Heat Generation and Diffusion in an Assembly of Magnetic Nanoparticles: Application to Magnetic Hyperthermia
Abstract
:1. Introduction
2. Heat Equation
2.1. Extended Heat Equation
2.2. Physical Parameters
- Specific heat: The sample (ferrofluid) specific heat is given by
- Thermal conductivity: There are several models for of a mixture based on the effective-medium approach from which we choose that of Yu and Choi [40]
- Power vs. SAR: In Ref. [39] we already saw that the power divided by the mass of the magnetic substance () yields the SAR in W/kg. SoSee discussion before Equation (11).
2.3. Specific Absorption Rate
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Overgaard, J. (Ed.) History and heritage: An introduction. In Hyperthermic Oncology; Taylor and Francis: London, UK, 1985; Volume 2, pp. 8–9. [Google Scholar]
- Van der Zee, J. Heating the patient: A promising approach? Ann. Oncol. 2002, 13, 1173. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldöfner, N.; Scholz, R.; Deger, S.; Wust, W.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 2005, 21, 637. [Google Scholar] [CrossRef] [PubMed]
- Skumiel, A.; Jósefczak, A.; Timko, M.; P Kopčanský, P.; Herchl, F.; Koneracká, M.; Tomašovičová, N. Tomašovičová. Int. J. Thermodyn. 2007, 28, 1461. [Google Scholar] [CrossRef]
- Murase, K.; Takata, H.; Takeuchi, Y.; Saito, S. Control of the Temperature Rise in Magnetic Hyperthermia with Use of an External Static Magnetic Field. Phys. Med. 2013, 29, 624. [Google Scholar] [CrossRef] [PubMed]
- Streffer, C.; van Beuningen, D. The biological basis for tumor therapy by hyperthermia and radiation. In Hyperthermia and the Therapy of Malignant Tumors; Streffer, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 24–70. [Google Scholar]
- Haider, Q.; Hussain, A.; Rehman, A.; Ashour, A.; Althobaiti, A. Mass and Heat Transport Assessment and Nanomaterial Liquid Flowing on a Rotating Cone: A Numerical Computing Approach. Nanomaterials 2022, 12, 1700. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Chow, J.C.L. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials 2022, 12, 2826. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Luccioni, H.L.; Latorre-Esteves, M.M.; Méndez-Vega, J.J.; Soto, O.O.; Rodríguez, A.R.; Rinaldi, C.C.; Torres-Lugo, M.M. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int. J. Nanomed. 2011, 6, 373. [Google Scholar]
- Carrey, J.; Mehdaoui, B.; Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 2011, 109, 083921. [Google Scholar] [CrossRef]
- Mehdaoui, B.; Meffre, A.; Carrey, J.; Lachaize, S.; Lacroix, L.-M.; Gougeon, M.; Chaudret, B.; Respaud, M. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 2011, 21, 4573. [Google Scholar] [CrossRef]
- Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelakeris, M.; Iglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estradé, S.; Peiró, F.; et al. Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. Sci. Rep. 2013, 3, 1652. [Google Scholar] [CrossRef]
- Conde-Leboran, I.; Baldomir, D.; Martinez-Boubeta, C.; Chubykalo-Fesenko, O.; del Morales, M.P.; Salas, G.; Cabrera, D.; Camarero, J.; Teran, F.J.; Serantes, D. A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. J. Phys. Chem. C 2015, 119, 15698. [Google Scholar] [CrossRef]
- Kostopoulou, A.; Lappas, A. Colloidal magnetic nanocrystal clusters: Variable length-scale interaction mechanisms, synergetic functionalities and technological advantages. Nanotechnol. Rev. 2015, 4, 595. [Google Scholar] [CrossRef]
- Lacroix, L.-M.; Malaki, R.B.; Carrey, J.; Lachaize, S.; Respaud, M.; Goya, G.F.; Chaudret, B. Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner–Wohlfarth behavior and large losses. J. Appl. Phys. 2009, 105, 023911. [Google Scholar] [CrossRef]
- Déjardin, J.-L.; Vernay, F.; Respaud, M.; Kachkachi, H. Effect of dipolar interactions and DC magnetic field on the specific absorption rate of an array of magnetic nanoparticles. J. Appl. Phys. 2017, 121, 203903. [Google Scholar] [CrossRef]
- Déjardin, J.-L.; Vernay, F.; Kachkachi, H. Specific absorption rate of magnetic nanoparticles: Nonlinear AC susceptibility. J. Appl. Phys. 2020, 128, 143901. [Google Scholar] [CrossRef]
- Déjardin, J.-L.; Vernay, F.; Kachkachi, H. Efficiency of energy dissipation in nanomagnets: A theoretical study of ac susceptibility. In Magnetic Nanoparticles in Human Health and Medicine; Rai, M., Caizer, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Murase, K.; Oonoki, J.; Takata, H.; Song, R.; Angraini, A.; Ausanai, P.; Matsushita, T. Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles. Radiol. Phys. Technol. 2011, 4, 194. [Google Scholar] [CrossRef] [PubMed]
- Andreu, I.; Natividad, E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 2013, 29, 739. [Google Scholar] [CrossRef]
- Shah, R.R.; Davis, T.P.; Glover, A.L.; Nikles, D.E.; Brazel, C.S. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. a Magn. Mater. 2015, 387, 96. [Google Scholar] [CrossRef] [PubMed]
- Ruta, S.; Fernández-Afonso, Y.; Rannala, S.E.; Morales, M.P.; Veintemillas-Verdaguer, S.; Jones, C.; Gutiérre, L.; Chantrell, R.W.; Serantes, D. A device-independent approach to evaluate the heating performance during magnetic hyperthermia experiments: Peak analysis and zigzag protocol. arXiv 2023, arXiv:2307.11521. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Reprinted 1998; Oxford University Press: Oxford, UK, 1891. [Google Scholar]
- Rayleigh, J.W.S. On the Instability of a Cylinder of Viscous Liquid under Capillary Force. Phil. Mag. 1892, 34, 431. [Google Scholar] [CrossRef]
- Garnett, J.C.M. Colours in Metal Glasses and in Metallic Films. Phil. Trans. R Soc. Lond. 1904, 203, 385. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 2003, 125, 151. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Zhang, X.; Fujii, M. Stochastic Thermal Transport of Nanoparticle Suspensions. J. Appl. Phys. 2006, 100, 855. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kakac, S.; Cao, L. Analysis of convective two-phase flow instabilities in vertical and horizontal in-tube boiling systems. Int. J. Heat Mass Transfer. 2009, 52, 3984. [Google Scholar] [CrossRef]
- Desai, T.G. Thermal transport in nanoclusters. J. Appl. Phys. 2011, 98, 193107. [Google Scholar] [CrossRef]
- Goharkhah, M.; Salarian, A.; Ashjaee, M.; Shahabadi, M. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Tech. 2015, 274, 258. [Google Scholar] [CrossRef]
- Karimi, A.; Goharkhah, M.; Ashjaee, M.; Shafii, M. Thermal Conductivity of and Fe3O4 Magnetic Nanofluids Under the Influence of Magnetic Field. Int. J. Thermophys. 2015, 36, 2720. [Google Scholar] [CrossRef]
- Zouli, N. Enhancement of Heat Transfer Coefficient using Fe2O3-Water Nanofluids. Mater. Energy 2017, 2, 247. [Google Scholar]
- Maurice, M.; Barros, N.; Kachkachi, H. Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: An analytical and numerical study. J. Appl. Phys. 2023, 134, 094303. [Google Scholar] [CrossRef]
- Sihvola, A.H. Electromagnetic Mixing Formulas and Applications; IET Electromagnetic Waves Series; IET: London, UK, 1999; Volume 47. [Google Scholar]
- Andreozzi, A.; Brunese, L.; Iasiello, M.; Tucci, C.; Vanoli, G.P. Modeling heat transfer in tumors: A review of thermal therapies. Ann. Biomed. Eng. 2019, 47, 676. [Google Scholar] [CrossRef]
- Astefanoaei, I.; Stancu, A. A computational study of the bioheat transfer in magnetic hyperthermia cancer therapy. J. Appl. Phys. 2019, 125, 194701. [Google Scholar] [CrossRef]
- Rytov, R.A.; Bautin, V.A.; Usov, N.A. Towards optimal thermal distribution in magnetic hyperthermia. Sci. Rep. 2022, 12, 1. [Google Scholar]
- Déjardin, J.-L.; Kachkachi, H. Time profile of temperature rise in assemblies of nanomagnets. J. Magn. Magn. Mater. 2022, 556, 169354. [Google Scholar] [CrossRef]
- Yau, W.; Choi, S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J. Nanopart. Res. 2003, 5, 167. [Google Scholar] [CrossRef]
- Jin, C.Y.; Li, Z.; Williams, R.S.; Lee, K.C.; Park, I. Localized temperature and chemical reaction control in nanoscale space by nanowire array. Nano Lett. 2011, 11, 4818–4825. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, N.; Wang, M.-S.; Wei, X.; Tang, D.-M.; Murakami, Y.; Shindo, D.; Mitome, M.; Golberg, D. Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscope. Nanotechnology 2011, 22, 485707. [Google Scholar] [CrossRef]
- Balois, M.V.; Hayazawa, N.; Catalan, F.C.; Kawata, S.; Yano, T.A.; Hayashi, T. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale. Anal. Bioanal. Chem. 2015, 407, 8205–8213. [Google Scholar] [CrossRef]
Substance | |||||||
---|---|---|---|---|---|---|---|
Magnetite | 619 | 5.1 | 5200 | ||||
Water | 4181 | 0.598 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Déjardin, J.-L.; Kachkachi, H. Heat Generation and Diffusion in an Assembly of Magnetic Nanoparticles: Application to Magnetic Hyperthermia. Appl. Sci. 2024, 14, 5757. https://doi.org/10.3390/app14135757
Déjardin J-L, Kachkachi H. Heat Generation and Diffusion in an Assembly of Magnetic Nanoparticles: Application to Magnetic Hyperthermia. Applied Sciences. 2024; 14(13):5757. https://doi.org/10.3390/app14135757
Chicago/Turabian StyleDéjardin, Jean-Louis, and Hamid Kachkachi. 2024. "Heat Generation and Diffusion in an Assembly of Magnetic Nanoparticles: Application to Magnetic Hyperthermia" Applied Sciences 14, no. 13: 5757. https://doi.org/10.3390/app14135757
APA StyleDéjardin, J. -L., & Kachkachi, H. (2024). Heat Generation and Diffusion in an Assembly of Magnetic Nanoparticles: Application to Magnetic Hyperthermia. Applied Sciences, 14(13), 5757. https://doi.org/10.3390/app14135757