Anaerobic Two-Phase Co-Digestion for Renewable Energy Production: Estimating the Effect of Substrate Pretreatment, Hydraulic Retention Time and Participating Microbial Consortia
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Inoculum
2.3. Pretreatment
2.4. Experimental Set-Up
2.5. Library Preparation, Metagenome Sequencing, and Bioinformatics Analyses
2.6. Statistical Analyses
3. Results and Discussion
3.1. Pretreatment
3.2. Two-Stage Anaerobic Digestion of Wheat Straw and Algal Biomass
3.2.1. Influence of HRT
3.2.2. Volatile Fatty Acid Formation
3.2.3. Energy
3.2.4. Microbial Communities’ Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jie, C.; Fan, S.; Vipin, J.; Asma, S.; Tabash, M.I.; Haddad, A.M.; Zabalawi, E.; Abdalla, A.A.; Shabbir, M.S. Does Renewable Energy Matter to Achieve Sustainable Development Goals? The Impact of Renewable Energy Strategies on Sustainable Economic Growth. Front. Energy Res. 2022, 10, 829252. [Google Scholar]
- Kaldis, F.; Cysneiros, D.; Day, J.G.; Karatzas, K.-A.; Chatzifragkou, A. Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. Appl. Sci. 2020, 10, 8284. [Google Scholar] [CrossRef]
- Zerback, T.; Schumacher, B.; Weinrich, S.; Hülsemann, B.; Nelles, M. Hydrothermal Pretreatment of Wheat Straw—Evaluating the Effect of Substrate Disintegration on the Digestibility in Anaerobic Digestion. Processes 2022, 10, 1048. [Google Scholar] [CrossRef]
- Mahmood, H.; Moniruzzaman, M.; Iqbal, T.; Khan, M.J. Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Curr. Opin. Green Sustain. Chem. 2019, 20, 18–24. [Google Scholar] [CrossRef]
- Solé-Bundó, M.; Garfí, M.; Matamoros, V.; Ferrer, I. Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Sci. Total Environ. 2019, 10, 974–981. [Google Scholar] [CrossRef]
- Esposito, G.; Frunzo, L.; Panico, A.; Pirozzi, F. Enhanced bio-methane production from co-digestion of different organic wastes. Environ. Technol. 2012, 33, 2733. [Google Scholar] [CrossRef]
- Veerabadhran, M.; Gnanasekaran, D.; Wei, J.; Yang, F. Anaerobic digestion of microalgal biomass for bioenergy production, removal of nutrients and microcystin: Current status. J. Appl. Microbiol. 2021, 131, 1639–1651. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from microalgae: Technologies, challenges and opportunities. In Renewable and Sustainable Energy Reviews; Elsevier: Amsterdam, The Netherlands, 2020; Volume 117. [Google Scholar] [CrossRef]
- Sittijunda, S.; Reungsang, A. Methane Production from the Co-digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures. Waste Biomass Valor. 2020, 11, 1873–1881. [Google Scholar] [CrossRef]
- Tang, D.Y.Y.; Yew, G.Y.; Koyande, A.K.; Chew, K.W.; Vo, D.-V.N.; Show, P.L. Green technology for the industrial production of biofuels and bioproducts from microalgae: A review. Environ. Chem. Lett. 2020, 18, 1967–1985. [Google Scholar] [CrossRef]
- Nagarajana, D.; Chang, J.-S.; Lee, D.-J. Pretreatment of microalgal biomass for efficient biohydrogen production—Recent insights and future perspectives. Bioresour. Technol. 2020, 302, 122871. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Song, L.; Zhang, J. Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives. Int. J. Environ. Res. Public Health 2022, 19, 9519. [Google Scholar] [CrossRef]
- Denchev, D.; Hubenov, V.; Simeonov, I.; Kabaivanova, L. Biohydrogen production from lignocellulosic waste with anaerobic bacteria. In Proceedings of the Fourth International Conference on Water, Energy and Environment (ICWEE), Burgas University, Burgas, Bulgaria, 1–3 June 2016. [Google Scholar]
- Hubenov, V.; Miteva-Staleva, J.; Eneva, R.; Boteva, N.; Kabaivanova, L. Two-stage anaerobic digestion of wheat straw using immobilized microbial consortia. Ecol. Eng. Environ. Prot. 2021, 3, 35–44. [Google Scholar] [CrossRef]
- Updegraff, D.M. Semimicro determination of cellulose in biological materials. Analyt. Biochem. 1969, 32, 420–424. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC. 2005. Available online: https://books.google.bg/books/about/Standard_Methods_for_the_Examination_of.html?id=buTn1rmfSI4C&redir_esc=y (accessed on 7 May 2024).
- Dell’Omo, P.P.; Spena, V.A. Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw. Energy 2020, 203, 117798. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Steyer, J.P.; Carrere, H. Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 2012, 120, 241–247. [Google Scholar] [CrossRef]
- Yap, S.D.; Astals, S.; Jensen, P.D.; Batstone, D.J.; Tait, S. Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm. Waste Manag. 2016, 50, 300–308. [Google Scholar] [CrossRef]
- Holl, E.; Steinbrenner, J.; Merkle, W.; Krümpel, J.; Lansing, S.; Baier, U.; Oechsner, A.L. Two-stage anaerobic digestion: State of technology and perspective roles in future energy systems. Bioresour. Technol. 2022, 360, 127633. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Tawfik, A.; Eraky, M.; Alhajeri, N.S.; Osman, A.I.; Rooney, D.W. Cultivation of microalgae on liquid anaerobic digestate for depollution, biofuels and cosmetics: A review. Environ. Chem. Lett. 2022, 20, 3631–3656. [Google Scholar] [CrossRef]
- Yadav, G.; Shanmugam, S.; Sivaramakrishnan, R.; Kumar, D.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A.; Rajendran, K. Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 2021, 285, 119093. [Google Scholar] [CrossRef]
- Ri, P.-C.; Kim, J.-S.; Kim, T.-R.; Pang, C.-H.; Mun, H.-G.; Pak, G.-C.; Ren, N.-Q. Effect of hydraulic retention time on the hydrogen production in a horizontal and vertical continuous stirred-tank reactor. Int. J. Hydrogen Energy 2019, 44, 17742–17749. [Google Scholar] [CrossRef]
- Yang, G.; Yin, Y.; Wang, J. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures. Int. J. Hydrogen Energy 2019, 44, 13147–13156. [Google Scholar] [CrossRef]
- Buan, N.R. Methanogens: Pushing the boundaries of biology. Emerg. Top. Life Sci. 2018, 2, 629–646. [Google Scholar] [CrossRef]
- Jensen, M.B.; Jonge, N.D.; Dolriis, M.D.; Kragelund, C.; Møller, H.B.; Ditlev, L.; Ottosen, M.; Nielsen, J.L. Xylnolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw. Front. Microbiol. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Struckmann, J.P.; de Jonge, N.; Macêdo, W.V.; Dalby, F.R.; Feilberg, A.; Nielsen, J.L. Characterisation of cellulose-degrading organisms in an anaerobic digester. Bioresour. Technol. 2022, 351, 126933. [Google Scholar] [CrossRef]
- Hang, P.V.; Luong, N.N.; Qilin, W.; Hao, H.N.; Qiang, L.; Xiaolei, Z.; Long, D.N. Hydrogen sulphide management in anaerobic digestion: A critical review on input control, process regulation, and post-treatment. Bioresour. Technol. 2022, 346, 126634. [Google Scholar] [CrossRef]
- Yen, H.W.; Brune, D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007, 98, 130–134. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A Brief Review of Anaerobic Digestion of Algae for Bioenergy. Energies 2019, 12, 1166. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Jafary, T.; Baawain, M.S.; Rahman, S.; Choudhury, M.R.; Tabatabaei, M.; Lam, S.S. Energy recovery and carbon/nitrogen removal from sewage and contaminated groundwater in a coupled hydrolytic-acidogenic sequencing batch reactor and denitrifying biocathode microbial fuel cell. Environ. Res. 2020, 183, 109273. [Google Scholar] [CrossRef]
- Aslanzadeh, S.; Rajendran, K.; Taherzadeh, M.J. A comparative study between single- and two-stage anaerobic digestion processes: Effects of organic loading rate and hydraulic retention time. Int. Biodeter. Biodegrad. 2014, 95 Part A, 181–188. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Viver, T.; Mortier, J.; Liu, B.; Smets, I.; Bernaerts, K.; Faust, K.; Lavigne, R.; Poughon, L.; Dussap, C.G.; et al. Isolation and characterization of a thermophilic chain elongating bacterium that produces the high commodity chemical n-caproate from polymeric carbohydrates. Bioresour. Technol. 2023, 367, 128170. [Google Scholar] [CrossRef]
- Cao, G.-L.; Ren, N.-Q.; Zhang, K.; Xu, C.-J.; Liu, L.-H. Direct conversion of cellulosic substrate to hydrogen production by Clostridium cellulosi D3. J. Biotechnol. 2010, 150, 563. [Google Scholar] [CrossRef]
- López, G.; Cañas-Duarte, S.J.; Pinzón-Velasco, A.M.; Vega-Vela, N.E.; Rodríguez, M.; Restrepo, S.; Baena, S. Description of a new anaerobic thermophilic bacterium, Thermoanaerobacterium butyriciformans sp. nov. Syst. Appl. Microbiol. 2017, 40, 86–91. [Google Scholar] [CrossRef]
- Hu, B.-B.; Zhu, M.-J. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1. Microb. Cell Factories 2017, 16, 77. [Google Scholar] [CrossRef]
- Khomyakova, M.A.; Merkel, A.Y.; Kopitsyn, D.S.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Calorimonas adulescens gen. nov., sp. nov., an anaerobic thermophilic bacterium utilizing methoxylated benzoates. Int. J. Syst. Evol. Microbiol. 2020, 70, 2066–2071. [Google Scholar] [CrossRef]
- Kabaivanova, L.; Hubenov, V.; Dimitrova, L.; Simeonov, I.; Wang, H.; Petrova, P. Archaeal and Bacterial Content in a Two-Stage Anaerobic System for Efficient Energy Production from Agricultural Wastes. Molecules 2022, 27, 1512. [Google Scholar] [CrossRef]
- Zhou, Z.; Pan, Z.; Wang, F.; Gu, J.-D.; Li, M. Bathyarchaeota: Globally distributed metabolic generalists in anoxic environments. FEMS Microbiol. Rev. 2018, 42, 639–655. [Google Scholar] [CrossRef]
- Evans, P.N.; Parks, D.H.; Chadwick, G.L.; Robbins, S.J.; Tyson, G.W. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2015, 350, 434–438. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Shade, A. Chapter 3—Soil bacteria and archaea. In Frey, Soil Microbiology, Ecology and Biochemistry, 5th ed.; Eldor, A., Paul Serita, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 41–74. [Google Scholar] [CrossRef]
HRT, Day | Energy Carrier | Total Yield, dm3 | Yield, m3/t VS | Lower Heating Value, kWt.h/cm3 | Total Energy for the Whole System, kWt.h/t |
---|---|---|---|---|---|
1.2 | Hydrogen | 17.87 | 115.29 | 2.99 | 2441 |
Methane | 71.06 | 579.18 | 9.94 | ||
1.5 | Hydrogen | 10.39 | 105.76 | 2.99 | 1877 |
Methane | 68.90 | 440.31 | 9.94 | ||
2 | Hydrogen | 16.92 | 120.85 | 2.99 | 2458 |
Methane | 81.44 | 581.75 | 9.94 | ||
3 | Hydrogen | 8.23 | 58.80 | 2.99 | 1274 |
Methane | 42.37 | 302.67 | 9.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabaivanova, L.; Hubenov, V.; Dimitrov, N.; Petrova, P. Anaerobic Two-Phase Co-Digestion for Renewable Energy Production: Estimating the Effect of Substrate Pretreatment, Hydraulic Retention Time and Participating Microbial Consortia. Appl. Sci. 2024, 14, 5311. https://doi.org/10.3390/app14125311
Kabaivanova L, Hubenov V, Dimitrov N, Petrova P. Anaerobic Two-Phase Co-Digestion for Renewable Energy Production: Estimating the Effect of Substrate Pretreatment, Hydraulic Retention Time and Participating Microbial Consortia. Applied Sciences. 2024; 14(12):5311. https://doi.org/10.3390/app14125311
Chicago/Turabian StyleKabaivanova, Lyudmila, Venelin Hubenov, Neven Dimitrov, and Penka Petrova. 2024. "Anaerobic Two-Phase Co-Digestion for Renewable Energy Production: Estimating the Effect of Substrate Pretreatment, Hydraulic Retention Time and Participating Microbial Consortia" Applied Sciences 14, no. 12: 5311. https://doi.org/10.3390/app14125311
APA StyleKabaivanova, L., Hubenov, V., Dimitrov, N., & Petrova, P. (2024). Anaerobic Two-Phase Co-Digestion for Renewable Energy Production: Estimating the Effect of Substrate Pretreatment, Hydraulic Retention Time and Participating Microbial Consortia. Applied Sciences, 14(12), 5311. https://doi.org/10.3390/app14125311