Comparative Study of Natural Fibres to Improve Insulation in Wooden Beehives Using Sensor Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Experimental Procedure
2.3. Sensor Network
2.3.1. Hardware
2.3.2. Software
2.4. Data Treatment and Validation
3. Results
3.1. External Heating Source
3.2. Internal Heating Source
4. Discussion
4.1. External Heating Source
4.2. Internal Heating Source
4.3. Sensing Technology
5. Conclusions
- The implemented materials exhibited very similar results to each other and provided superior thermal insulation compared to a control hive (black agglomerated cork > wood fibres > white agglomerated cork > wood fibres > control). Every studied material improves insulation proportionally; therefore, the ultimate decision between them should consider factors like availability, cost, and mechanisation properties.
- The peak temperature variance recorded at the test’s culmination between the hives with thermal insulation and the control hive was 2 °C for black cork and mineral wool and 1 °C for white cork and wood fibres—an effect that could significantly enhance the cumulative living conditions of bees.
- The low-cost sensor network and communication architecture implemented have performed outstandingly, demonstrating their potential for use in field conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Lautenbach, S.; Seppelt, R.; Liebscher, J.; Dormann, C.F. Spatial and temporal trends of global pollination benefit. PLoS ONE 2012, 7, e35954. [Google Scholar] [CrossRef]
- Petanidou, T.; Kallimanis, A.S.; Tzanopoulos, J.; Sgardelis, S.P.; Pantis, J.D. Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 2008, 11, 564–575. [Google Scholar] [CrossRef]
- Ricke, D.F.; Lin, C.-H.; Johnson, R.M. Pollen treated with a combination of agrochemicals commonly applied during almond bloom reduces the emergence rate and longevity of honey bee (Hymenoptera: Apidae) queens. J. Insect Sci. 2021, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef] [PubMed]
- Leza, M.; Herrera, C.; Marques, A.; Roca, P.; Sastre-Serra, J.; Pons, D.G. The impact of the invasive species Vespa velutina on honeybees: A new approach based on oxidative stress. Sci. Total Environ. 2019, 689, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Polo, R.O.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Guarna, M.M. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 2022, 134, 108457. [Google Scholar]
- Flores, J.M.; Gil-Lebrero, S.; Gámiz, V.; Rodríguez, M.I.; Ortiz, M.A.; Quiles, F.J. Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Sci. Total Environ. 2019, 653, 1111–1119. [Google Scholar] [CrossRef]
- Fremuth, W.; fuer Bienenkunde, L. Influence of temperature on the host-parasite relationship between honey bees and Varroa. Apidologie 1985, 16, 211–213. [Google Scholar]
- Le Conte, Y.; Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2008, 27, 499–510. [Google Scholar]
- Lensky, Y. Résistance des abeilles (Apis mellifica L. var. ligustica) a des températures élevées. Insectes Sociaux 1964, 11, 293–299. [Google Scholar] [CrossRef]
- Dupleix, A.; Jullien, D.; Moity-Maizi, P.; Schatz, B. Practices and knowledge of beekeepers and beehive suppliers regarding the wood material in the South of France. J. Rural. Stud. 2020, 77, 11–20. [Google Scholar] [CrossRef]
- Rubiano-Navarrete, A.F.; Lesmes Fabian, C.; Torres-Pérez, Y.; Gómez-Pachón, E.Y. Durability Evaluation of New Composite Materials for the Construction of Beehives. Sustainability 2022, 14, 14683. [Google Scholar] [CrossRef]
- Beetsma, J. The Varroa mite, a devastating parasite of western honeybees and an economic threat to beekeeping. Outlook Agric. 1994, 23, 169–175. [Google Scholar] [CrossRef]
- Gupta, R.K.; Reybroeck, W.; van Veen, J.W.; Gupta, A. Beekeeping for Poverty Alleviation and Livelihood Security; Springer Science+ Business Media: Berlin, Germany, 2014. [Google Scholar]
- Floris, I.; Pusceddu, M.; Raccimolo, E.; Casula, A.; Patteri, G.; Satta, A. The use of cork in the thermoregulation of the hive: An innovation attempt to enhance non-wood products and beekeeping in Mediterranean forests. Ann. Silvic. Res. 2020, 45, 99–104. [Google Scholar]
- Alburaki, M.; Corona, M. Polyurethane honey bee hives provide better winter insulation than wooden hives. J. Apic. Res. 2021, 61, 190–196. [Google Scholar] [CrossRef]
- Erickson, M.M.; Salwei, M.L. Comparison of Plastic Apimaye Hive with Wooden Langstroth Hive for Improved Winterizing Efficiency and Mite Control; University of Minnesota Driven to Disciver: Duluth, MN, USA, 2020. [Google Scholar]
- Crane, E. The World History of Beekeeping and Honey Hunting; Routledge: Milton Park, UK, 1999; ISBN 0429235879. [Google Scholar]
- Crane, E. Beekeeping in the world of ancient Rome. Bee World 1994, 75, 118–134. [Google Scholar] [CrossRef]
- Sadia, F.T.; Hossain, M.S.; Begum, R.; Sujan, M.H.K. Comparative profitability analysis and resource use efficiency of beekeeping using wooden and poly hive in some selected areas of Bangladesh. Int. J. Agril. Res. Innov. Tech 2021, 11, 84–91. [Google Scholar] [CrossRef]
- Erdoğan, Y. Comparison of colony performances of honeybee (Apis Mellifera L.) housed in hives made of different materials. Ital. J. Anim. Sci. 2019, 18, 934–940. [Google Scholar] [CrossRef]
- European Union. Consolidated Text: Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. 2018. Available online: https://eur-lex.europa.eu/eli/reg/2018/848/oj (accessed on 17 September 2023).
- Bourlière, F. Chauvin, R.—Traité de Biologie de l’Abeille. In La Terre et La Vie, Revue d’Histoire Naturelle; Masson: Paris, France, 1968; Volume 22, p. 361. [Google Scholar]
- Hobson, J.V., Jr. Ferrocement as a material for hives. Bee World 1983, 64, 113–116. [Google Scholar] [CrossRef]
- Lorenzon, M.C.A.; Cidreira, R.G.; Rodrigues, E.H.V.; Dornelles, M.S.; Pereira, G., Jr. Langstroth hive construction with cement-vermiculite. Sci. Agric. 2004, 61, 573–578. [Google Scholar] [CrossRef]
- Neves, J.O. Efeito de Colméias Construídas em Argamassa de Cimento-Vermiculita Sobre o Desempenho de Abelhas Africanizadas (Apis mellifera Linnaeus, 1758), na Fase de Estiramento; UFRRJ: Rio de Janeiro, Brazil, 2002; 45p. [Google Scholar]
- Lepkova, T.; Lakov, L.; Aleksandrova, M. Studing the temperature microclimate in beehives made out of defferent materials. Innovations 2022, 10, 91–92. [Google Scholar]
- Langstroth, L.L. Beehive. U.S. Patent No. US9300A, 5 October 1852. [Google Scholar]
- Aislantes de Madera STEICO Roundtrip. Aislantes de Madera. Available online: http://aislantesmadera.es/featured-content/steico-roundtrip (accessed on 17 September 2023).
- BriCork Rollos de Corcho. Available online: https://bricork.com/corcho-aislante-y-multiusos/21-corcho-industrial-en-rollo-8423437051254.html (accessed on 17 September 2023).
- Zero6 Corcho Negro Natural. Available online: https://www.zero6.es/tienda/productos/aislamientos/corcho-negro/corcho-negro/ (accessed on 17 September 2023).
- KnaufInsulation Lana Mineral de Vidrio. Available online: https://www.knaufinsulation.es/lana-mineral/lana-vidrio/naturoll-032 (accessed on 17 September 2023).
- Kabir, M.S.; Yola, I.A. Thermo-physical properties of beeswax. Fudma J. Sci. 2020, 4, 460–465. [Google Scholar]
- Bernal, J.L.; Jiménez, J.J.; del Nozal, M.J.; Toribio, L.; Martín, M.T. Physico-chemical parameters for the characterization of pure beeswax and detection of adulterations. Eur. J. Lipid Sci. Technol. 2005, 107, 158–166. [Google Scholar] [CrossRef]
- MyCircuits the Sentinel Board. Available online: https://github.com/MyCircuitsTV/Sentinel (accessed on 17 September 2023).
- Adafruit Industries Adafruit RFM69HCW and RFM9X LoRa Packet Radio Breakouts. Available online: https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts (accessed on 17 September 2023).
- SENSIRION Datasheet SHT3x-DIS. Humidity and Temperature Sensor (V7). Available online: https://sensirion.com/products/catalog/SHT31-DIS-F (accessed on 17 September 2023).
- ASAIR Data Sheet AHT20, Humidity and Temperature Sensor. Available online: http://www.aosong.com/en/products-32.html (accessed on 17 September 2023).
- Bosch Sensortec. BMP280, Digital Pressure Sensor Datasheet (V1.26). Available online: https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp280/ (accessed on 17 September 2023).
- Fuentes-Pérez, J.F.; García-Vega, A.; Bravo-Córdoba, F.J.; Sanz-Ronda, F.J. A step to Smart Fishways: An autonomous obstruction detection system using hydraulic modelling and sensor networks. Sensors 2021, 21, 6909. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing, version 4.2.0.; R Core Team: Vienna, Austria, 2022.
- Seeley, T. Regulation of temperature in the nests of social insects. In Insect Thermoregulation; Wiley: Hoboken, NJ, USA, 1981; pp. 159–234. [Google Scholar]
- Free, J.B. A Organização Social das Abelhas; Temas de Biologia; EPU/EDUSP: São Paulo, SP, Brazil, 1980. [Google Scholar]
- Kraus, B.; Velthuis, H.H.W.; Tingek, S. Temperature profiles of the brood nests of Apis cerana and Apis mellifera colonies and their relation to varroosis. J. Apic. Res. 1998, 37, 175–181. [Google Scholar] [CrossRef]
- Himmer, A. Ein beitrag zur kenntnis des wärmehaushalts im nestbau sozialer hautflügler. Z. Vgl. Physiol. 1927, 5, 375–389. [Google Scholar] [CrossRef]
- Von Frisch, K. Bees: Their Vision, Chemical Senses, and Language; Cornell University Press: Ithaca, NY, USA, 2014; ISBN 0801471761. [Google Scholar]
- Lindauer, M. Communication among Social Bees; Harvard University Press: Cambridge, MA, USA, 1971; ISBN 0674424522. [Google Scholar]
- Oskin, S.V.; Ovsyannikov, D.A. Modeling the Main Physical Processes in Beehives. Biophysics 2019, 64, 129–136. [Google Scholar] [CrossRef]
- Álvarez-Ramírez, A.; Jiménez-González, L.; Ruíz-García, I.; Orozco-Hernández, R. Influence of the weather conditions on the ascospherosis (Ascosphaera apis) or chalkbrood on the Apis mellifera (bee). Abanico Vet. 2017, 7, 37–46. [Google Scholar]
- Oskin, S.V.; Ovsyannikov, D.A.; Shishigin, I.N. Modeling Beehive Microclimate at the End of Wintering. Biophysics 2022, 67, 85–91. [Google Scholar] [CrossRef]
- Maes, P.W.; Floyd, A.S.; Mott, B.M.; Anderson, K.E. Overwintering honey bee colonies: Effect of worker age and climate on the hindgut microbiota. Insects 2021, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, I.; Kul, B.; Ben Abdelkader, F.; Seven Çakmak, S. Effects of temperature adjustment with a heating device in weak honey bee colonies in cold seasons. Int. J. Biometeorol. 2023, 67, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Nürnberger, F.; Härtel, S.; Steffan-Dewenter, I. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ 2018, 6, e4801. [Google Scholar] [CrossRef] [PubMed]
- Corbet, S.A.; Fussell, M.; Ake, R.; Fraser, A.; Gunson, C.; Savage, A.; Smith, K. Temperature and the pollinating activity of social bees. Ecol. Entomol. 1993, 18, 17–30. [Google Scholar] [CrossRef]
- Szabo, T.I. Effect of weather factors on honeybee flight activity and colony weight gain. J. Apic. Res. 1980, 19, 164–171. [Google Scholar] [CrossRef]
- Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of swarming sounds in bee hives for early detection of the swarming period. Comput. Electron. Agric. 2008, 64, 72–77. [Google Scholar] [CrossRef]
- Stabentheiner, A.; Pressl, H.; Papst, T.; Hrassnigg, N.; Crailsheim, K. Endothermic heat production in honeybee winter clusters. J. Exp. Biol. 2003, 206, 353–358. [Google Scholar] [CrossRef]
- Flores, J.M.; Ruiz, J.A.; Ruz, J.M.; Puerta, F.; Bustos, M.; Padilla, F.; Campano, F. Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie 1996, 27, 185–192. [Google Scholar] [CrossRef]
Material | Thickness (mm) | Density (kg/m3) | Thermal Conductivity (W/(m·k)) | Reference |
---|---|---|---|---|
Wood fibre band STEICO Roundtrip | 8 | 60 | 0.038 | [30] |
White agglomerated cork | 10 | 200–220 | 0.045 | [31] |
Black agglomerated cork | 13 | 100–120 | 0.036–0.038 | [32] |
Ultracoustic R rock mineral wool | 8 | 32 | 0.032 | [33] |
Variable | Material | Average | Standard Deviation | Coefficient of Variation (%) | p-Value | Pairwise Comparison |
---|---|---|---|---|---|---|
Area/thickness | White agglomerated cork | 234.547 | 27.675 | 11.799 | 0.0000 * | ab |
Black agglomerated cork | 188.473 | 16.23 | 8.615 | a | ||
Rock mineral wool | 255.197 | 4.709 | 1.845 | ab | ||
Wood fibres | 218.227 | 32.12 | 14.719 | b | ||
Control | 418.137 | 38.174 | 9.129 | c | ||
Indoor temperature after 1 h at 60 °C (°C) | White agglomerated cork | 26.14 | 0.470 | 1.799 | 0.0071 * | a |
Black agglomerated cork | 25.57 | 0.278 | 1.090 | a | ||
Rock mineral wool | 26.093 | 0.090 | 0.347 | a | ||
Wood fibres | 25.563 | 0.524 | 2.053 | a | ||
Control | 26.967 | 0.402 | 1.493 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz, M.C.; Prado-Jimeno, R.; Fuentes-Pérez, J.F. Comparative Study of Natural Fibres to Improve Insulation in Wooden Beehives Using Sensor Networks. Appl. Sci. 2024, 14, 5760. https://doi.org/10.3390/app14135760
Sanz MC, Prado-Jimeno R, Fuentes-Pérez JF. Comparative Study of Natural Fibres to Improve Insulation in Wooden Beehives Using Sensor Networks. Applied Sciences. 2024; 14(13):5760. https://doi.org/10.3390/app14135760
Chicago/Turabian StyleSanz, Milagros Casado, Rubén Prado-Jimeno, and Juan Francisco Fuentes-Pérez. 2024. "Comparative Study of Natural Fibres to Improve Insulation in Wooden Beehives Using Sensor Networks" Applied Sciences 14, no. 13: 5760. https://doi.org/10.3390/app14135760
APA StyleSanz, M. C., Prado-Jimeno, R., & Fuentes-Pérez, J. F. (2024). Comparative Study of Natural Fibres to Improve Insulation in Wooden Beehives Using Sensor Networks. Applied Sciences, 14(13), 5760. https://doi.org/10.3390/app14135760