.39 ± 2.19 a |
45 cm × 25 cm | 1219.28 ± 283.67 b | 185.14 ± 9.15 b | 2748.43 ± 52.85 b | 888.18 ± 61.09 a | 172.22 ± 1.46 b | |
30 cm × 30 cm | 1073.57 ± 150.81 b | 155.69 ± 6.41 c | 2701.39 ± 47.92 b | 835.31 ± 54.97 a | 156.94 ± 1.01 c |
Spacing 1 | Dry Mass | Reducing Sugars | Vitamin C | Phenolic Compounds | |
---|---|---|---|---|---|
% [f.m.] | [mg·100 g−1 f.m.] | ||||
July | 50 cm × 30 cm | 24.48 ± 3.15 a | 1.42 ± 0.13 a | 124.17 ± 2.84 c | 187.61 ± 10.52 b |
45 cm × 25 cm | 24.70 ± 2.95 a | 1.08 ± 0.09 b | 144.39 ± 2.12 a | 176.86 ± 11.61 b | |
30 cm × 30 cm | 25.16 ± 2.18 a | 0.72 ± 0.10 c | 133.30 ± 1.98 b | 202.11 ± 9.81 a | |
September | 50 cm × 30 cm | 26.55 ± 1.44 b | 2.48 ± 0.36 a | 134.19 ± 2.81 a | 255.33 ± 18.94 b |
45 cm × 25 cm | 26.66 ± 0.99 b | 1.88 ± 0.15 b | 125.92 ± 1.28 b | 249.53 ± 26.51 b | |
30 cm × 30 cm | 28.67 ± 0.45 a | 1.64 ± 0.29 b | 126.90 ± 1.04 b | 314.66 ± 29.49 a |
Spacing 1 | Chlorophyll a + b | Total Carotenoids | |
---|---|---|---|
(mg·g−1 f.m.) | |||
July | 50 cm × 30 cm | 1.34 ± 0.11 a | 2.70 ± 0.31 a |
45 cm × 25 cm | 1.42 ± 0.15 a | 2.80 ± 0.34 a | |
30 cm × 30 cm | 1.26 ± 0.14 a | 2.68 ± 0.28 a | |
September | 50 cm × 30 cm | 1.47 ± 0.16 a | 2.83 ± 0.30 a |
45 cm × 25 cm | 1.58 ± 0.12 a | 3.07 ± 0.35 a | |
30 cm × 30 cm | 1.54 ± 0.21 a | 2.90 ± 0.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śniegowska, J.; Biesiada, A. Effect of Spacing on Growth, Yield and Chemical Composition of Stevia Plants (Stevia rebaudiana Bert.). Appl. Sci. 2024, 14, 5153. https://doi.org/10.3390/app14125153
Śniegowska J, Biesiada A. Effect of Spacing on Growth, Yield and Chemical Composition of Stevia Plants (Stevia rebaudiana Bert.). Applied Sciences. 2024; 14(12):5153. https://doi.org/10.3390/app14125153
Chicago/Turabian StyleŚniegowska, Joanna, and Anita Biesiada. 2024. "Effect of Spacing on Growth, Yield and Chemical Composition of Stevia Plants (Stevia rebaudiana Bert.)" Applied Sciences 14, no. 12: 5153. https://doi.org/10.3390/app14125153