Superficial Defect Detection for Concrete Bridges Using YOLOv8 with Attention Mechanism and Deformation Convolution
Abstract
:1. Introduction
2. Basic Theory of the YOLOv8 Network
3. DCNA-YOLO Method Construction
3.1. Multi-Branch Coordinate Attention
3.2. Deformable Convolution Based on MBCA
3.3. MBCADC2F Module
3.4. Deformable Convolutional Network Attention YOLO Object Detection Network
4. Example Verification
4.1. Experimental Dataset
4.2. Environmental Design and Evaluation Metrics
4.3. Experimental Results and Analysis
4.3.1. Ablation Experiment
4.3.2. Comparison Experiment of Different Detection Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xing, S.; Ye, J.; Jiang, C. Review the study on typical diseases and design countermeasures of China concrete curved bridges. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 26–28 June 2010; pp. 4805–4808. [Google Scholar]
- Ni, F.; Zhang, J.; Chen, Z. Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning. Comput. Aided Civ. Infrastruct. Eng. 2019, 34, 367–384. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.-J.; Choi, W.; Büyükoztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Ni, F.; Zhang, J.; Chen, Z. Pixel-level crack delineation in images with convolutional feature fusion. Struct. Control Health Monit. 2019, 26, e2286. [Google Scholar] [CrossRef]
- Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Ali, R.; Cha, Y.-J. Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. Constr. Build. Mater. 2019, 226, 376–387. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016, Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ultralytics YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 20 August 2023).
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Ultralytics YOLOV8. Available online: https://github.com/ultralytics/ultralytics (accessed on 12 October 2023).
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. TOOD: Task-aligned One-stage Object Detection. In Proceedings of the International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Zhang, X.; Luo, Z.; Ji, J.; Sun, Y.; Tang, H.; Li, Y. Intelligent Surface Cracks Detection in Bridges Using Deep Neural Network. Int. J. Struct. Stab. Dyn. 2023, 24, 2450046. [Google Scholar] [CrossRef]
- Yu, Z. YOLO V5s-based Deep Learning Approach for Concrete Cracks Detection. SHS Web Conf. 2022, 144, 03015. [Google Scholar] [CrossRef]
- Jin, Q.; Han, Q.; Su, N.; Wu, Y.; Han, Y. A deep learning and morphological method for concrete cracks detection. J. Circuits Syst. Comput. 2023, 32, 2350271. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Q.; Jin, Q.; Li, J.; Zhang, Y. LCA-YOLOv8-Seg: An Improved Lightweight YOLOv8-Seg for Real-Time Pixel-Level Crack Detection of Dams and Bridges. Appl. Sci. 2023, 13, 10583. [Google Scholar] [CrossRef]
- Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 2018, 107, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Tsotsos, J.K. A Computational Perspective on Visual Attention; The MIT Presse Books: Cambridge, MA, USA, 2011. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 15–25 June 2021. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable ConvNets v2: More Deformable, Better Results. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
Labels (Damage) | Number | Labels (Damage) | Number |
---|---|---|---|
liefeng (crack) | 17,636 | shenshui (seepage) | 9244 |
boluo (spalling) | 11,875 | fengwo (comb surface) | 8330 |
kongdong (cavity) | 7082 | lujin (steel exposed) | 6584 |
mamian (pockmark) | 8274 |
Data Set | Well-Lit Images | Partial Shadow or Occlusion Images | Low-Lighting Images | Dark-Lighting Images | Total |
---|---|---|---|---|---|
Train | 6697 | 1798 | 2608 | 3425 | 14,528 |
Val | 923 | 239 | 298 | 356 | 1816 |
Test | 876 | 225 | 326 | 389 | 1816 |
Model | Parameters/M | FLOPs/G | FPS/f·s−1 | P/% | R/% | mAP0.5/% | mAP0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8s | 11.1 | 28.7 | 70.9 | 89.1 | 82.0 | 87.4 | 68.9 |
+MBCA | 11.2 | 28.7 | 68.9 | 90.2 | 82.7 | 87.9 | 68.9 |
+DCNv2 | 11.2 | 27.5 | 73.8 | 90.0 | 82.5 | 88.1 | 70.2 |
proposed method | 11.3 | 27.5 | 74.4 | 91.3 | 85.4 | 89.4 | 73.3 |
Model | Parameters/M | FLOPs/G | FPS/f·s−1 | P/% | R/% | mAP0.5/% | mAP0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv3-tiny | 12.1 | 19.1 | 76.9 | 81.7 | 73.4 | 78.6 | 53.4 |
YOLOv5s | 7.0 | 16.8 | 78.3 | 91.2 | 84.9 | 88.7 | 67.4 |
YOLOv6s | 16.3 | 44.2 | 69.4 | 90.2 | 81.5 | 87.7 | 69.6 |
YOLOv8s | 11.1 | 28.7 | 70.9 | 89.1 | 82.0 | 87.4 | 68.9 |
Proposed method | 11.3 | 27.5 | 74.4 | 91.3 | 85.4 | 89.4 | 73.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Liu, G.; Tan, S. Superficial Defect Detection for Concrete Bridges Using YOLOv8 with Attention Mechanism and Deformation Convolution. Appl. Sci. 2024, 14, 5497. https://doi.org/10.3390/app14135497
Li T, Liu G, Tan S. Superficial Defect Detection for Concrete Bridges Using YOLOv8 with Attention Mechanism and Deformation Convolution. Applied Sciences. 2024; 14(13):5497. https://doi.org/10.3390/app14135497
Chicago/Turabian StyleLi, Tijun, Gang Liu, and Shuaishuai Tan. 2024. "Superficial Defect Detection for Concrete Bridges Using YOLOv8 with Attention Mechanism and Deformation Convolution" Applied Sciences 14, no. 13: 5497. https://doi.org/10.3390/app14135497
APA StyleLi, T., Liu, G., & Tan, S. (2024). Superficial Defect Detection for Concrete Bridges Using YOLOv8 with Attention Mechanism and Deformation Convolution. Applied Sciences, 14(13), 5497. https://doi.org/10.3390/app14135497