A Frequency Domain Kernel Function-Based Manifold Dimensionality Reduction and Its Application for Graph-Based Semi-Supervised Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Background
2.1.1. Discrete Fourier Transformation for Two-Dimensional Image
2.1.2. High-Frequency Texture Component
2.2. The Proposed Method
Algorithm 1: FMDR for semi-supervised classification |
3. Experiments and Discussions
3.1. Preparations
3.1.1. Datasets
3.1.2. The Filter and Parameters
3.1.3. Comparison Methods and Performance Indicators
3.2. Visualization of Dimensionality Reduction
3.3. Semi-Supervised Classification for Facial Images
3.4. Algorithm Performance with Changes in Labeled Data Proportion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Espadoto, M.; Martins, R.M.; Kerren, A.; Hirata, N.S.T.; Telea, A.C. Toward a Quantitative Survey of Dimension Reduction Techniques. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2153–2173. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Köppen, M. The curse of dimensionality. In Proceedings of the 5th Online World Conference on Soft Computing in Industrial Applications (WSC5), Online, 4–18 September 2000; Volume 1, pp. 4–8. [Google Scholar]
- Wang, Z.; Zhang, G.; Xing, X.; Xu, X.; Sun, T. Comparison of dimensionality reduction techniques for multi-variable spatiotemporal flow fields. Ocean. Eng. 2024, 291, 116421. [Google Scholar] [CrossRef]
- Zeng, C.; Xia, S.; Wang, Z.; Wan, X. Multi-Channel Representation Learning Enhanced Unfolding Multi-Scale Compressed Sensing Network for High Quality Image Reconstruction. Entropy 2023, 25, 1579. [Google Scholar] [CrossRef] [PubMed]
- Vieira Sobrinho, J.L.; Teles Vieira, F.H.; Assis Cardoso, A. Two-Stage Dimensionality Reduction for Social Media Engagement Classification. Appl. Sci. 2024, 14, 1269. [Google Scholar] [CrossRef]
- Al-khassaweneh, M.; Bronakowski, M.; Al-Sharoa, E. Multivariate and Dimensionality-Reduction-Based Machine Learning Techniques for Tumor Classification of RNA-Seq Data. Appl. Sci. 2023, 13, 12801. [Google Scholar] [CrossRef]
- Barkalov, K.; Shtanyuk, A.; Sysoyev, A. A Fast kNN Algorithm Using Multiple Space-Filling Curves. Entropy 2022, 24, 767. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Li, C. Dual-Graph-Regularization Constrained Nonnegative Matrix Factorization with Label Discrimination for Data Clustering. Mathematics 2024, 12, 96. [Google Scholar] [CrossRef]
- González-Díaz, Y.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; Lazo-Cortés, M.S. An Algorithm for Computing All Rough Set Constructs for Dimensionality Reduction. Mathematics 2024, 12, 90. [Google Scholar] [CrossRef]
- Heidarian Dehkordi, R.; Candiani, G.; Nutini, F.; Carotenuto, F.; Gioli, B.; Cesaraccio, C.; Boschetti, M. Towards an Improved High-Throughput Phenotyping Approach: Utilizing MLRA and Dimensionality Reduction Techniques for Transferring Hyperspectral Proximal-Based Model to Airborne Images. Remote Sens. 2024, 16, 492. [Google Scholar] [CrossRef]
- Yao, C.; Zheng, L.; Feng, L.; Yang, F.; Guo, Z.; Ma, M. A Collaborative Superpixelwise Autoencoder for Unsupervised Dimension Reduction in Hyperspectral Images. Remote Sens. 2023, 15, 4211. [Google Scholar] [CrossRef]
- Islam, M.R.; Siddiqa, A.; Ibn Afjal, M.; Uddin, M.P.; Ulhaq, A. Hyperspectral Image Classification via Information Theoretic Dimension Reduction. Remote Sens. 2023, 15, 1147. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Gao, Z.; Cheong, L.F.; Wang, Y.X. Block-sparse RPCA for salient motion detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1975–1987. [Google Scholar] [CrossRef]
- Shi, S.; Xu, Y.; Xu, X.; Mo, X.; Ding, J. A Preprocessing Manifold Learning Strategy Based on t-Distributed Stochastic Neighbor Embedding. Entropy 2023, 25, 1065. [Google Scholar] [CrossRef]
- Li, H.; Cui, J.; Zhang, X.; Han, Y.; Cao, L. Dimensionality Reduction and Classification of Hyperspectral Remote Sensing Image Feature Extraction. Remote Sens. 2022, 14, 4579. [Google Scholar] [CrossRef]
- Das, S.; Routray, A.; Deb, A.K. Fast Semi-Supervised Unmixing of Hyperspectral Image by Mutual Coherence Reduction and Recursive PCA. Remote Sens. 2018, 10, 1106. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in Neural Information Processing Systems; Neural Information Processing Systems: La Jolla, CA, USA, 2009; Volume 22. [Google Scholar]
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef]
- Zhan, K.; Li, C.; Zhu, R. A frequency domain-based machine learning architecture for short-term wave height forecasting. Ocean. Eng. 2023, 287, 115844. [Google Scholar] [CrossRef]
- Stuchi, J.A.; Angeloni, M.A.; Pereira, R.F.; Boccato, L.; Folego, G.; Prado, P.V.S.; Attux, R.R.F. Improving image classification with frequency domain layers for feature extraction. In Proceedings of the 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Song, W.; Zhang, X.; Chen, Y.; Xu, H.; Wang, L.; Wang, Y. Dimensionality Reduction and Research of Hyperspectral Remote Sensing Images Based on Manifold Learning. Preprints 2024, 2024011274. [Google Scholar] [CrossRef]
- Situ, J. Contrastive Learning Dimensionality Reduction Method Based on Manifold Learning. Adv. Eng. Technol. Res. 2024, 9, 522. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Liu, Q.; Liu, B.; Guo, G. Dual-Path Attention Network for Compressed Sensing Image Reconstruction. IEEE Trans. Image Process. 2020, 29, 9482–9495. [Google Scholar] [CrossRef] [PubMed]
- Xiaojin, Z. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the International Conference on Machine Learning, Los Angeles, CA, USA, 23–24 June 2003; Volume 3, p. 912. [Google Scholar]
- Zheng, J. Targeted Image Reconstruction by Sampling Pre-trained Diffusion Model. In Intelligent Systems and Applications, Proceedings of the Intelligent Systems Conference, Amsterdam, The Netherlands, 7–8 September 2023; Springer: Cham, Switzerland, 2023; pp. 552–560. [Google Scholar]
- Ji, P.; Reid, I.; Garg, R.; Li, H.; Salzmann, M. Adaptive low-rank kernel subspace clustering. arXiv 2017, arXiv:1707.04974. [Google Scholar]
- Martinez, A.; Benavente, R. The AR Face Database: CVC Technical Report, 24; CVC: Luxembourg, 1998. [Google Scholar]
- Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef]
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, H. Semi-supervised classification algorithm based on the KNN. In Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 9–12. [Google Scholar]
- Yoder, J.; Priebe, C.E. Semi-supervised k-means++. J. Stat. Comput. Simul. 2017, 87, 2597–2608. [Google Scholar] [CrossRef]
- Shahid, N.; Kalofolias, V.; Bresson, X.; Bronstein, M.; Vandergheynst, P. Robust principal component analysis on graphs. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2812–2820. [Google Scholar]
- Lee, D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems; Neural Information Processing Systems: La Jolla, CA, USA, 2000; Volume 13. [Google Scholar]
- Li, S.; Li, W.; Lu, H.; Li, Y. Semi-supervised non-negative matrix tri-factorization with adaptive neighbors and block-diagonal learning. Eng. Appl. Artif. Intell. 2023, 121, 106043. [Google Scholar] [CrossRef]
- Ye, F.; Chen, C.; Zheng, Z. Deep autoencoder-like nonnegative matrix factorization for community detection. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Turin, Italy, 22–26 October 2018; pp. 1393–1402. [Google Scholar]
Dataset | Acc | |||||||
---|---|---|---|---|---|---|---|---|
FMDR | RPCA | NMF | LE | ABNMTF | DANMF | |||
AT&T | 79.81 | 73.89 | 57.00 | 33.02 | 50.31 | 34.35 | 78.35 | 51.95 |
ORL | 64.44 | 45.59 | 42.25 | 32.33 | 31.85 | 31.85 | 41.30 | 33.60 |
AR | 97.14 | 77.00 | 38.46 | 50.23 | 52.23 | 50.23 | 67.62 | 61.27 |
Yale | 64.44 | 45.59 | 28.48 | 32.85 | 31.85 | 31.85 | 41.30 | 33.60 |
YaleB | 76.18 | 43.30 | 32.14 | 31.38 | 32.63 | 28.07 | 45.56 | 29.05 |
Dataset | Pre | |||||||
FMDR | RPCA | NMF | LE | ABNMTF | DANMF | |||
AT&T | 82.81 | 75.80 | 71.23 | 28.31 | 45.00 | 30.92 | 81.56 | 88.49 |
ORL | 62.76 | 58.24 | 60.05 | 46.71 | 31.87 | 40.99 | 55.79 | 46.54 |
AR | 97.87 | 75.54 | 42.62 | 48.58 | 50.34 | 53.58 | 70.15 | 63.11 |
Yale | 62.76 | 58.24 | 35.09 | 46.71 | 31.87 | 40.99 | 55.79 | 46.54 |
YaleB | 77.32 | 41.46 | 48.30 | 32.96 | 31.24 | 31.99 | 57.47 | 29.77 |
Dataset | Rec | |||||||
FMDR | RPCA | NMF | LE | ABNMTF | DANMF | |||
AT&T | 79.12 | 79.12 | 62.64 | 31.58 | 48.17 | 35.97 | 78.47 | 55.78 |
ORL | 62.11 | 52.20 | 46.63 | 34.36 | 29.61 | 38.33 | 47.61 | 31.84 |
AR | 97.29 | 78.43 | 42.76 | 49.63 | 48.41 | 51.04 | 67.77 | 63.40 |
Yale | 62.11 | 52.20 | 30.82 | 34.36 | 29.61 | 38.33 | 47.61 | 31.84 |
YaleB | 78.29 | 43.41 | 33.12 | 29.84 | 31.45 | 28.84 | 46.04 | 29.77 |
Dataset | F1 score | |||||||
FMDR | RPCA | NMF | LE | ABNMTF | DANMF | |||
AT&T | 40.19 | 39.35 | 34.01 | 14.54 | 23.13 | 16.73 | 41.23 | 35.77 |
ORL | 32.37 | 29.28 | 24.10 | 22.05 | 15.99 | 22.34 | 25.23 | 18.45 |
AR | 53.91 | 43.07 | 20.59 | 26.71 | 26.15 | 28.84 | 47.39 | 42.81 |
Yale | 32.37 | 29.28 | 17.86 | 22.05 | 15.99 | 22.34 | 25.23 | 18.45 |
YaleB | 39.68 | 21.50 | 19.23 | 15.68 | 16.42 | 16.06 | 34.01 | 23.38 |
Algorithm | Acc | Pre | Rec | F1 |
---|---|---|---|---|
FMDR | 2.34 | 3.27 | 3.43 | 2.87 |
KNN | 4.24 | 5.63 | 6.02 | 3.50 |
Kmeans | 3.62 | 3.53 | 3.69 | 3.77 |
ATNMTF | 5.22 | 5.89 | 7.34 | 5.35 |
LE | 3.55 | 4.17 | 4.53 | 2.95 |
NMF | 4.32 | 5.37 | 5.13 | 3.06 |
RPCA | 3.94 | 4.55 | 4.58 | 3.26 |
DANMF | 3.02 | 4.21 | 4.88 | 3.23 |
Dataset | Ratio | Acc | |||||||
---|---|---|---|---|---|---|---|---|---|
FMDR | RPCA | NMF | LE | ABNMTF | DANMF | ||||
ORL | 5% | 52.50 | 48.89 | 22.50 | 35.83 | 45.56 | 35.28 | 51.39 | 52.22 |
10% | 55.83 | 46.11 | 33.00 | 35.83 | 46.11 | 36.11 | 52.22 | 53.61 | |
15% | 63.86 | 53.87 | 32.75 | 46.69 | 60.76 | 49.07 | 58.33 | 58.77 | |
20% | 71.91 | 66.77 | 42.25 | 46.46 | 51.23 | 30.88 | 57.99 | 59.63 | |
25% | 68.55 | 68.55 | 45.50 | 59.45 | 64.60 | 60.48 | 61.19 | 62.66 | |
30% | 70.44 | 64.56 | 45.75 | 58.48 | 64.97 | 60.63 | 62.77 | 63.84 | |
AR | 5% | 74.80 | 53.20 | 22.31 | 30.00 | 30.40 | 30.40 | 47.60 | 44.00 |
10% | 92.61 | 74.03 | 25.77 | 46.98 | 41.30 | 43.53 | 53.04 | 49.00 | |
15% | 94.57 | 75.11 | 27.31 | 49.33 | 48.87 | 50.45 | 62.53 | 51.67 | |
20% | 97.14 | 77.00 | 38.46 | 50.23 | 52.80 | 50.23 | 67.62 | 61.27 | |
25% | 96.94 | 81.63 | 38.85 | 57.25 | 57.95 | 57.00 | 73.85 | 56.36 | |
30% | 96.26 | 81.05 | 40.38 | 60.21 | 64.25 | 58.51 | 72.13 | 75.44 | |
Yale | 5% | 52.00 | 41.33 | 16.67 | 25.33 | 25.33 | 25.33 | 32.00 | 20.67 |
10% | 56.00 | 45.33 | 22.03 | 24.00 | 24.67 | 24.67 | 35.33 | 25.67 | |
15% | 58.52 | 45.26 | 25.39 | 38.52 | 33.58 | 35.04 | 39.71 | 28.53 | |
20% | 64.44 | 45.26 | 28.48 | 32.85 | 31.85 | 31.85 | 41.30 | 33.60 | |
25% | 57.02 | 48.36 | 28.27 | 38.52 | 45.60 | 40.32 | 44.63 | 41.20 | |
30% | 62.50 | 51.22 | 30.60 | 38.21 | 37.90 | 38.02 | 41.94 | 42.80 | |
YaleB | 5% | 53.93 | 24.29 | 13.67 | 22.70 | 27.59 | 22.02 | 19.95 | 22.53 |
10% | 60.09 | 32.42 | 21.13 | 26.72 | 29.17 | 26.16 | 26.35 | 25.76 | |
15% | 68.45 | 41.03 | 24.36 | 31.91 | 34.47 | 33.11 | 42.40 | 28.08 | |
20% | 76.18 | 43.30 | 32.14 | 31.38 | 32.63 | 28.07 | 45.56 | 29.05 | |
25% | 77.08 | 50.11 | 37.30 | 37.38 | 41.03 | 37.90 | 49.02 | 31.50 | |
30% | 77.32 | 52.86 | 40.36 | 40.16 | 43.19 | 40.20 | 53.72 | 32.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Gong, R.; Tan, G.; Ji, S.; Zhan, R. A Frequency Domain Kernel Function-Based Manifold Dimensionality Reduction and Its Application for Graph-Based Semi-Supervised Classification. Appl. Sci. 2024, 14, 5342. https://doi.org/10.3390/app14125342
Liang Z, Gong R, Tan G, Ji S, Zhan R. A Frequency Domain Kernel Function-Based Manifold Dimensionality Reduction and Its Application for Graph-Based Semi-Supervised Classification. Applied Sciences. 2024; 14(12):5342. https://doi.org/10.3390/app14125342
Chicago/Turabian StyleLiang, Zexiao, Ruyi Gong, Guoliang Tan, Shiyin Ji, and Ruidian Zhan. 2024. "A Frequency Domain Kernel Function-Based Manifold Dimensionality Reduction and Its Application for Graph-Based Semi-Supervised Classification" Applied Sciences 14, no. 12: 5342. https://doi.org/10.3390/app14125342
APA StyleLiang, Z., Gong, R., Tan, G., Ji, S., & Zhan, R. (2024). A Frequency Domain Kernel Function-Based Manifold Dimensionality Reduction and Its Application for Graph-Based Semi-Supervised Classification. Applied Sciences, 14(12), 5342. https://doi.org/10.3390/app14125342