Systematic Review: Anti-Forensic Computer Techniques
Abstract
:1. Introduction
- T. Latzo et al. [3] elaborate a taxonomy of forensic acquisition methods, which is a comprehensive survey of state-of-the-art memory acquisition techniques, independent of the operating system used and the hardware architecture.
- R. Palutke et al. [4] present a study with three novel methods that prevent user space memory from appearing in analysis tools and also make it inaccessible from the perspective of security analysts.
- Review of the existing scientific literature on anti-forensic techniques.
- Grouping of the analyzed works according to the subject orientation within the field of anti-forensic techniques.
- Within each topic, grouping of the analyzed works according to the technique they include.
- Analysis of the state of the art of the last 6 years (2016–2022).
- Exposition of ideas for the improvement of the field of anti-forensic techniques based on the shortcomings analyzed in the review of the state of the art.
- Section 2—Materials and Methods: This section presents how the systematic review was carried and how documents were selected to be included in this study.
- Section 3—Fundamentals of anti-forensic science: Presentation of the most significant documents related to anti-forensics science in the recent literature.
- Section 4—Results: Grouping of the documents obtained into categories and presentation of the findings of our study of the documents.
- Section 5—Conclusions: General conclusions obtained from the review of the work included are detailed here, and recommendations are made as to how to correct the deficiencies detected.
2. Materials and Methods
2.1. Review Methodology
- Definition of the research questions.
- Selection of the bibliographic databases to be used.
- Selection of search criteria.
- Selection of criteria for inclusion and exclusion of results.
2.1.1. Definition of Research Questions
2.1.2. Bibliographic Databases Used
- IEEE Xplore (https://ieeexplore.ieee.org).
- ACM (https://dl.acm.org).
- Science Direct (https://sciencedirect.com).
- Web Of Science (https://www.webofscience.com).
- Scopus (https://scopus.com).
2.1.3. Search Criteria
2.1.4. Document Inclusion and Exclusion Criteria
3. Fundamentals of Anti-Forensic Science
- Data hiding.
- Artefacts deletion.
- Obfuscation of traces.
- Direct attacks on forensic software and procedures.
- Possible indications of anti-forensics.
- Data destruction.
- Anti-forensic techniques in Windows.
- Digital evidence destruction.
- Direct attacks on forensic software.
- Evidence destruction.
- Destruction of the source of evidence.
- Evidence concealment.
- Evidence tampering.
- Windows events.
- Windows registry.
- RAM.
- Memory paging system.
- Windows prefetch system.
- Windows Superfetch system.
- Windows image cache.
- Windows jump lists.
- Navigation files.
- Data hiding, obfuscation, and encryption.
- Deletion or destruction of data.
- Data tampering.
- Prevention of analysis.
- Obstruction of trace collection.
- Subversion tools.
- Data pooling.
- Non-standard RAID disks.
- File signature manipulation.
- Restricted file names.
- MACE time manipulation
- Loop references.
- Hash collisions.
- Fake hard disks.
- To serve as a knowledge update for anti-forensic experts.
- To show where to look if you suspect the use of any of these techniques.
- The human element in the process.
- Reliance on forensic tools.
- Physical and logical limitations.
- Artefact wiping.
- Data hiding.
- Reserved locations.
- Slack space.
- Extended attributes, forks, and alternate data streams.
- Cryptographic file systems.
- Steganographic file systems.
- Mounting.
- Trail obfuscation.
- Forging timestamp.
- Modifying magic numbers.
- Using live distros.
- Attacking forensic tools.
- Dropping a compression bomb.
- Opening a sparse file.
- HPA/DCO, file encryption, and steganography.
- Change the operating system timestamp.
- Manipulate the MACE values of NTFS system files.
- Analyze the behavior and mechanisms of this malware, in detail.
- Analyze the solutions given by other researchers for its detection.
- Propose an incident investigation and response model.
- Introduction and knowledge about fileless malware.
- Analysis of fileless malware according to its persistence techniques.
- Fileless malware detection techniques.
- Incident model.
- Image processing analysis and anti-forensic operations.
- Algorithm proposal.
- Experiment results.
4. Results
4.1. Weaknesses and Anti-Forensic Use Cases
4.1.1. Weaknesses and Anti-Forensic Use Cases: Multimedia Systems
- M. A. Qureshi et al. [21] provide an overview of various anti-forensic techniques and countermeasures proposed in the literature, together with a bibliographic analysis of vanguard publications in different areas. J. Yu et al. [22,23] add a method for the general detection of these techniques using convolutional neural networks (CNNs). On the other hand, G. Cao et al. [24,25,26,27,28,29] attempt to detect contrast enhancement (CE) techniques. J. Y. Sun et al. [30,31] use CNNs to detect CE techniques.
- G. Cao et al. [32] propose a method for evaluating the performance of forensic systems that analyze the tampering of an image. M. Fontani et al. [33] propose a theoretical framework based on the Dempster–Shafer theory of evidence to merge the information provided by forensic tools and anti-forensic tools.
- Authors such as K. Sitara et al. [37,38,39] present techniques for the detection and classification of video tampering, while M. C. Stamm et al. [40,41] focus on detecting the use of anti-forensics in video, and X. Kang et al. [42] describe techniques for detecting video tampering using video inter-frame spoofing techniques. On the other hand, S. Milani et al. [43,44] propose an anti-forensic technique with which to hide the camera used to record the video. C. Chen et al. [45] propose a similar technique and also use GAN.
- H. Yao et al. [46] discusses anti-forensic techniques applied to the deletion of frames in digital videos.
- A considerable number of authors, such as J. Waleed et al. [69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105], cover techniques for the detection of anti-forensics based on image compression. B. Li et al. [106] do the same using CNNs. Authors such as S. Milani et al. [107,108] apply it to double image compression. D. Huang et al. [109] focus their study on the double compression of JPG images and also base it on GAN.
- Authors such as J. Ravan et al. [119] deal with the detection of image forgery using the copy-and-paste technique. O. Mayer et al. [120,121] discuss the same, focusing on lateral chromatic aberrations (LCA). Other authors, such as L. Dou et al. [122], focus on the diffusion filling technique to analyze image forgeries.
- M. Salman et al. [123] elaborate an alternative forensic method that uses a different type of keypoint in images to avoid anti-forensic techniques based on SIFT (scale-invariant feature transform).
- J. Wu et al. [124] expose a method of image tampering using a specific type of artificial neural network called a Wasserstein generative adversarial network with gradient penalty (WGAN-GP), which makes them appear to be original.
- H. Zhao et al. [127] analyze the contest between forensic techniques for detecting splices in audio recordings and anti-forensic techniques used to hide such splices. On the other hand, B. Tao et al. [128] do the same with the anti-forensic technique of double audio compression. Authors such as T. Liu et al. [129] focus their analysis on audio resampling and recompression using GAN.
4.1.2. Weaknesses and Anti-Forensic Use Cases: Specific Techniques
4.1.3. Weaknesses and Anti-Forensic Use Cases in Databases and the Cloud
4.1.4. Weaknesses and Anti-Forensic Use Cases of RAM
4.1.5. Weaknesses and Anti-Forensic Use Cases in Flash Drives
4.1.6. Weaknesses and Anti-Forensic Use Cases in Networking and IoT
4.1.7. Weaknesses and Anti-Forensic Use Cases in Operating Systems
4.1.8. Weaknesses and Anti-Forensic Use Cases in Mobile Device Operating Systems
4.1.9. Weaknesses and Anti-Forensic Use Cases in File Systems
4.1.10. Weaknesses and Anti-Forensic Use Cases in Forensic Tools
4.2. Exposition of Anti-Forensic Techniques
4.2.1. Exposition of Anti-Forensic Techniques: Classification and General Review
4.2.2. Exposition of Anti-Forensic Techniques: Countermeasures
4.2.3. Exposition of Anti-Forensic Techniques: Explanation of Specific Anti-Forensic Tools
4.2.4. Exposition of Anti-Forensic Techniques: Detection of Traces Left by Anti-Forensic Tools
4.3. Anti-Forensics and Malware
4.4. New Threat Models and Forecasts
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peron, C.S.J.; Legary, M. Digital anti-forensics: Emerging trends in data transformation techniques. In Proceedings of the E-Crime and Computer Evidence Conference, Montecarlo, Monaco, 28–30 March 2005. [Google Scholar]
- Pajek, P.; Pimenidis, E. Computer anti-forensics methods and their impact on computer forensic investigation. Commun. Comput. Inf. Sci. 2009, 45, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Latzo, T.; Palutke, R. Freiling. A universal taxonomy and survey of forensic memory acquisition techniques. Digit. Investig. 2019, 28, 56–69. [Google Scholar] [CrossRef]
- Palutke, R.; Block, F.; Reichenberger, P.; Stripeika, D. Hiding Process Memory Via Anti-Forensic Techniques. Forensic Sci. Int. Digit. Investig. 2020, 33, 301012. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering Version 2.3; Technical Report; Keele University: Keele, UK; University of Durham: Durham, UK, 2007. [Google Scholar]
- Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Kitchenham, B.; Brereton, P. A Systematic Review of Systematic Review Process Research in Software Engineering. Manuscr. Publ. Inf. Softw. Technol. 2013, 55, 2049–2075. [Google Scholar] [CrossRef]
- Conlan, K.; Baggili, I.; Breitinger, F. Anti-forensics: Furthering digital forensic science through a new extended, granular taxonomy. Digit. Investig. 2016, 18, S66–S75. [Google Scholar] [CrossRef]
- Rogers, M. Anti-Forensics: The Coming Wave in Digital Forensics. 2006. Available online: https://www.cerias.purdue.edu/news_and_events/events/symposium/2006/materials/pdfs/antiforensics.pdf (accessed on 10 June 2024).
- Hassan, N.A.; Hijazi, R. Antiforensic Techniques. In Data Hiding Techniques in Windows OS; Syngress: Rockland, MA, USA, 2017; pp. 267–290. [Google Scholar] [CrossRef]
- Hoelz, B.; Maues, M. Anti-forensic threat modelling. IFIP Adv. Inf. Commun. Technol. 2017, 511, 169–183. [Google Scholar] [CrossRef]
- Harris, R. Arriving at an anti-forensics consensus: Examining how to define and control the anti-forensics problem. Digit. Investig. 2006, 3, 44–49. [Google Scholar] [CrossRef]
- Beebe, N.L.; Clark, J.G. A hierarchical, objectives-based framework for the digital investigations process. Digit. Investig. 2005, 2, 147–167. [Google Scholar] [CrossRef]
- Al-Saleh, M.I.; Al-Shamaileh, M.J. Forensic artefacts associated with intentionally deleted user accounts. Int. J. Electron. Secur. Digit. Forensics 2017, 9, 167–179. [Google Scholar] [CrossRef]
- Gül, M.; Kugu, E. A survey on anti-forensics techniques. In Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017. [Google Scholar] [CrossRef]
- Mothukur, A.R.; Balla, A.; Taylor, D.H.; Sirimalla, S.T.; Elleithy, K. Investigation of Countermeasures to Anti-Forensic Methods. In Proceedings of the 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 3 May 2019. [Google Scholar] [CrossRef]
- Wani, M.A.; AlZahrani, A.; Bhat, W.A. File system anti-forensics–types, techniques and tools. Comput. Fraud. Secur. 2020, 2020, 14–19. [Google Scholar] [CrossRef]
- Jang, D.-I.; Ahn, G.-J.; Hwang, H.; Kim, K. Understanding anti-forensic techniques with timestamp manipulation. In Proceedings of the 2016 IEEE 17th International Conference on Information Reuse and Integration, IRI, Pittsburgh, PA, USA, 28–30 July 2016; pp. 609–614. [Google Scholar] [CrossRef]
- Sudhakar; Kumar, S. An emerging threat Fileless malware: A survey and research challenges. Cybersecurity 2020, 3, 1–12. [Google Scholar] [CrossRef]
- Li, H.; Luo, W.; Qiu, X.; Huang, J. Identification of Various Image Operations Using Residual-Based Features. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 31–45. [Google Scholar] [CrossRef]
- Qureshi, M.A.; El-Alfy, E.-S.M. Bibliography of digital image anti-forensics and anti-anti-forensics techniques. IET Image Process. 2019, 13, 1811–1823. [Google Scholar] [CrossRef]
- Yu, J.; Zhan, Y.; Yang, J.; Kang, X. A multi-purpose image counter-anti-forensic method using convolutional neural networks. Lect. Notes Comput. Sci. 2017, 10082, 3–15. [Google Scholar] [CrossRef]
- Stamm, M.C.; Zhao, X. Anti-Forensic Attacks Using Generative Adversarial Networks. Multimedia Forensics. In Advances in Computer Vision and Pattern Recognition; Springer: Singapore, 2022. [Google Scholar]
- Cao, G.; Zhao, Y.; Ni, R.; Tian, H.; Yu, L. Attacking contrast enhancement forensics in digital images. Sci. China Inf. Sci. 2014, 57, 1–13. [Google Scholar] [CrossRef]
- Ravi, H.; Subramanyam, A.V.; Emmanuel, S. ACE-An effective anti-forensic contrast enhancement technique. IEEE Signal Process. Lett. 2016, 23, 212–216. [Google Scholar] [CrossRef]
- Bharathiraja, S.; Kanna, B.R. Anti-Forensics Contrast Enhancement Detection (AFCED) Technique in Images Based on Laplace Derivative Histogram. Mob. Netw. Appl. 2019, 24, 1174–1180. [Google Scholar] [CrossRef]
- Kwok, C.-W.; Au, O.C.; Chui, S.-H. Alternative anti-forensics method for contrast enhancement. Lect. Notes Comput. Sci. 2012, 7128, 398–410. [Google Scholar] [CrossRef]
- Lin, X.; Li, C.-T.; Hu, Y. Exposing image forgery through the detection of contrast enhancement. In Proceedings of the 2013 IEEE International Conference on Image Processing, ICIP 2013, Melbourne, VIC, Australia, 15–18 September 2013; pp. 4467–4471. [Google Scholar] [CrossRef]
- Zou, H.; Yang, P.; Ni, R.; Zhao, Y. Anti-forensics of image contrast enhancement based on generative adversarial network. Secur. Commun. Networks 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Sun, J.Y.; Kim, S.W.; Lee, S.W.; Ko, S.J. A novel contrast enhancement forensics based on convolutional neural networks. Signal Process. Image Commun. 2018, 63, 149–160. [Google Scholar] [CrossRef]
- Dong, W.; Wang, J.-J. Contrast Enhancement Forensics Based on Modified Convolutional Neural Network. Yingyong Kexue Xuebao/J. Appl. Sci. 2017, 35, 745–753. [Google Scholar]
- Cao, G.; Wang, Y.; Zhao, Y.; Ni, R.; Lin, C. On the security of image manipulation forensics. Lect. Notes Comput. Sci. 2015, 9314, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Fontani, M.; Bonchi, A.; Piva, A.; Barni, M. Countering anti-forensics using data fusion. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 2–6 February 2014; Volume 9028. [Google Scholar] [CrossRef]
- Chuang, W.-H.; Wu, M. Robustness of color interpolation identification against anti-forensic operations. Lect. Notes Comput. Sci. 2013, 7692, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Yang, G.; Xia, M. Anti-forensics for unsharp masking sharpening in digital images. Int. J. Digit. Crime Forensics 2013, 5, 53–65. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, F.; Shi, Y. Anti-forensics of Image Sharpening Using Generative Adversarial Network. Lect. Notes Comput. Sci. 2020, 12022, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Sitara, K.; Mehtre, B.M. Digital video tampering detection: An overview of passive techniques. Digit. Investig. 2016, 18, 8–22. [Google Scholar] [CrossRef]
- Shelke, N.A.; Kasana, S.S. A comprehensive survey on passive techniques for digital video forgery detection. Multimed. Tools Appl. 2021, 80, 6247–6310. [Google Scholar] [CrossRef]
- Bestagini, P.; Battaglia, S.; Milani, S.; Tagliasacchi, M.; Tubaro, S. Detection of temporal interpolation in video sequences. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3033–3037. [Google Scholar] [CrossRef]
- Stamm, M.C.; Lin, W.S.; Liu, K.J.R. Forensics vs. anti-forensics: A decision and game theoretic framework. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 25–30 March 2012; pp. 1749–1752. [Google Scholar] [CrossRef]
- Su, P.-C.; Suei, P.-L.; Chang, M.-K.; Lain, J. Forensic and anti-forensic techniques for video shot editing in H.264/AVC. J. Vis. Commun. Image Represent. 2015, 29, 103–113. [Google Scholar] [CrossRef]
- Kang, X.; Liu, J.; Liu, H.; Wang, Z.J. Forensics and counter anti-forensics of video inter-frame forgery. Multimed. Tools Appl. 2016, 75, 13833–13853. [Google Scholar] [CrossRef]
- Milani, S.; Bestagini, P.; Tagliasacchi, M.; Tubaro, S. Antiforensic synthesis of motion vectors using template algorithms. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 2709–2713. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, X.; Stamm, M.C. Detecting anti-forensic attacks on demosaicing-based camera model identification. In Proceedings of the International Conference on Image Processing, ICIP, Beijing, China, 17–20 September 2017; pp. 1512–1516. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, X.; Stamm, M.C. Mislgan: An Anti-Forensic Camera Model Falsification Framework Using a Generative Adversarial Network. In Proceedings of the International Conference on Image Processing, ICIP, Athens, Greece, 7–10 October 2018; pp. 535–539. [Google Scholar] [CrossRef]
- Yao, H.; Ni, R.; Zhao, Y. An approach to detect video frame deletion under anti-forensics. J. Real-Time Image Process. 2019, 16, 751–764. [Google Scholar] [CrossRef]
- Ding, F.; Zhu, G.; Li, Y.; Zhang, X.; Atrey, P.K.; Lyu, S. Anti-Forensics for Face Swapping Videos via Adversarial Training. IEEE Trans. Multimed. 2022, 24, 3429–3441. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Wang, J.; Zhao, G. A Local Perturbation Generation Method for GAN-generated Face Anti-forensics. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 661–676. [Google Scholar] [CrossRef]
- Peng, F.; Yin, L.; Long, M. BDC-GAN: Bidirectional Conversion Between Computer-Generated and Natural Facial Images for Anti-Forensics. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6657–6670. [Google Scholar] [CrossRef]
- Fan, L.; Li, W.; Cui, X. Deepfake-image anti-forensics with adversarial examples attacks. Future Internet 2021, 13, 288. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, X.; Yang, Y.; Ding, L.; Ward, R.; Wang, Z.J. Perception matters: Exploring imperceptible and transferable anti-forensics for GAN-generated fake face imagery detection. Pattern Recognit. Lett. 2021, 146, 15–22. [Google Scholar] [CrossRef]
- Zhao, X.; Stamm, M.C. Making Generated Images Hard to Spot: A Transferable Attack on Synthetic Image Detectors. In Pattern Recognition, Computer Vision, and Image Processing; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13646. [Google Scholar] [CrossRef]
- Ngoc, N.H.; Chan, A.; Binh, H.T.T.; Ong, Y.S. Anti-Forensic Deepfake Personas and How To Spot Them. In Proceedings of the International Joint Conference on Neural Networks, Padua, Italy, 18–23 July 2022. [Google Scholar] [CrossRef]
- Peng, F.; Yin, L.-P.; Zhang, L.-B.; Long, M. CGR-GAN: CG Facial Image Regeneration for Antiforensics Based on Generative Adversarial Network. IEEE Trans. Multimed. 2020, 22, 2511–2525. [Google Scholar] [CrossRef]
- Liu, Q. An approach to detecting JPEG down-recompression and seam carving forgery under recompression anti-forensics. Pattern Recognit. 2017, 65, 35–46. [Google Scholar] [CrossRef]
- Luo, Y.; Zi, H.; Zhang, Q.; Kang, X. Anti-forensics of JPEG compression using generative adversarial networks. In Proceedings of the European Signal Processing Conference, Rome, Italy, 3–7 September 2018; pp. 952–956. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Pankajakshan, V. A JPEG blocking artefact detector for image forensics. Signal Process. Image Commun. 2018, 68, 155–161. [Google Scholar] [CrossRef]
- Peng, A.; Kang, X. Robust median filtering detection based on filtered residual. Lect. Notes Comput. Sci. 2013, 7809, 344–357. [Google Scholar] [CrossRef]
- Sharma, S.; Ravi, H.; Subramanyam, A.V.; Emmanuel, S. Anti-forensics of median filtering and contrast enhancement. J. Vis. Commun. Image Represent. 2020, 66, 102682. [Google Scholar] [CrossRef]
- Kang, X.; Qin, T.; Zeng, H. Countering median filtering anti-forensics and performance evaluation of forensics against intentional attacks. In Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing, ChinaSIP 2015, Chengdu, China, 12–15 July 2015; pp. 483–487. [Google Scholar] [CrossRef]
- Cao, G.; Zhao, Y.; Ni, R.; Tian, H. Anti-forensics of contrast enhancement in digital images. In Proceedings of the MM and Sec’10, 2010 ACM SIGMM Multimedia and Security Workshop, Rome, Italy, 9–10 September 2010; pp. 25–34. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Stamm, M.C.; Liu, K.J.R. Anti-forensics of median filtering. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3043–3047. [Google Scholar] [CrossRef]
- Peng, A.-J.; Kang, X.-G. Median filtering forensics based on multi-directional difference of filtering residuals. JisuanjiXuebao/Chin. J. Comput. 2016, 39, 503–515. [Google Scholar]
- Singh, K.; Kansal, A.; Singh, G. An improved median filtering anti-forensics with better image quality and forensic undetectability. Multidimens. Syst. Signal Process. 2019, 30, 1951–1974. [Google Scholar] [CrossRef]
- Sharma, S.; Subramanyam, A.V.; Jain, M.; Mehrish, A.; Emmanuel, S. Anti-forensic technique for median filtering using L1-L2 TV model. In Proceedings of the 8th IEEE International Workshop on Information Forensics and Security, WIFS, Abu Dhabi, United Arab Emirates, 4–7 December 2016. [Google Scholar] [CrossRef]
- Zeng, H.; Qin, T.; Kang, X.; Liu, L. Countering anti-forensics of median filtering. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 2704–2708. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.; Cayre, F.; Xiong, Z. Median filtered image quality enhancement and anti-forensics via variational deconvolution. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1076–1091. [Google Scholar] [CrossRef]
- Fontani, M.; Barni, M. Hiding Traces of Median Filtering in Digital Images. In Proceedings of the European Signal Processing Conference, Bucharest, Romania, 27–31 August 2012; pp. 1239–1243. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869807478&partnerID=40&md5=53ba0ecb13a67b9540393515ca0b3f90 (accessed on 14 June 2024).
- Waleed, J.; Hasan, T.M.; Abbas, T. Comprehensive expansion in Anti-Forensics Techniques (AFTs) based compressed image. In Proceedings of the 2017 Annual Conference on New Trends in Information and Communications Technology Applications, NTICT, Baghdad, Iraq, 7–9 March 2017; pp. 156–161. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, Z. Hiding the Trace of JPEG compression history. In Proceedings of the 2014 4th International Conference on Communication Systems and Network Technologies, CSNT, Bhopal, India, 7–9 April 2014; pp. 909–913. [Google Scholar] [CrossRef]
- Afshin, N.; Razzazi, F.; Moin, M.-S. A dictionary based approach to JPEG anti-forensics. In Proceedings of the 2016 IEEE 8th International Conference on Intelligent Systems, IS 2016, Sofia, Bulgaria, 4–6 September 2016; pp. 778–783. [Google Scholar] [CrossRef]
- Feng, C.; Xu, Z.; Zheng, X. An anti-forensic algorithm of JPEG double compression based forgery detection. In Proceedings of the 2012 4th International Symposium on Information Science and Engineering, ISISE, Shanghai, China, 14–16 December 2012; pp. 159–164. [Google Scholar] [CrossRef]
- Sheng, G.; Su, Q. Erasing the JPEG compression artefacts: An improved counter-forensic algorithm based on parameter adjustment. In Proceedings of the 2014 9th International Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA, Guangdong, China, 8–10 November 2014; pp. 321–324. [Google Scholar] [CrossRef]
- Singh, A.K.; Rawat, C.S.; Bhatia, A. Alleviation of quantization artefact using anti-forensic in image processing. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS, Chennai, India, 1–2 August 2017; pp. 2697–2701. [Google Scholar] [CrossRef]
- Singh, G.; Singh, K. Counter JPEG anti-forensic approach based on the second-order statistical analysis. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1194–1209. [Google Scholar] [CrossRef]
- Stamm, M.C.; Tjoa, S.K.; Lin, W.S.; Liu, K.J.R. Anti-forensics of JPEG compression. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 1694–1697. [Google Scholar] [CrossRef]
- Valenzise, G.; Nobile, V.; Tagliasacchi, M.; Tubaro, S. Countering JPEG anti-forensics. In Proceedings of the International Conference on Image Processing, ICIP, Brussels, Belgium, 11–14 September 2011; pp. 1949–1952. [Google Scholar] [CrossRef]
- Kaimal, A.B.; Manimurugan, S.; Rajivkumar, J.; Anitha. A new technique for removing forensically detectable traces from digital images. In Proceedings of the 7th International Conference on Intelligent Systems and Control, ISCO, Coimbatore, India, 4–5 January 2013; pp. 321–324. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.; Cayre, F.; Xiong, Z. JPEG anti-forensics with an improved tradeoff between forensic undetectability and image quality. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1211–1226. [Google Scholar] [CrossRef]
- Chu, X.; Stamm, M.C.; Chen, Y.; Liu, K.J.R. Concealability-rate-distortion tradeoff in image compression anti-forensics. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3063–3067. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Pankajakshan, V. An approach to expose dithering-based JPEG anti-forensics. Forensic Sci. Int. 2021, 328, 111040. [Google Scholar] [CrossRef]
- Qian, Z.; Zhang, X. Improved anti-forensics of JPEG compression. J. Syst. Softw. 2014, 91, 100–108. [Google Scholar] [CrossRef]
- Sutthiwan, P.; Shi, Y.Q. Anti-forensics of double JPEG compression detection. Lect. Notes Comput. Sci. 2012, 7128, 411–424. [Google Scholar] [CrossRef]
- Chu, X.; Stamm, M.C.; Chen, Y.; Liu, K.J.R. On antiforensic concealability with rate-distortion tradeoff. IEEE Trans. Image Process. 2015, 24, 1087–1100. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, H.; Kang, X.; Liu, L. The game of countering JPEG anti-forensics based on the noise level estimation. In Proceedings of the 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013, Kaohsiung, Taiwan, 29 October–1 November 2013. [Google Scholar] [CrossRef]
- Shelke, P.M.; Prasad, R.S. An improved anti-forensics JPEG compression using Least Cuckoo Search algorithm. Imaging Sci. J. 2018, 66, 169–183. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Kansal, A.; Singh, K. Digital image forensic approach to counter the JPEG anti-forensic attacks. IEEE Access 2020, 9, 4364–4375. [Google Scholar] [CrossRef]
- Singh, G.; Singh, K. Improved JPEG anti-forensics with better image visual quality and forensic undetectability. Forensic Sci. Int. 2017, 277, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Stamm, M.C.; Tjoa, S.K.; Lin, W.S.; Liu, K.J.R. Undetectable image tampering through JPEG compression anti-forensics. In Proceedings of the International Conference on Image Processing, ICIP, Hong Kong, China, 26–29 September 2010; pp. 2109–2112. [Google Scholar] [CrossRef]
- Fahmy, G. Detectable Tampering of JPEG Anti-Forensics. In Proceedings of the WIAR 2012—National Workshop on Information Assurance Research, Riyadh, Saudi Arabia, 18 April 2012; pp. 45–48. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929257836&partnerID=40&md5=d92e5c5870e0554b15f2f635e6cc943c (accessed on 12 June 2024).
- Fahmy, G.; Wurtz, R. Phase based forgery detection of JPEG anti forensics. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT, Limassol, Cyprus, 12–14 December 2016; pp. 144–149. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J. Anti-Forensics of Lossy Predictive Image Compression. IEEE Signal Process. Lett. 2015, 22, 2219–2223. [Google Scholar] [CrossRef]
- Qian, Z.; Qiao, T. Simplified anti-forensics of JPEG compression. J. Comput. 2013, 8, 2483–2488. [Google Scholar] [CrossRef]
- Kumar, A.; Kansal, A.; Singh, K. An improved anti-forensic technique for JPEG compression. Multimed. Tools Appl. 2019, 78, 25427–25453. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.; Cayre, F.; Xiong, Z. A variational approach to JPEG anti-forensics. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3058–3062. [Google Scholar] [CrossRef]
- Bhatia, A.; Rawat, C.D.; Kumarjetawat, A. Digital artifacts-anti-forensics approach for optimization of digital images. In Proceedings of the IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI, Chennai, India, 21–22 September 2017; pp. 544–548. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.; Cayre, F.; Xiong, Z. JPEG anti-forensics using non-parametric DCT quantization noise estimation and natural image statistics. In Proceedings of the IH and MMSec 2013, 2013 ACM Information Hiding and Multimedia Security Workshop, Montpellier, France, 17–19 June 2013; pp. 117–122. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Kumawat, C.; Pankajakshan, V. A method for detecting JPEG anti-forensics. Commun. Comput. Inf. Sci. 2018, 841, 190–197. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, T.; Sheng, G.; Fan, L.; Gao, L. A new anti-forensic scheme-hiding the single JPEG compression trace for a digital image. J. Forensic Sci. 2015, 60, 197–205. [Google Scholar] [CrossRef]
- Das, T.K. Anti-forensics of JPEG compression detection schemes using an approximation of DCT coefficients. Multimed. Tools Appl. 2018, 77, 31835–31854. [Google Scholar] [CrossRef]
- Valenzise, G.; Tagliasacchi, M.; Tubaro, S. The cost of JPEG compression anti-forensics. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 22–27 May 2011; pp. 1884–1887. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, J.; Kang, X.; Lyu, S. Countering JPEG anti-forensics based on noise level estimation. Sci. China Inf. Sci. 2018, 61, 032103. [Google Scholar] [CrossRef]
- Sheng, G.; Yang, B. An improved counter-forensic algorithm to erase the JPEG compression artifacts. Int. J. Mob. Comput. Multimed. Commun. 2014, 6, 22–32. [Google Scholar] [CrossRef]
- Stamm, M.C.; Liu, K.J.R. Anti-forensics of digital image compression. IEEE Trans. Inf. Forensics Secur. 2011, 6, 1050–1065. [Google Scholar] [CrossRef]
- Pasquini, C.; Boato, G. JPEG compression anti-forensics based on first significant digit distribution. In Proceedings of the 2013 IEEE International Workshop on Multimedia Signal Processing, MMSP, Pula, Italy, 30 September–2 October 2013; pp. 500–505. [Google Scholar] [CrossRef]
- Li, B.; Zhang, H.; Luo, H.; Tan, S. Detecting double JPEG compression and its related anti-forensic operations with CNN. Multimed. Tools Appl. 2019, 78, 8577–8601. [Google Scholar] [CrossRef]
- Milani, S.; Tagliasacchi, M.; Tubaro, S. Antiforensics attacks to Benford’s law for the detection of double compressed images. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3053–3057. [Google Scholar] [CrossRef]
- Li, H.; Luo, W.; Huang, J. Anti-forensics of double JPEG compression with the same quantization matrix. Multimed. Tools Appl. 2015, 74, 6729–6744. [Google Scholar] [CrossRef]
- Huang, D.; Tang, W.; Li, B. Anti-forensics for Double JPEG Compression Based on Generative Adversarial Network. Lect. Notes Comput. Sci. 2021, 12888, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sun, W. Towards multi-operation image anti-forensics with generative adversarial networks. Comput. Secur. 2021, 100, 102083. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Kumawat, C.; Pankajakshan, V. Detection of Various Anti-Forensic Operations Based on DCT Coefficient Analysis. In Proceedings of the INDICON 2018—15th IEEE India Council International Conference, Coimbatore, India, 16–18 December 2018. [Google Scholar] [CrossRef]
- Shelke, P.M.; Prasad, R.S. Improving JPEG image anti-forensics. In Proceedings of the ACM International Conference Proceeding Series, Udaipur, India, 4–5 March 2016. [Google Scholar] [CrossRef]
- Kumar, A.; Kansal, A.; Singh, K. Anti-forensic approach for JPEG compressed images with enhanced image quality and forensic undetectability. Multimed. Tools Appl. 2020, 79, 8061–8084. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L.; Kang, X.; Sun, W. A Generative Adversarial Network Framework for JPEG Anti-Forensics. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020, Virtual, Auckland, New Zealand, 7–10 December 2020; pp. 1442–1447. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100919989&partnerID=40&md5=dd7789183499aa6683b62c0c5c977229 (accessed on 14 June 2024).
- Kaimal, A.B.; Manimurugan, S.; Anitha, J. A modified anti-forensic technique for removing detectable traces from digital images. In Proceedings of the 2013 International Conference on Computer Communication and Informatics, ICCCI 2013, Coimbatore, India, 4–6 January 2013. [Google Scholar] [CrossRef]
- Peng, A.; Zeng, H.; Lin, X.; Kang, X. Countering anti-forensics of image resampling. In Proceedings of the International Conference on Image Processing, ICIP, Quebec City, QC, Canada, 27–30 September 2015; pp. 3595–3599. [Google Scholar] [CrossRef]
- He, P.; Li, W.; Zhang, J.; Wang, H.; Jiang, X. Overview of passive forensics and anti-forensics techniques for GAN-generated image. J. Image Graph. 2022, 27, 88–110. [Google Scholar] [CrossRef]
- Xie, H.; Ni, J.; Shi, Y.Q. Dual-Domain Generative Adversarial Network for Digital Image Operation Anti-Forensics. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1701–1706. [Google Scholar] [CrossRef]
- Ravan, J.; Thanuja. Image Forgery Detection against Forensic Image Digital Tampering. In Proceedings of the International Conference on Computational Techniques, Electronics and Mechanical Systems, CTEMS, Belgaum, India, 21–22 December 2018; pp. 315–321. [Google Scholar] [CrossRef]
- Mayer, O.; Stamm, M.C. Countering anti-forensics of lateral chromatic aberration. In Proceedings of the IH and MMSec 2017, 2017 ACM Workshop on Information Hiding and Multimedia Security, Philadelphia, PA, USA, 20–22 June 2017; pp. 15–20. [Google Scholar] [CrossRef]
- Mayer, O.; Stamm, M.C. Anti-forensics of chromatic aberration. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 8–12 February 2015; p. 9409. [Google Scholar] [CrossRef]
- Dou, L.; Qian, Z.; Qin, C.; Feng, G.; Zhang, X. Anti-forensics of diffusion-based image inpainting. J. Electron. Imaging 2020, 29, 043026. [Google Scholar] [CrossRef]
- Salman, M.; Uhl, A. Countering anti-forensics of SIFT-based copy-move detection. In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2020; pp. 2701–2707. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Zeng, H.; Kang, X. Multiple-operation image anti-forensics with WGAN-GP framework. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC, Lanzhou, China, 18–21 November 2019; pp. 1303–1307. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Luo, W.; Yang, R.; Huang, J. Anti-forensics of JPEG Detectors via Adaptive Quantization Table Replacement. In Proceedings of the International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 672–677. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Luo, X.; Yin, Q.; Ma, B.; Sun, J. Modify the Quantization Table in the JPEG Header File for Forensics and Anti-forensics. Lect. Notes Comput. Sci. 2022, 13180, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Y.; Wang, R.; Malik, H. Anti-Forensics of Environmental-Signature-Based Audio Splicing Detection and Its Countermeasure via Rich-Features Classification. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1603–1617. [Google Scholar] [CrossRef]
- Tao, B.; Wang, R.; Yan, D.; Jin, C. Anti-forensics of double compressed MP3 audio. Int. J. Digit. Crime Forensics 2020, 12, 45–57. [Google Scholar] [CrossRef]
- Liu, T.; Yan, D.; Yan, N.; Chen, G. Anti-forensics of fake stereo audio using generative adversarial network. Multimed. Tools Appl. 2022, 81, 17155–17167. [Google Scholar] [CrossRef]
- Mascia, M.; Canclini, A.; Antonacci, F.; Tagliasacchi, M.; Sarti, A.; Tubaro, S. Forensic and anti-forensic analysis of indoor/outdoor classifiers based on acoustic clues. In Proceedings of the 2015 23rd European Signal Processing Conference, EUSIPCO, Nice, France, 31 August–4 September 2015; pp. 2072–2076. [Google Scholar] [CrossRef]
- Li, X.; Yan, D.; Dong, L.; Wang, R. Anti-Forensics of Audio Source Identification Using Generative Adversarial Network. IEEE Access 2019, 7, 184332–184339. [Google Scholar] [CrossRef]
- Chuang, W.-H.; Garg, R.; Wu, M. Anti-forensics and countermeasures of electrical network frequency analysis. IEEE Trans. Inf. Forensics Secur. 2013, 8, 2073–2088. [Google Scholar] [CrossRef]
- Moon, S.K.; Raut, R.D. Anti-forensic reversible multi frame block to block pixel mapping information concealing approach to increase the robustness and perceptibility. Int. J. Inf. Comput. Secur. 2021, 14, 403–439. [Google Scholar] [CrossRef]
- Moon, S.K. Authentication and Security Aspect of Information Privacy Using Anti-forensic Audio–Video Embedding Technique. Lect. Notes Networks Syst. 2022, 436, 157–171. [Google Scholar] [CrossRef]
- Moon, S.K.; Raut, R.D. Application of data hiding in audio-video using anti forensics technique for authentication and data security. In Proceedings of the Souvenir of the 2014 IEEE International Advance Computing Conference, IACC, Gurgaon, India, 21–22 February 2014; pp. 1110–1115. [Google Scholar] [CrossRef]
- Sun, H.-M.; Weng, C.-Y.; Lee, C.-F.; Yang, C.-H. Anti-forensics with steganographic data embedding in digital images. IEEE J. Sel. Areas Commun. 2011, 29, 1392–1403. [Google Scholar] [CrossRef]
- Chen, R.-J.; Horng, S.-J.; Huang, P.-H. Anti-forensic steganography using multi-bit MER with flexible bit location. Int. J. Ad Hoc Ubiquitous Comput. 2015, 18, 54–66. [Google Scholar] [CrossRef]
- Amritha, P.P.; Sethumadhavan, M.; Krishnan, R.; Pal, S.K. Anti-forensic approach to remove stego content from images and videos. J. Cyber Secur. Mobil. 2019, 8, 295–320. [Google Scholar] [CrossRef]
- Chen, R.-J.; Lai, J.-L.; Horng, S.-J. Anti-forensic steganography using multi-bit minimum error replacement with flexible bit location. In Proceedings of the 2012 International Symposium on Computer, Consumer and Control, IS3C, Taichung, Taiwan, 4–6 June 2012; pp. 175–178. [Google Scholar] [CrossRef]
- Gupta, D.; Mehtre, B.M. Mozilla firefox browsing artefacts in 3 different anti-forensics modes. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. 2014, 132, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, A.; Cattaneo, G.; De Maio, G.; De Santis, A. Automatic, selective and secure deletion of digital evidence. In Proceedings of the 2011 International Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA, Barcelona, Spain, 26–28 October 2011; pp. 392–398. [Google Scholar] [CrossRef]
- Jahankhani, H.; Anastasios, B.; Revett, K. Digital Anti Forensics: Tools and Approaches. In Proceedings of the 6th European Conference on Information Warfare and Security 2007, ECIW 2007, Shrivenham, UK, 2–3 July 2007; pp. 115–120. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873801938&partnerID=40&md5=d18c2598185c62531d703bdd25aa7ff5 (accessed on 14 June 2024).
- Ding, N.; Gu, D.; Liu, Z. Disguisable symmetric encryption schemes for an anti-forensics purpose. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. 2011, 56, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Nazaraj, S.T.; Stavrou, A. HIDEINSIDE—A novel randomized & encrypted antiforensic information hiding. In Proceedings of the 2013 International Conference on Computing, Networking and Communications, ICNC, San Diego, CA, USA, 28–31 January 2013; pp. 626–631. [Google Scholar] [CrossRef]
- Forte, D.; Power, R. A tour through the realm of anti-forensics. Comput. Fraud Secur. 2007, 2007, 18–20. [Google Scholar] [CrossRef]
- Mansfield-Devine, S. Fighting forensics. Comput. Fraud Secur. 2010, 2010, 17–20. [Google Scholar] [CrossRef]
- Sammons, J. Antiforensics. Basics Digit. Forensics 2015, 83–103. [Google Scholar] [CrossRef]
- Srinivasan, A.; Dong, H.; Stavrou, A. FROST: Anti-Forensics Digital-Dead-DROp Information Hiding RobuST to Detection & Data Loss with Fault Tolerance. In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria, Italy, 29 August–1 September 2017. [Google Scholar] [CrossRef]
- Lee, S.S.; Chang, K.-Y.; Lee, D.; Hong, D. A new anti-forensic tool based on a simple data encryption scheme. In Proceedings of the Future Generation Communication and Networking, FGCN, Jeju, Republic of Korea, 6–8 December 2007; Volume 2, pp. 114–118. [Google Scholar] [CrossRef]
- Raggo, M.; Hosmer, C. Forensics and Anti-Forensics. Data Hiding 2013, 193–211. [Google Scholar] [CrossRef]
- Filiol, E. Anti-Forensic Techniques Based on Malicious Cryptography. In Proceedings of the 9th European Conference on Information Warfare and Security 2010, ECIW 2010, Thessaloniki, Greece, 1–2 July 2010; pp. 63–72. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871242431&partnerID=40&md5=1bc89c9a336c7d5a80fa0f4f95cfcce8 (accessed on 14 June 2024).
- Vadlamudi, D.; Rao, K.T.; Vidyullatha, P.; Rajasekhar Reddy, B. Analysis on Digital Forensics Challenges and Anti-Forensics Techniques in Cloud Computing. Int. J. Eng. Technol. 2018, 7, 1072–1075. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077495880&partnerID=40&md5=b2b8cf8573fafd8c8f647ca5be85419e (accessed on 14 June 2024). [CrossRef]
- Rani, D.R.; Kumari, G.G. A framework for detecting anti-forensics in cloud environment. In Proceedings of the IEEE International Conference on Computing, Communication and Automation, ICCCA, Greater Noida, India, 29–30 April 2016; pp. 1277–1280. [Google Scholar] [CrossRef]
- Schmitt, S. Introducing Anti-Forensics to SQLite Corpora and Tool Testing. In Proceedings of the 11th International Conference on IT Security Incident Management and IT Forensics, IMF, Hamburg, Germany, 7–9 May 2018; pp. 89–106. [Google Scholar] [CrossRef]
- Patil, V.T.; Manjrekar, A.A. A Novel Approach for Monitoring SQL Anti-Forensic Attacks Using Pattern Matching for Digital Forensic Investigation. Commun. Comput. Inf. Sci. 2013, 377, 162–167. [Google Scholar] [CrossRef]
- Mohiddin, S.K.; Babu, Y.S. Unique methodology to mitigate anti-forensics in cloud using attack-graphs. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1569–1574. [Google Scholar] [CrossRef]
- Rani, D.R.; Geethakumari, G. A framework for the identification of suspicious packets to detect anti-forensic attacks in the cloud environment—All Databases. Peer-to-Peer Netw. Appl. 2020, 14, 2385–2398. [Google Scholar] [CrossRef]
- Jahankhani, H.; Beqiri, E. Memory-Based Antiforensic Tools and Techniques. Int. J. Inf. Secur. Priv. 2008, 2, 1–13. [Google Scholar] [CrossRef]
- Stüttgen, J.; Cohen, M. Anti-forensic resilient memory acquisition. Digit. Investig. 2013, 10, S105–S115. [Google Scholar] [CrossRef]
- Eschweiler, S.; Gerhards-Padilla, E. Towards sound forensic acquisition of volatile data. Commun. Comput. Inf. Sci. 2012, 318, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Ahn, N.Y.; Lee, D.H. Security of IoT Device: Perspective Forensic/Anti-Forensic Issues on Invalid Area of NAND Flash Memory. IEEE Access 2022, 10, 74207–74219. [Google Scholar] [CrossRef]
- Kwak, J.; Kim, H.C.; Park, I.H.; Song, Y.H. Anti-forensic deletion scheme for flash storage systems. In Proceedings of the 2016 5th International Conference on Network Infrastructure and Digital Content, IEEE IC-NIDC, Beijing, China, 23–25 September 2016; pp. 317–321. [Google Scholar] [CrossRef]
- Jahankhani, H.; Beqiri, E.; Revett, K. Advanced Manipulation of Digital Evidence Using Memory Based Anti-Forensic Tools. In Proceedings of the 3rd International Conference on Information Warfare and Security, Omaha, NE, USA, 24–25 April 2008; pp. 213–220. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896502398&partnerID=40&md5=d212a9af6260b55125328615755f0452 (accessed on 14 June 2024).
- Thomas, P.; Morris, A. An investigation into the development of an anti-forensic tool to obscure USB flash drive device information on a windows XP platform. In Proceedings of the 3rd International Annual Workshop on Digital Forensics and Incidents Analysis, WDFIA, Malaga, Spain, 9 October 2008; pp. 60–66. [Google Scholar] [CrossRef]
- Ahn, N.Y.; Lee, D.H. Forensics and Anti-Forensics of a NAND Flash Memory: From a Copy-Back Program Perspective. IEEE Access 2021, 9, 14130–14137. [Google Scholar] [CrossRef]
- Bonetti, G.; Viglione, M.; Frossi, A.; Maggi, F.; Zanero, S. Black-box forensic and antiforensic characteristics of solid-state drives. J. Comput. Virol. Hacking Tech. 2014, 10, 255–271. [Google Scholar] [CrossRef]
- Gil, H.P.; Kim, D.-H. A study on counter anti-forensics for hidden areas of removable media-All Databases. Digit. Forensics Res. 2021, 72–84. [Google Scholar] [CrossRef]
- Chandran, R.; Yan, W.Q. Attack graph analysis for network anti-forensics. Int. J. Digit. Crime Forensics 2014, 6, 28–50. [Google Scholar] [CrossRef]
- Chandran, R.; Yan, W.Q. A Comprehensive Survey of Antiforensics for Network Security; Informa UK Limited: London, UK, 2013. [Google Scholar] [CrossRef]
- Yaacoub, J.-P.A.; Noura, H.N.; Salman, O.; Chehab, A. Advanced digital forensics and anti-digital forensics for IoT systems: Techniques, limitations and recommendations. Internet Things 2022, 19, 100544. [Google Scholar] [CrossRef]
- Jadied, E. Swap files Anti-Forensics on Linux. In Proceedings of the APMediaCast, Bali, Indonesia, 17–19 November 2016; pp. 73–79. [Google Scholar] [CrossRef]
- Eterovic-Soric, B.; Choo, K.K.R.; Mubarak, S.; Ashman, H. Windows 7 Antiforensics: A Review and a Novel Approach. J. Forensic Sci. 2017, 62, 1054–1070. [Google Scholar] [CrossRef]
- Azadegan, S.; Yu, W.; Liu, H.; Sistani, M.; Acharya, S. Novel anti-forensics approaches for smartphones. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 5424–5431. [Google Scholar] [CrossRef]
- Karlsson, K.J.; Glisson, W.B. Android anti-forensics: Modifying cyanogenmod. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 4828–4837. [Google Scholar] [CrossRef]
- Gómez-Miralles, L.; Arnedo-Moreno, J. Hardening iOS Devices Against Remote Forensic Investigation. In Security and Resilience in Intelligent Data-Centric Systems and Communication Networks; Academic Press: Cambridge, MA, USA, 2018; pp. 261–283. [Google Scholar] [CrossRef]
- Mirza, M.; Salamh, F.E.; Karabiyik, U. An Android Case Study on Technical Anti-Forensic Challenges of WhatsApp Application. In Proceedings of the 8th International Symposium on Digital Forensics and Security, ISDFS, Beirut, Lebanon, 1–2 June 2020. [Google Scholar]
- Distefano, A.; Me, G.; Pace, F. Android Anti-Forensics through a Local Paradigm. In Proceedings of the DFRWS 2010 Annual Conference, Portland, OR, USA, 2–4 August 2010; Volume 7, pp. S83–S94. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868576837&partnerID=40&md5=0db5d221d544b6977c7ad28b54837f8a (accessed on 14 June 2024).
- Zheng, J.; Tan, Y.-A.; Zhang, X.; Liang, C.; Zhang, C.; Zheng, J. An Anti-Forensics Method against Memory Acquiring for Android Devices. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017, Guangzhou, China, 21–24 July 2017; Volume 1, pp. 214–218. [Google Scholar] [CrossRef]
- Sanda, P.; Pawar, D.; Radha, V. VM Anti-forensics: Detecting File Wiping Using File System Journals. Smart Innov. Syst. Technol. 2022, 303, 497–508. [Google Scholar] [CrossRef]
- Cifuentes, J.; Cano, J. Analysis and implementation of anti-forensics techniques on ZFS. IEEE Lat. Am. Trans. 2012, 10, 1757–1766. [Google Scholar] [CrossRef]
- Göbel, T.; Baier, H. Anti-forensics in ext4: On secrecy and usability of timestamp-based data hiding. In Proceedings of the DFRWS 2018 EU—Proceedings of the 5th Annual DFRWS Europe, Florence, Italy, 21–23 March 2018; pp. S111–S120. [Google Scholar] [CrossRef]
- Sang, C.G. A Maximum Data Allocation Rule for an Anti-forensic Data Hiding Method in NTFS Index Record-All Databases. Int. J. Internet Broadcast. Commun. 2017, 9, 17–26. [Google Scholar] [CrossRef]
- Sang, C.G. Data Hiding in NTFS Timestamps for Anti-Forensics-All Databases. Int. J. Internet Broadcast. Commun. 2016, 8, 31–40. [Google Scholar] [CrossRef]
- Ding, X.; Zou, H. Time based data forensic and cross-reference analysis. In Proceedings of the ACM Symposium on Applied Computing, TaiChung, Taiwan, 21–24 March 2011; pp. 185–190. [Google Scholar] [CrossRef]
- Palmbach, D.; Breitinger, F. Artifacts for Detecting Timestamp Manipulation in NTFS on Windows and Their Reliability. Forensic Sci. Int. Digit. Investig. 2020, 32, 300920. [Google Scholar] [CrossRef]
- Göbel, T.; Baier, H. Anti-forensic capacity and detection rating of hidden data in the ext4 filesystem. IFIP Adv. Inf. Commun. Technol. 2018, 532, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Gupta, G. Analyzing Windows Subsystem for Linux metadata to detect timestamp forgery. IFIP Adv. Inf. Commun. Technol. 2019, 569, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.A.; Bhat, W.A.; Dehghantanha, A. An analysis of anti-forensic capabilities of B-tree file system (Btrfs). Aust. J. Forensic Sci. 2020, 52, 371–386. [Google Scholar] [CrossRef]
- Cho, G.-S. Development of an anti-forensic tool for hiding a message in a directory index of NTFS. In Proceedings of the 2015 World Congress on Internet Security, WorldCIS, Dublin, Ireland, 19–21 October 2015; pp. 144–145. [Google Scholar] [CrossRef]
- Meffert, C.S.; Baggili, I.; Breitinger, F. Deleting collected digital evidence by exploiting a widely adopted hardware write blocker. In Proceedings of the DFRWS 2016 USA, 16th Annual USA Digital Forensics Research Conference, Seattle, WA, USA, 7–10 August 2016; pp. S87–S96. [Google Scholar] [CrossRef]
- Anti-forensics–subverting justice with exploitation. Comput. Fraud Secur. 2007, 2007, 16–18. [CrossRef]
- Wundram, M.; Freiling, F.C.; Moch, C. Anti-forensics: The next step in digital forensics tool testing. In Proceedings of the 7th International Conference on IT Security Incident Management and IT Forensics, IMF, Nuremberg, Germany, 12–14 March 2013; pp. 83–97. [Google Scholar] [CrossRef]
- Horsman, G.; Errickson, D. When finding nothing may be evidence of something: Anti-forensics and digital tool marks. Sci. Justice 2019, 59, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Bhat, W.A.; AlZahrani, A.; Wani, M.A. Can computer forensic tools be trusted in digital investigations? Sci. Justice 2021, 61, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel, S. Anti-Forensics: Techniques, Detection and Countermeasures. In Proceedings of the ICIW 2007: 2nd International Conference on i-Warfare and Security, Monterey, CA, USA, 8–9 March 2007; pp. 77–84. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857978988&partnerID=40&md5=5a6022743fedb889133666c14446edb3 (accessed on 14 June 2024).
- Majed, H.; Noura, H.N.; Chehab, A. Overview of Digital Forensics and Anti-Forensics Techniques. In Proceedings of the 8th International Symposium on Digital Forensics and Security, ISDFS, Beirut, Lebanon, 1–2 June 2020. [Google Scholar] [CrossRef]
- Hausknecht, K.; Gruicic, S. Anti-computer forensics. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2017, Opatija, Croatia, 22–26 May 2017; pp. 1233–1240. [Google Scholar] [CrossRef]
- Kessler, G.C. Anti-Forensics and the Digital Investigator. In Proceedings of the 5th Australian Digital Forensics Conference, Perth, WA, Australia, 3 December 2007; pp. 1–7. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867717801&partnerID=40&md5=949c3f0a566465c16a1f530e1b5b5471 (accessed on 14 June 2024).
- Jain, A.; Chhabra, G.S. Anti-forensics techniques: An analytical review. In Proceedings of the 2014 7th International Conference on Contemporary Computing, IC3, Noida, India, 7–9 August 2014; pp. 412–418. [Google Scholar] [CrossRef]
- Berghel, H. Hiding data, forensics, and anti-forensics. Commun. ACM 2007, 50, 15–20. [Google Scholar] [CrossRef]
- Shavers, B.; Bair, J. Antiforensics. In Hiding Behind the Keyboard; Syngress: Rockland, MA, USA, 2016; pp. 153–172. [Google Scholar] [CrossRef]
- Sremack, J.C.; Antonov, A.V. Taxonomy of Anti-Computer Forensics Threats. In Proceedings of the Lecture Notes in Informatics (LNI), Series of the Gesellschaft fur Informatik (GI), Stuttgart, Germany, 11–13 September 2007; Volume P-114, pp. 103–112. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134610642&partnerID=40&md5=6cbddcdf4ade67ceb03e9dfc5bc9b13d (accessed on 14 June 2024).
- Shin, W. Countermeasures against Anti-forensics by Analyzing Anti-forensics Techniques. J. Secur. Eng. 2014, 11, 605–614. [Google Scholar] [CrossRef]
- Al-Mousa, M.R.; Sweerky, N.A.; Samara, G.; Alghanim, M.; Hussein, A.S.I.; Qadoumi, B. General Countermeasures of Anti-Forensics Categories. In Proceedings of the 2021 Global Congress on Electrical Engineering, GC-ElecEng, Valencia, Spain, 10–12 December 2021; pp. 5–10. [Google Scholar] [CrossRef]
- Dardick, G.S.; La Roche, C.R.; Flanigan, M.A. Blogs: Anti-Forensics and Counter Anti-Forensics. In Proceedings of the 5th Australian Digital Forensics Conference, Perth, WA, Australia, 3 December 2007; pp. 199–203. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77949588587&partnerID=40&md5=808ff63b75556dc1b1e5161fd12b5470 (accessed on 14 June 2024).
- Cho, G. A Problem Solving Method for Non-Admittable Characters of a Windows File Name in a Directory Index Anti-Forensic Technique. J. Korea Soc. Digit. Ind. Inf. Manag. 2015, 11, 69–79. [Google Scholar] [CrossRef]
- Adamu, B.Z.; Karabatak, M.; Ertam, F. A Conceptual Framework for Database Anti-forensics Impact Mitigation. In Proceedings of the 8th International Symposium on Digital Forensics and Security, ISDFS, Beirut, Lebanon, 1–2 June 2020. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.-W. New Approach on Steganalysis: Reverse-Engineering based Steganography SW Analysis. In Proceedings of the ACM International Conference Proceeding Series, Langkawi, Malaysia, 18–21 February 2020; pp. 212–216. [Google Scholar] [CrossRef]
- Hilley, S. Anti-forensics with a small army of exploits. Digit. Investig. 2007, 4, 13–15. [Google Scholar] [CrossRef]
- Lees, C. Determining removal of forensic artefacts using the USN change journal. Digit. Investig. 2013, 10, 300–310. [Google Scholar] [CrossRef]
- Lim, S.; Park, J.; Lim, K.-S.; Lee, C.; Lee, S. Forensic artifacts left by virtual disk encryption tools. In Proceedings of the 2010 3rd International Conference on Human-Centric Computing, HumanCom, Cebu, Philippines, 11–13 August 2010. [Google Scholar] [CrossRef]
- Fanuscu, M.Ç.; Koçak, A.; Alkan, M. Detection of Counter-Forensic Incidents Using Security Information and Incident Management (SIEM) Systems [Güvenlik Bilgilerive Olay Yönetimi (SIEM) Sistemleri Kullanilarak Karşi Adli Bilişim Olaylarinin Tespiti]. In Proceedings of the 15th International Conference on Information Security and Cryptography, ISCTURKEY 2022, Ankara, Turkey, 19–20 October 2022; pp. 74–79. [Google Scholar] [CrossRef]
- Irwin, A.S.M. Double-Edged Sword: Dual-Purpose Cyber Security Methods. Adv. Sci. Technol. Secur. Appl. 2018, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, T.; Mehtre, B.M. Forensic analysis of Wickr application on android devices. In Proceedings of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC, Enathi, India, 26–28 December 2013. [Google Scholar] [CrossRef]
- You, I.; Yim, K. Malware obfuscation techniques: A brief survey. In Proceedings of the 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, Fukuoka, Japan, 4–6 November 2010; pp. 297–300. [Google Scholar] [CrossRef]
- Brand, M. Forensic Analysis Avoidance Techniques of Malware. In Proceedings of the 5th Australian Digital Forensics Conference, Perth, WA, Australia, 3 December 2007; pp. 59–66. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867721509&partnerID=40&md5=20608384614fe39e7661e9a26c6defff (accessed on 14 June 2024).
- Ratcliffe, C.; Bokolo, B.G.; Oladimeji, D.; Zhou, B. Detection of Anti-forensics and Malware Applications in Volatile Memory Acquisition. Lect. Notes Comput. Sci. 2022, 13343, 516–527. [Google Scholar] [CrossRef]
- Agarwal, M.; Puzis, R.; Haj-Yahya, J.; Zilberman, P.; Elovici, Y. Anti-forensic = suspicious: Detection of stealthy malware that hides its network traffic. IFIP Adv. Inf. Commun. Technol. 2018, 529, 216–230. [Google Scholar] [CrossRef]
- Li, J.; Gu, D.; Luo, Y. Android malware forensics: Reconstruction of malicious events. In Proceedings of the 32nd IEEE International Conference on Distributed Computing Systems Workshops, ICDCSW, Macau, China, 18–21 June 2012; pp. 552–558. [Google Scholar] [CrossRef]
- Brand, M.; Valli, C.; Woodward, A. Malware forensics: Discovery of the intent of deception. In Proceedings of the 8th Australian Digital Forensics Conference, Perth, Australia, 30 November–2 December 2010; pp. 39–45. [Google Scholar] [CrossRef]
- Nikolai, J.; Wang, Y.; Nepali, R.K. A Framework for Examining the Human Side of Anti-Forensic Measures. In Proceedings of the 20th Americas Conference on Information Systems, AMCIS, Savannah, GA, USA, 7–9 August 2014; Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905978253&partnerID=40&md5=ba50e6d0113dcd3889b7e8f0bb529be8 (accessed on 14 June 2024).
- Dahbur, K.; Mohammad, B. The Anti-Forensics Challenge. In Proceedings of the 2011 International Conference on Intelligent Semantic Web-Services and Applications, Amman, Jordan, 18–20 April 2011. [Google Scholar] [CrossRef]
- Schlicher, B. Emergences of cyber anti-forensics impacting cyber security. In Proceedings of the CSIIRW’08—4th Annual Cyber Security and Information Intelligence Research Workshop: Developing Strategies to Meet the Cyber Security and Information Intelligence Challenges Ahead, Oak Ridge, TN, USA, 12–14 May 2008. [Google Scholar] [CrossRef]
- Ölvecký, M.; Gabriška, D. Wiping Techniques and Anti-Forensics Methods. In Proceedings of the SISY 2018—IEEE 16th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 13–15 September 2018; pp. 127–131. [Google Scholar] [CrossRef]
- Dahbur, K.; Mohammad, B. Toward Understanding the Challenges and Countermeasures in Computer Anti-Forensics. Cloud Comput. Adv. Des. Implement. Technol. 2012, 176–189. [Google Scholar] [CrossRef]
- Forte, D. Dealing with forensic software vulnerabilities: Is anti-forensics a real danger? Netw. Secur. 2008, 2008, 18–20. [Google Scholar] [CrossRef]
Research Questions | Details |
---|---|
What is the current state of the art related to anti-forensic techniques? What type of these techniques are most emphasized in the literature? Is there any type of technique that is increasingly present? | Knowing the scope and extent of the current articles related to anti-forensic techniques allows us to better position them in the landscape of information communication technologies (ICT) forensics. A greater number of articles related to a particular technique may signify the need to focus on that type in the future. |
A systematic review of anti-forensic techniques How can new studies be classified? What do the new studies have to offer? | Reviewing the current literature makes it possible to classify it according to its purpose. In addition, it is possible to evaluate the contributions made by comparing them with those already existing and with each other. |
Source | Search Fields | Years | Documents | Results |
---|---|---|---|---|
ieeexplore.ieee.org | ((“Document Title”: anti-forensic techniques) AND (“Abstract”: anti-forensic techniques)) OR ((“Document Title”: anti-forensics) AND (“Abstract”: anti-forensics)) OR ((“Document Title”: antiforensics) AND (“Abstract”: antiforensics)) | 2010–2022 | Conferences, Journals, Articles, Early Access Articles, Papers, Books | 47 |
dl.acm.org | [[Title: “anti-forensic techniques”] OR [Title: “anti-forensics”] OR [Title: “antiforensics”]] AND [[Keywords: anti-forensic techniques] OR [Keywords: anti-forensics] OR [Keywords: antiforensics]] | 2006–2022 | Idem | 6 |
sciencedirect.com | Title, abstract, keywords: “anti-forensic techniques” OR “anti-forensics” OR “antiforensics” | 2006–2022 | Idem | 90 |
Web of Science | (((TS = ((anti-forensic techniques)OR(anti-forensics)OR(antiforensics))) AND TI = ((anti-forensic techniques)OR(anti-forensics)OR(antiforensics))) AND AB = ((anti-forensic techniques)OR(anti-forensics)OR(antiforensics))) | 2006–2022 | Idem | 143 |
Scopus | TITLE-ABS-KEY (“anti-forensic techniques” OR “anti-forensics” OR “antiforensics”) AND (LIMIT-TO (SUBJAREA,”COMP”)) | 2006–2022 | Idem | 536 |
Total Documents | 822 |
Erasing Method | Security Level | Overwriting Rounds | Pattern Used | Comments |
---|---|---|---|---|
Single overwrite | Low | 1 | Writes a zero | Can prevent software recovery tools from recovering data but cannot stop hardware-based recovery tools from recovering deleted data. |
NCSC-TG-025 (US National Security Agency) | High | 3 | All zeros, all ones, and finally writes a random character and verifies the write | Software recovery tools and most hardware-based recovery tools cannot recover data deleted this way. This technique is like HMG IS5 (UK) and DoD 5220.22-M (USA). |
Gutmann | High | 35 | Writes a random character | This is an old technique invented in 1996; the encoding for HDD has changed since then. This method is not recommended for modern HDDs. |
Schneier | High | 7 | All ones, all zeros; random characters are written five times | Prevents software recovery tools and almost all hardware-based techniques from recovering data. |
ISM 6.2.92 | Medium | 1 | Random pattern (only for disks bigger than 15 GB) | Invented in 2014 by the Australian Department of Defense: Intelligence and Security. Prevents software recovery tools and most hardware-based techniques from recovering data. |
Weaknesses and Anti-Forensic Use Cases | Number of Studies | References |
---|---|---|
Multimedia systems | 118 | [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139] |
Specific techniques | 12 | [140,141,142,143,144,145,146,147,148,149,150,151] |
Databases, cloud | 6 | [152,153,154,155,156,157] |
RAM Memory | 4 | [4,158,159,160] |
Flash drives | 7 | [161,162,163,164,165,166,167] |
Networks, IoT | 3 | [168,169,170] |
Operating Systems | 2 | [171,172] |
Mobile devices O.S. | 6 | [173,174,175,176,177,178] |
File Systems | 13 | [17,18,179,180,181,182,183,184,185,186,187,188,189] |
Forensic Tools | 5 | [190,191,192,193,194] |
Exposition of Anti-Forensic Techniques | Number of Studies | References |
---|---|---|
Classification and general review | 14 | [1,8,10,11,15,82,195,196,197,198,199,200,201,202] |
Countermeasures | 7 | [16,203,204,205,206,207,208] |
Explanation of specific anti-forensic tools | 1 | [209] |
Detection of traces left by anti-forensic tools | 7 | [2,14,210,211,212,213,214] |
Anti-Forensics and Malware | Number of Studies | References |
---|---|---|
Anti-forensics and Malware | 7 | [19,215,216,217,218,219,220] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Arias, R.; Bermejo Higuera, J.; Rainer Granados, J.J.; Bermejo Higuera, J.R.; Sicilia Montalvo, J.A. Systematic Review: Anti-Forensic Computer Techniques. Appl. Sci. 2024, 14, 5302. https://doi.org/10.3390/app14125302
González Arias R, Bermejo Higuera J, Rainer Granados JJ, Bermejo Higuera JR, Sicilia Montalvo JA. Systematic Review: Anti-Forensic Computer Techniques. Applied Sciences. 2024; 14(12):5302. https://doi.org/10.3390/app14125302
Chicago/Turabian StyleGonzález Arias, Rafael, Javier Bermejo Higuera, J. Javier Rainer Granados, Juan Ramón Bermejo Higuera, and Juan Antonio Sicilia Montalvo. 2024. "Systematic Review: Anti-Forensic Computer Techniques" Applied Sciences 14, no. 12: 5302. https://doi.org/10.3390/app14125302