Retrofitting of Steel Structures with CFRP: Literature Review and Research Needs
Abstract
:1. Introduction
2. Bond Behavior between CFRP and Steel
2.1. Bond Test Configuration and Failure Modes
2.2. Adhesive
Ref. | fy (MPa) | Es (GPa) | fa (MPa) | Ea (GPa) | ta (mm) | fp (MPa) | Ep (GPa) | tp (mm) | Type of CFRP | Test Set-Up | Steel Plate (mm) | Influencing Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | j | ||||||||||||
[64] | 375 | 205 | 14.8 43 32 | 6.8–7.3 2.1 3.5 | 0.1 0.5 1 | 2109.3 1120.8 | 135.3 270.1 | 1.2 | NM HM | S * D * | 225 25 1.5 225 25 3 225 25 6 | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[63] | _ | _ | 22.53 20.48 13.89 | 4.01 10.79 5.43 | 1 2 3 4 | _ | 165 | 1.2 | NM | S | 305 118 12 | ✓ | ✓ | ✓ | |||||||
[72] | _ | _ | 37.1 | 3 | 1 | _ | 338 460 | 4 8 | HM UHM | D | 200, 400 | ✓ | ✓ | ||||||||
[73] | 317.8 | _ | 24.8 30 | 4.5 3.8 | 0.8 1 | >2800 | 197 | 1.4 | NM | D | 460 60 6 600 60 6 1200 60 60 | ✓ | ✓ | ||||||||
[35] | _ | 200 | 76 | 3.1 | - | 2448 1190 | 640 340 | 0.19 1.42 | UHM HM | D | 128.2 25.4 3.3 258.3 25.4 3.3 | ✓ | ✓ | ✓ | ✓ | ||||||
[39] | 409 | 200 | 34.6 | 3 | 0.6–0.7 | 2979 1923 | 187 514 | 1.2 | NM UHM | D | 250 50 4.8 300 50 4.8 610 50 4.8 | ✓ | |||||||||
[60] | 300 | 200 | 28.6 24 | 1.9 9.2 | var | 1500 | 460 | 1.45 | UHM | D | 300 50 30 | ✓ | ✓ | ||||||||
[34] | _ | 200 | 22.34 31.28 14.73 21.46 | 11.25 4.82 1.75 1.83 | 0.5 2 3 | _ | 150 235 340 | 1.2 1.4 | NM MM HM | S | 450 30 | ✓ | ✓ | ✓ | |||||||
[74] | 359 | 200 | 32 | 1.9 | - | 2300 | 256 | - | HM | D | 180 50 5 | ✓ | |||||||||
[19] | 487 | 200.6 | 28.6 | 1.90 | 0.66 | 1607 | 478.73 | 1.45 | UHM | D | 300 50 10 | ✓ | |||||||||
[75] | 300 | _ | 33.16 | 11.3 | 1 | 1970 | 185 | 1.44 | NM | S | ** 250 5 | ||||||||||
[9] | 235 | 210 | 35 | _ | var | _ | 460 | - | UHM | D | 450 60 15 450 60 10 | ✓ | |||||||||
[76] | 410 | _ | 34.6 | 3.01 | - | 1200 2800 | 450 165 | 1.2 | UHM NM | D | 610 50 5 610 50 4.8 610 50 9.5 | ✓ | ✓ | ||||||||
[49] | 414 | 198 | 27.6 15.1 | 12.2–1.75 | var | 2760 | 164 | 1.4 | NM | S | 20 | ✓ | ✓ | ||||||||
[18] | 235 | - | 26–31 | 11.2 | 1–2 | 3100 | 170 | 1.2 | NM | D | = 75 = 12 | ✓ | |||||||||
[77] | 400 | 210 | 21.76 | 8.4 | - | 1820 1840 | 180.5 163.3 | 1.46 1.26 | NM | D | = 55 = 5 | ✓ |
2.3. Surface Preparation
2.4. Bond Length
2.5. Bond–Slip Models
3. Flexural Retrofitting of Steel Beams
Ref. | Loading Condition | Test Setup | (mm) | Steel Cross Section (mm) | (GPa) | (MPa) | (MPa) | CFRP Type | (mm) | (GPa) | (MPa) | Adhesive Type | (mm) | (GPa) | (MPa) | (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[112] | Static | F * | 3048 | ** W8 × 15 | - | 363.4 | 496.4 | NM HM | 1.4 | 152 200 | 2482 >2482 | - | - | - | 68.9 | - |
[4] | Fatigue | F | 1300 | S127 × 4.5 | 194.4 (flange) 199.9 (web) | 336.4 (flange) 330.9 (web) | - | NM | - | 144 | 2137 | - | - | - | - | - |
[32] | Static | T * | 2743.2 | W12 × 14 | - | - | - | HM | 1.4 | >200 | >2300 | - | - | - | - | - |
[121] | Fatigue | F | - | W14 × 68 | - | 340 | - | NM | - | 157 114 | 2600 790 | Sikadur 330 Sikadur 30 PLUS 25 DP-460 NS Tyfo TC | - | 4.6 - - 1.8 - | 41 25 17 35 47 | - |
[122] | Static Fatigue | F | 1800 | W100 × 17.5 | 200 | - | - | HM | 1.4 | 300 | 1800 | Sikadur 30 | - | 2.75 | - | - |
[119] | Fatigue | F | - | W200 × 19 | 200 | 380 | - | UHM | - | 460 | - | - | - | - | - | - |
[13] | Static | F | 6550 | ** W310 × 45 | - | 369–408 | - | NM UHM | 3.2 2.9 4 | 229 457 | 1224 1534 | Spabond-345 | - | - | - | - |
[106] | Static | T | 2500 | HEA140 | - | 331 | 469 | NM | 1.4 | 197 | >2800 | Sikadur 30 Sikadur-330 | - | 4.5 3.8 | 24.8 30 | 24.8 - |
[108] | Static | T and F | 1200 | 127 × 76UB13 | 205 | - | - | HM | 3 6 | 212 | - | Sikadur 30 | 1 | 8 | 29.7 | - |
[15] | Static | F | 2000 | HEA180 | 212 | 330 | - | NM HM | 1.4 1.8 2.4 | 200 330 165 | 3300 1500 3100 | - | 2 | 7 4.5 | 25 30 | - |
[120] | Fatigue | F | - | W310 × 74 | 200 | 350 | 450 | NM HM | - | 165 210 | 2520 2805 | Sikadur-30 | - | - | - | - |
[39,110] | Static | F | 2743 | ** W10 × 22 C7 × 9.8 | 200 | 407 414 | 510 531 | UHM | 1.2 | 514 | 1923 | Spabond-345 | 2.5 | 3 | 34.6 | - |
[85] | Static | F | 2000 | I-section beam: wb = 100 hb = 150 tf = 10 tw = 6.6 | - | 250 | 370 | NM | 1.2 | 165 | 3100 | Sikadur-30 | 1 | 11.2 | 24–31 | 14–19 |
[118] | Fatigue | F | - | H350 × 175 | - | - | - | UHM NM SW-BFRP | - | 436.4 145 108.3 | 1500 2500 1789 | Sikadur-30 | - | 2.627 | 31.7 | 14.4 |
[115] | Static | F | 2000 | ** UC203 × 203 × 46 | 200 | 318.75 | 459 | LM | - | 65.364 | 736.6 | Sikadur-330 | - | 4.5 | 30 | - |
[113] | Static/cyclic/fatigue | F | 3350 | W8 × 13 | - | - | - | NM HM | - | 134.6 226.3 | 2288 2218 | - | - | - | - | - |
[20] | Fatigue | F | 1000 | IPE120 | 208 | 330 | 444 | NM | 2.8 | 195 | >2800 | Sikadur 30 Sikadur 330 | - | >4.5 >3.8 | >28.4 >30 | - |
[22] | Fatigue | F | - | IPE120 | 199.3 | 383 | 462 | NM HM UHM | 1.4 | 159 220 440 | 2800 2800 1200 | Araldite AW106 | - | - | - | - |
[24] | Fatigue | F | 1000 | IPE120 | 208 | 330 | 444 | HM | 1.4 | 205 | 3200 | Sikadur 30 Sikadur 330 | - | >4.5 >3.8 | >28.4 >30 | - |
[17] | Static | T | 3000 | UB203 × 102 × 23 | 190 | 335 | 429 | Hybrid CFRP-GFRP | 3.175 6.35 | 62.19 | 852 | - | - | - | - | - |
[123] | Fatigue | F | - | I-shaped | 192.8 | 378.2 | 519 | NM | - | 200.4 | 3022.4 | - | - | - | - | - |
[105] | Static | F | 2000 | H-section | 185 | 210.4 | 332.1 | NM | 1.2 | 167.3 | 2398.3 | Sikadur-30 | - | 11.3 | 22.3 | - |
[123] | Fatigue | F | - | I-shaped | 192.8 | 378.2 | 519 | HM | - | 200.4 | 3022.4 | Araldite 420 Sikadur 30 | - | 1.495 11.2 | 29 30 | - |
[27] | Fatigue | F | - | I-shaped | 192.8 | 378.2 | 519 | HM | - | 200.4 | 3022.4 | Araldite 420 Sikadur 30 | - | 1.495 11.2 | 29 30 | - |
[124] | Fatigue | F | 1300 | H-section | 197.3 | 158.8 | - | NM | 2 | 183.2 | 2239.5 | Lica-131 | - | 5.7 | 39.2 | - |
4. Numerical Analysis
5. Research Needs and Recommendations
- Further investigation is needed to develop adhesives with enhanced mechanical properties to improve bond strength and durability.
- Further research should be conducted to investigate the effect of interrelated parameters on the bond behavior of the CFRP/steel interface to propose an optimal retrofitting system. The finite element modeling can be considered a cost-effective solution in this regard.
- To better analyze the impact of the CFRP elastic modulus on the performance of the retrofitted steel elements, it is advisable to use CFRPs with approximately the same tensile capacity but varying elastic modulus.
- More investigation is required to develop bond–slip models at the CFRP/steel interface under fatigue loading by considering the influencing variables that are representative of conditions in practice.
- More research is needed to investigate the effect of fatigue loading on the effective bond length. Also, the effect of shear combined with flexure on the bond length is to be clarified.
- More research could be conducted to investigate the effect of galvanic corrosion, especially in the CFRP retrofitting method utilizing a steel anchorage system. The long-term effect of galvanic corrosion has not been properly investigated.
6. Conclusions
- Using CFRP with higher elastic modulus results in an increase in CFRP/steel bond strength and contributes to an improvement of the performance of retrofitted steel components by increasing structural load-carrying capacity and flexural strength.
- Applying adhesives with higher tensile modulus generally results in enhanced bond strength of the steel/CFRP interface. Nevertheless, adhesives with nonlinear properties can yield higher failure loads than linear adhesives with an even higher tensile modulus.
- As for bond–slip models, studies have shown that in linear adhesive materials, triangular bond–slip curves are obtained, whereas in nonlinear adhesives, the bond–slip relationship tends to follow a trapezoidal curve.
- Proper surface preparation of steel substrates is crucial for achieving a strong bond strength. Mechanical treatments like grit blasting improve surface roughness and chemical bonding.
- Increasing the elastic modulus of CFRP reinforcement could lead to an improvement in the fatigue life of specimens. Indeed, it has been found that the fatigue life of a steel structure can be enhanced by either applying prestressing to the steel details or by increasing beam stiffness by using UHM CFRP or adding CFRP layers.
- Regarding the performance of prestressed CFRP, experimental results indicate that prestressing can reduce the stress intensity factor and confine crack growth by applying compressive forces to the edges of cracks in notched steel elements. Therefore, the use of prestressed CFRP patches could enhance the effectiveness of CFRP rehabilitation systems.
- Finally, experimental studies of anchorage systems have shown that using anchorage techniques can help delay crack propagation and thereby prolong fatigue life in strengthened steel specimens. The crack mouth opening displacement could also be reduced as a result of using anchorage systems.
Funding
Data Availability Statement
Conflicts of Interest
Notations
bp | Width of CFRP plate |
bs | Width of steel plate |
Ea | Young’s modulus of adhesive |
Ep | Young’s modulus of CFRP plate |
Es | Young’s modulus of steel plate |
hb | Height of beam |
fa | Tensile strength of adhesive |
fp | CFRP tensile strength |
fy | Steel yield stress |
fu | Steel ultimate stress |
Ga | Shear modulus of adhesive |
Gf | Interfacial fracture energy |
Le | Effective bond length of CFRP plate |
Lspan,b | Span length of steel beam |
N | Number of interfaces working in parallel |
Pu | Ultimate load (bond strength) |
ta | Thickness of adhesive layer |
tp | Thickness of CFRP plate |
ts | Thickness of steel plate |
Wb | Width of beam |
Ws | Steel plate width |
τf | Peak interfacial shear stress |
τ* | Interlaminar shear strength of the CFRP plate |
δ1 | Relative slip corresponding to the peak interfacial stress |
δ2 | Relative slip when the shear stress begins to decrease in the tri-linear model |
δf | Maximum slip |
References
- Dexter, R.J.; Ocel, J.M. Manual for Repair and Retrofit of Fatigue Cracks in Steel Bridges; Federal Highway Administration: Ashburn, VA, USA, 2013. [Google Scholar]
- Schnerch, D.; Dawood, M.; Rizkalla, S.; Sumner, E. Proposed design guidelines for strengthening of steel bridges with FRP materials. Constr. Build. Mater. 2007, 21, 1001–1010. [Google Scholar] [CrossRef]
- Fisher, J.W. Evolution of fatigue-resistant steel bridges. Transp. Res. Rec. J. Transp. Res. Board 1997, 1594, 5–17. [Google Scholar] [CrossRef]
- Tavakkolizadeh, M.; Saadatmanesh, H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch. J. Struct. Eng. 2003, 129, 186–196. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Zhang, L. State-of-the-art review on FRP strengthened steel structures. Eng. Struct. 2007, 29, 1808–1823. [Google Scholar] [CrossRef]
- Hollaway, L.C.; Cadei, J. Progress in the technique of upgrading metallic structures with advanced polymer composites. Prog. Struct. Eng. Mater. 2002, 4, 131–148. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Jumaat, M.Z.; Sulong, N.H.R.; Islam, A.B.M.S. A review on strengthening steel beams using FRP under fatigue. Sci. World J. 2014, 2014, 702537. [Google Scholar] [CrossRef] [PubMed]
- Oudah, F.; El-Hacha, R. Research progress on the fatigue performance of RC beams strengthened in flexure using Fiber Reinforced Polymers. Compos. Part B Eng. 2013, 47, 82–95. [Google Scholar] [CrossRef]
- Chataigner, S.; Benzarti, K.; Foret, G.; Caron, J.; Gemignani, G.; Brugiolo, M.; Calderon, I.; Piñero, I.; Birtel, V.; Lehmann, F. Design and testing of an adhesively bonded CFRP strengthening system for steel structures. Eng. Struct. 2018, 177, 556–565. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Jiang, Y.-T.; Tang, H.-Z. Bond behavior of hybrid FRP-to-steel joints. Compos. Struct. 2020, 237, 111936. [Google Scholar] [CrossRef]
- Jagtap, P.; Pore, S.; Prakash, V. Necessity of strengthening of steel structures with FRP composites: A review. Int. J. Latest Trends Eng. Technol. (IJLTET) 2015, 5, 390–394. [Google Scholar]
- Shaat, A.; Fam, A. Repair of cracked steel girders connected to concrete slabs using carbon-fiber-reinforced polymer sheets. J. Compos. Constr. 2008, 12, 650–659. [Google Scholar] [CrossRef]
- Schnerch, D.; Rizkalla, S. Flexural strengthening of steel bridges with high modulus CFRP strips. J. Bridg. Eng. 2008, 13, 192–201. [Google Scholar] [CrossRef]
- Fam, A.; MacDougall, C.; Shaat, A. Upgrading steel–concrete composite girders and repair of damaged steel beams using bonded CFRP laminates. Thin-Walled Struct. 2009, 47, 1122–1135. [Google Scholar] [CrossRef]
- Linghoff, D.; Al-Emrani, M.; Kliger, R. Performance of steel beams strengthened with CFRP laminate—Part 1: Laboratory tests. Compos. Part B Eng. 2010, 41, 509–515. [Google Scholar] [CrossRef]
- Hmidan, A.; Kim, Y.J.; Yazdani, S. CFRP Repair of Steel Beams with Various Initial Crack Configurations. J. Compos. Constr. 2011, 15, 952–962. [Google Scholar] [CrossRef]
- Sweedan, A.M.; Alhadid, M.M.; El-Sawy, K.M. Experimental study of the flexural response of steel beams strengthened with anchored hybrid composites. Thin-Walled Struct. 2016, 99, 1–11. [Google Scholar] [CrossRef]
- Elkhabeery, O.H.; Safar, S.S.; Mourad, S.A. Flexural strength of steel I-beams reinforced with CFRP sheets at tension flange. J. Constr. Steel Res. 2018, 148, 572–588. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, X.L.; Chiu, W.K.; Al-Mahaidi, R.; Duan, W.H. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates. Compos. Part B Eng. 2013, 50, 344–353. [Google Scholar] [CrossRef]
- Colombi, P.; Fava, G. Experimental study on the fatigue behaviour of cracked steel beams repaired with CFRP plates. Eng. Fract. Mech. 2015, 145, 128–142. [Google Scholar] [CrossRef]
- Emdad, R.; Al-Mahaidi, R. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates. Compos. Struct. 2015, 123, 109–122. [Google Scholar] [CrossRef]
- Ghafoori, E. Fatigue Strengthening of Metallic Members Using Un-Bonded and Bonded CFRP Laminates. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2015. [Google Scholar]
- Aljabar, N.; Zhao, X.; Al-Mahaidi, R.; Ghafoori, E.; Motavalli, M.; Powers, N. Effect of crack orientation on fatigue behavior of CFRP-strengthened steel plates. Compos. Struct. 2016, 152, 295–305. [Google Scholar] [CrossRef]
- Colombi, P.; Fava, G. Fatigue crack growth in steel beams strengthened by CFRP strips. Theor. Appl. Fract. Mech. 2016, 85, 173–182. [Google Scholar] [CrossRef]
- Hu, L.L.; Zhao, X.L.; Feng, P. Fatigue Behavior of Cracked High-Strength Steel Plates Strengthened by CFRP Sheets. J. Compos. Constr. 2016, 20, 04016043. [Google Scholar] [CrossRef]
- Aljabar, N.; Zhao, X.; Al-Mahaidi, R.; Ghafoori, E.; Motavalli, M.; Koay, Y. Fatigue tests on UHM-CFRP strengthened steel plates with central inclined cracks under different damage levels. Compos. Struct. 2017, 160, 995–1006. [Google Scholar] [CrossRef]
- Yu, Q.-Q.; Wu, Y.-F. Fatigue retrofitting of cracked steel beams with CFRP laminates. Compos. Struct. 2018, 192, 232–244. [Google Scholar] [CrossRef]
- Tafsirojjaman, T.; Fawzia, S.; Thambiratnam, D.P.; Zhao, X.-L. FRP strengthened SHS beam-column connection under monotonic and large-deformation cyclic loading. Thin-Walled Struct. 2021, 161, 107518. [Google Scholar] [CrossRef]
- Tong, L.; Xu, G.; Zhao, X.-L.; Yan, Y. Fatigue tests and design of CFRP-strengthened CHS gap K-joints. Thin-Walled Struct. 2021, 163, 107694. [Google Scholar] [CrossRef]
- Wang, H.-T.; Wu, G.; Pang, Y.-Y.; Shi, J.-W.; Zakari, H.M. Experimental study on the bond behavior between CFRP plates and steel substrates under fatigue loading. Compos. Part B Eng. 2019, 176, 107266. [Google Scholar] [CrossRef]
- Ke, L.; Li, C.; He, J.; Shen, Q.; Liu, Y.; Jiao, Y. Enhancing fatigue performance of damaged metallic structures by bonded CFRP patches considering temperature effects. Mater. Des. 2020, 192, 108731. [Google Scholar] [CrossRef]
- Liu, X. Rehabilitation of Steel Bridge Members with FRP Composite Materials; University of Missouri-Rolla: Rolla, MO, USA, 2003. [Google Scholar]
- Ghafoori, E.; Motavalli, M. Normal, high and ultra-high modulus carbon fiber-reinforced polymer laminates for bonded and un-bonded strengthening of steel beams. Mater. Des. 2015, 67, 232–243. [Google Scholar] [CrossRef]
- Yu, T.; Fernando, D.; Teng, J.; Zhao, X. Experimental study on CFRP-to-steel bonded interfaces. Compos. Part B Eng. 2012, 43, 2279–2289. [Google Scholar] [CrossRef]
- Stanford, K.A. Strengthening of Steel Structures with High Modulus Carbon Fiber Reinforced Polymers (CRRP) Materials: Bond and Development Length Study. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2009. [Google Scholar]
- Gholami, M.; Sam, A.R.M.; Yatim, J.M.; Tahir, M.M. A review on steel/CFRP strengthening systems focusing environmental performance. Constr. Build. Mater. 2013, 47, 301–310. [Google Scholar] [CrossRef]
- Borrie, D.; Al-Saadi, S.; Zhao, X.-L.; Raman, R.K.S.; Bai, Y. Bonded CFRP/Steel Systems, Remedies of Bond Degradation and Behaviour of CFRP Repaired Steel: An Overview. Polymers 2021, 13, 1533. [Google Scholar] [CrossRef]
- Duncan, B. Developments in testing adhesive joints. In Advances in Structural Adhesive Bonding; Elsevier: Amsterdam, The Netherlands, 2010; pp. 389–436. [Google Scholar]
- Peiris, N.A. Steel Beams Strengthened with Ultra High Modulus CFRP Laminates; University of Kentucky: Lexington, KY, USA, 2011. [Google Scholar]
- Jiao, H.; Zhao, X.-L. CFRP strengthened butt-welded very high strength (VHS) circular steel tubes. Thin-Walled Struct. 2004, 42, 963–978. [Google Scholar] [CrossRef]
- Fawzia, S.; Zhao, X.; Al-Mahaidi, R.; Rizkalla, S. Bond characteristics between CFRP and steel plates in double strap joints. Adv. Steel Constr. 2005, 1, 17–27. [Google Scholar]
- He, J.; Xian, G.; Zhang, Y. Effect of moderately elevated temperatures on bond behaviour of CFRP-to-steel bonded joints using different adhesives. Constr. Build. Mater. 2020, 241, 118057. [Google Scholar] [CrossRef]
- Zhou, H.; Fernando, D.; Torero, J.L.; Torres, J.P.; Maluk, C.; Emberley, R. Bond Behavior of CFRP-to-Steel Bonded Joints at Mild Temperatures: Experimental Study. J. Compos. Constr. 2020, 24, 04020070. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; Yang, Y.; Bai, J.; Zhou, Q. A Study on the Bond–Slip Relationship of the CFRP–Steel Interface of CFRP Strengthened Steel. Materials 2022, 15, 4187. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; He, J.; Gao, Y.; Hu, Z. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint. Constr. Build. Mater. 2020, 244, 118400. [Google Scholar] [CrossRef]
- Al-Mosawe, A.; Al-Mahaidi, R.; Zhao, X.-L. Bond behaviour between CFRP laminates and steel members under different loading rates. Compos. Struct. 2016, 148, 236–251. [Google Scholar] [CrossRef]
- He, J.; Xian, G. Debonding of CFRP-to-steel joints with CFRP delamination. Compos. Struct. 2016, 153, 12–20. [Google Scholar] [CrossRef]
- Al-Mosawe, A.; Al-Mahaidi, R. Performance of CFRP-steel joints enhanced with bi-directional CFRP fabric. Constr. Build. Mater. 2019, 197, 72–82. [Google Scholar] [CrossRef]
- Wang, H.-T.; Wu, G. Bond-slip models for CFRP plates externally bonded to steel substrates. Compos. Struct. 2018, 184, 1204–1214. [Google Scholar] [CrossRef]
- Li, C.; Ke, L.; He, J.; Chen, Z.; Jiao, Y. Effects of mechanical properties of adhesive and CFRP on the bond behavior in CFRP-strengthened steel structures. Compos. Struct. 2019, 211, 163–174. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, H.Y.; Zhou, H.; Zhang, Y.; Gao, X.; Mai, Y.W. On adhesive properties of nano-silica/epoxy bonded single-lap joints. Mater. Des. 2016, 95, 212–218. [Google Scholar] [CrossRef]
- Sousa, J.M.; Correia, J.R.; Cabral-Fonseca, S. Durability of an epoxy adhesive used in civil structural applications. Constr. Build. Mater. 2018, 161, 618–633. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Brito, F.S.; Franceschi, W.; Simonetti, E.A.N.; Cividanes, L.S.; Chipara, M.; Lozano, K. Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf. Interfac. 2018, 10, 100–109. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. Part A Appl. Sci. Manuf. 2014, 64, 79–89. [Google Scholar] [CrossRef]
- Xie, G.-H.; You, Y.; Tao, Z.-A.; Li, S.-Q. Experimental and theoretical study on mechanical behaviors of CFRP-steel interface. Thin-Walled Struct. 2023, 182, 110208. [Google Scholar] [CrossRef]
- Razavi, N.; Ayatollahi, M.R.; Giv, A.N.; Khoramishad, H. Single lap joints bonded with structural adhesives reinforced with a mixture of silica nanoparticles and multi walled carbon nanotubes. Int. J. Adhes. Adhes. 2018, 80, 76–86. [Google Scholar] [CrossRef]
- Saraç, I.; Adin, H.; Temiz, Ş. Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles. Compos. Part B Eng. 2018, 155, 92–103. [Google Scholar] [CrossRef]
- Mohabeddine, A.; Malik, G.; Correia, J.; Silva, F.; De Jesus, A.; Fantuzzi, N.; Castro, J.M. Experimental parametric investigation on the behavior of adhesively bonded CFRP/steel joints. Compos. Struct. 2023, 307, 116598. [Google Scholar] [CrossRef]
- Fernando, N.D. Bond Behaviour and Debonding Failures in CFRP-Strengthened Steel Members. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2010. [Google Scholar]
- Wu, C.; Zhao, X.; Duan, W.H.; Al-Mahaidi, R. Bond characteristics between ultra high modulus CFRP laminates and steel. Thin-Walled Struct. 2012, 51, 147–157. [Google Scholar] [CrossRef]
- Wang, H.-T.; Wu, G.; Dai, Y.-T.; He, X.-Y. Experimental Study on Bond Behavior between CFRP Plates and Steel Substrates Using Digital Image Correlation. J. Compos. Constr. 2016, 20, 04016054. [Google Scholar] [CrossRef]
- Wang, H.-T.; Wu, G.; Dai, Y.-T.; He, X.-Y. Determination of the bond–slip behavior of CFRP-to-steel bonded interfaces using digital image correlation. J. Reinf. Plast. Compos. 2016, 35, 1353–1367. [Google Scholar] [CrossRef]
- Xia, S.; Teng, J. Behaviour of FRP-to-steel bonded joints. In International Symposium on Bond Behaviour of FRP in Structures, BBFS 2005; International Institute for FRP in Construction (IIFC): Hong Kong, China, 2005. [Google Scholar]
- Photiou, N.K. Rehabilitation of Steel Members Utilising Hybrid FRP Composite Material Systems; University of Surrey (United Kingdom): Guildford, UK, 2005. [Google Scholar]
- Fawzia, S. Bond Characteristics between Steel and Carbon Fibre Reinforced Polymer (CFRP) Composites. Ph.D. Thesis, Monash University, Clayton, Australia, 2007. [Google Scholar]
- The Institution of Structural Engineers (ISE). The Structural Use of Adhesives; The Institution of Structural Engineers (ISE): London, UK, 1999. [Google Scholar]
- Fawzia, S.; Zhao, X.-L.; Al-Mahaidi, R. Bond–slip models for double strap joints strengthened by CFRP. Compos. Struct. 2010, 92, 2137–2145. [Google Scholar] [CrossRef]
- Heshmati, M.; Haghani, R.; Al-Emrani, M.; André, A. On the strength prediction of adhesively bonded FRP-steel joints using cohesive zone modelling. Theor. Appl. Fract. Mech. 2018, 93, 64–78. [Google Scholar] [CrossRef]
- Fawzia, S. Evaluation of shear stress and slip relationship of composite lap joints. Compos. Struct. 2013, 100, 548–553. [Google Scholar] [CrossRef]
- Wu, C.; Yu, Y.-Z.; Tam, L.-H.; Orr, J.; He, L. Effect of glass fiber sheet in adhesive on the bond and galvanic corrosion behaviours of CFRP-Steel bonded system. Compos. Struct. 2021, 259, 113218. [Google Scholar] [CrossRef]
- Wu, C.; Yu, Y.-Z.; Tam, L.-H.; He, L. Effects of bondline defects on the bond behaviour of CFRP-steel double strap joints. Compos. Struct. 2023, 308, 116682. [Google Scholar] [CrossRef]
- Schnerch, D.; Dawood, M.; Rizkalla, S.; Sumner, E.; Stanford, K. Bond behavior of CFRP strengthened steel structures. Adv. Struct. Eng. 2006, 9, 805–817. [Google Scholar] [CrossRef]
- Colombi, P.; Poggi, C. Strengthening of tensile steel members and bolted joints using adhesively bonded CFRP plates. Constr. Build. Mater. 2006, 20, 22–33. [Google Scholar] [CrossRef]
- Nguyen, T.-C.; Bai, Y.; Zhao, X.-L.; Al-Mahaidi, R. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity. Constr. Build. Mater. 2013, 40, 899–907. [Google Scholar] [CrossRef]
- He, J.; Xian, G. Bond-slip behavior of fiber reinforced polymer strips-steel interface. Constr. Build. Mater. 2017, 155, 250–258. [Google Scholar] [CrossRef]
- Peiris, A.; Harik, I. FRP-steel bond study of IM and UHM CFRP strips. Constr. Build. Mater. 2018, 185, 628–637. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, J.; Zhang, S.; Chastre, C.; Biscaia, H. Effect of mechanical anchorage on the bond performance of double overlapped CFRP-to-steel joints. Compos. Struct. 2021, 267, 113902. [Google Scholar] [CrossRef]
- Fernando, D.; Teng, J.G.; Yu, T.; Zhao, X.L. Preparation and characterization of steel surfaces for adhesive bonding. J. Compos. Constr. 2013, 17, 04013012. [Google Scholar] [CrossRef]
- Schnerch, D.A. Strengthening of Steel Structures with High Modulus Carbon Fiber Reinforced Polymer (CFRP) Materials. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Lorenzo, M.A. Experimental Methods for Evaluating Epoxy Coating Adhesion to Steel Reinforcement. Master’s Thesis, University of Texas at Austin, Austin, TX, USA, 1997. [Google Scholar]
- Baldan, A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment. J. Mater. Sci. 2004, 39, 1–49. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Ebnesajjad, C. Surface Treatment of Materials for Adhesive Bonding; William Andrew: Norwich, NY, USA, 2013. [Google Scholar]
- Ebnesajjad, S.; Landrock, A.H. Adhesives Technology Handbook, 2nd ed.; William Andrew: New York, NY, USA, 2014. [Google Scholar]
- Islam, M.; Tong, L.; Falzon, P. Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg. Int. J. Adhes. Adhes. 2014, 51, 32–41. [Google Scholar] [CrossRef]
- Narmashiri, K.; Jumaat, M.Z.; Sulong, N.H.R. Strengthening of steel I-beams using CFRP strips: An investigation on CFRP bond length. Adv. Struct. Eng. 2012, 15, 2191–2204. [Google Scholar] [CrossRef]
- Yang, Y.; Biscaia, H.; Chastre, C.; Silva, M.A. Bond characteristics of CFRP-to-steel joints. J. Constr. Steel Res. 2017, 138, 401–419. [Google Scholar] [CrossRef]
- Fawzia, S.; Al-Mahaidi, R.; Zhao, X.-L. Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP. Compos. Struct. 2006, 75, 156–162. [Google Scholar] [CrossRef]
- Bocciarelli, M.; Colombi, P.; Fava, G.; Poggi, C. Prediction of debonding strength of tensile steel/CFRP joints using fracture mechanics and stress based criteria. Eng. Fract. Mech. 2009, 76, 299–313. [Google Scholar] [CrossRef]
- Chiew, S.; Yu, Y.; Lee, C. Bond failure of steel beams strengthened with FRP laminates—Part 1: Model development. Compos. Part B Eng. 2011, 42, 1114–1121. [Google Scholar] [CrossRef]
- Al-Zubaidy, H.; Al-Mahaidi, R.; Zhao, X.-L. Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads. Compos. Struct. 2012, 94, 510–518. [Google Scholar] [CrossRef]
- Al-Zubaidy, H.; Al-Mahaidi, R.; Zhao, X.-L. Finite element modelling of CFRP/steel double strap joints subjected to dynamic tensile loadings. Compos. Struct. 2013, 99, 48–61. [Google Scholar] [CrossRef]
- Korayem, A.H.; Li, C.Y.; Zhang, Q.H.; Zhao, X.L.; Duan, W.H. Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface. Compos. Part B Eng. 2015, 79, 95–104. [Google Scholar] [CrossRef]
- Al-Zubaidy, H.A.; Zhao, X.-L.; Al-Mahaidi, R. Dynamic bond strength between CFRP sheet and steel. Compos. Struct. 2012, 94, 3258–3270. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, X.; Yang, J.; Xiao, Y. Experimental study on dynamic behavior of CFRP-to-steel interface. Structures 2019, 20, 465–475. [Google Scholar] [CrossRef]
- Al-Zubaidy, H.A.; Zhao, X.-L.; Al-Mahaidi, R. Experimental evaluation of the dynamic bond strength between CFRP sheets and steel under direct tensile loads. Int. J. Adhes. Adhes. 2013, 40, 89–102. [Google Scholar] [CrossRef]
- Chen, J.F.; Teng, J.G. Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
- Bocciarelli, M.; Colombi, P.; Fava, G.; Poggi, C. Interaction of interface delamination and plasticity in tensile steel members reinforced by CFRP plates. Int. J. Fract. 2007, 146, 79–92. [Google Scholar] [CrossRef]
- Dehghani, E.; Daneshjoo, F.; Aghakouchak, A.; Khaji, N. A new bond-slip model for adhesive in CFRP–steel composite systems. Eng. Struct. 2012, 34, 447–454. [Google Scholar] [CrossRef]
- Fernando, D.; Yu, T.; Teng, J.G. Behavior of CFRP Laminates Bonded to a Steel Substrate Using a Ductile Adhesive. J. Compos. Constr. 2014, 18, 04013040. [Google Scholar] [CrossRef]
- Monti, G.; Renzelli, M.; Luciani, P. FRP adhesion in uncracked and cracked concrete zones. In Fibre-Reinforced Polymer Reinforcement for Concrete Structures: (In 2 Volumes); World Scientific: Singapore, 2003; pp. 183–192. [Google Scholar]
- Lu, X.Z.; Teng, J.G.; Ye, L.P.; Jiang, J.J. Bond–slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
- Pang, Y.-Y.; Wu, G.; Wang, H.-T.; Su, Z.-L.; He, X.-Y. Experimental study on the bond behavior of the CFRP-steel interface under the freeze–thaw cycles. J. Compos. Mater. 2019, 54, 13–29. [Google Scholar] [CrossRef]
- Wang, H.-T.; Liu, S.-S.; Liu, Q.-L.; Pang, Y.-Y.; Shi, J.-W. Influences of the joint and epoxy adhesive type on the CFRP-steel interfacial behavior. J. Build. Eng. 2021, 43, 103167. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, G.; Wang, H.; Gao, D.; Zhang, P. Bond-slip model of the CFRP-steel interface with the CFRP delamination failure. Compos. Struct. 2021, 256, 113015. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Gao, W.-Y.; Liu, F. Interfacial behavior and debonding failures of full-scale CFRP-strengthened H-section steel beams. Compos. Struct. 2018, 201, 540–552. [Google Scholar] [CrossRef]
- Colombi, P.; Poggi, C. An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips. Compos. Part B Eng. 2006, 37, 64–73. [Google Scholar] [CrossRef]
- Sallam, H.E.M.; Ahmad, S.S.E.; Badawy, A.A.M.; Mamdouh, W. Evaluation of steel I-Beams strengthened by various plating methods. Adv. Struct. Eng. 2006, 9, 535–544. [Google Scholar] [CrossRef]
- Deng, J.; Lee, M.M. Behaviour under static loading of metallic beams reinforced with a bonded CFRP plate. Compos. Struct. 2007, 78, 232–242. [Google Scholar] [CrossRef]
- Teng, J.; Fernando, D.; Yu, T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates. Eng. Struct. 2015, 86, 213–224. [Google Scholar] [CrossRef]
- Peiris, A.; Harik, I. Steel beam strengthening with UHM CFRP strip panels. Eng. Struct. 2021, 226, 111395. [Google Scholar] [CrossRef]
- Teng, J.; Yu, T.; Fernando, D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012, 78, 131–143. [Google Scholar] [CrossRef]
- Al-Saidy, A.H. Structural Behavior of Composite Steel Beams Strengthened/Repaired with Carbon Fiber Reinforced Polymer Plates; Iowa State University: Ames, IA, USA, 2001. [Google Scholar]
- Tabrizi, S.; Kazem, H.; Rizkalla, S.; Kobayashi, A. New small-diameter CFRP material for flexural strengthening of steel bridge girders. Constr. Build. Mater. 2015, 95, 748–756. [Google Scholar] [CrossRef]
- Narmashiri, K.; Sulong, N.R.; Jumaat, M.Z. Failure analysis and structural behaviour of CFRP strengthened steel I-beams. Constr. Build. Mater. 2012, 30, 1–9. [Google Scholar] [CrossRef]
- Karam, E.C. Retrofitting of Composite Steel Beams Pre-Damaged in Flexure using Fiber Reinforced Polymers. Master’s Thesis, American University of Sharjah, Sharjah, United Arab Emirates, 2015. [Google Scholar]
- Wang, H.-T.; Bian, Z.-N.; Chen, M.-S.; Hu, L.; Wu, Q. Flexural strengthening of damaged steel beams with prestressed CFRP plates using a novel prestressing system. Eng. Struct. 2023, 284, 115953. [Google Scholar] [CrossRef]
- Yu, Q.-Q.; Wu, Y.-F. Fatigue durability of cracked steel beams retrofitted with high-strength materials. Constr. Build. Mater. 2017, 155, 1188–1197. [Google Scholar] [CrossRef]
- Wu, G.; Wang, H.-T.; Wu, Z.-S.; Liu, H.-Y.; Ren, Y. Experimental study on the fatigue behavior of steel beams strengthened with different fiber-reinforced composite plates. J. Compos. Constr. 2012, 16, 127–137. [Google Scholar] [CrossRef]
- Dawood, M.; Rizkalla, S.; Sumner, E. Fatigue and overloading behavior of steel–concrete composite flexural members strengthened with high modulus CFRP materials. J. Compos. Constr. 2007, 11, 659–669. [Google Scholar] [CrossRef]
- Vatandoost, F. Fatigue Behaviour of Steel Girders Strengthened with Prestressed CFRP Strips. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2010. [Google Scholar]
- Nozaka, K.; Shield, C.K.; Hajjar, J.F. Effective bond length of carbon-fiber-reinforced polymer strips bonded to fatigued steel bridge I-girders. J. Bridg. Eng. 2005, 10, 195–205. [Google Scholar] [CrossRef]
- Lenwari, A.; Thepchatri, T.; Albrecht, P. Debonding strength of steel beams strengthened with CFRP plates. J. Compos. Constr. 2006, 10, 69–78. [Google Scholar] [CrossRef]
- Yu, Q.-Q.; Wu, Y.-F. Fatigue behaviour of cracked steel beams retrofitted with carbon fibre–reinforced polymer laminates. Adv. Struct. Eng. 2017, 21, 1148–1161. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.; Deng, J. Flexural behaviour of notched steel beams strengthened with a prestressed CFRP plate subjected to fatigue damage and wetting/drying cycles. Eng. Struct. 2022, 250, 113430. [Google Scholar] [CrossRef]
- Ghafoori, E.; Motavalli, M.; Nussbaumer, A.; Herwig, A.; Prinz, G.; Fontana, M. Determination of minimum CFRP pre-stress levels for fatigue crack prevention in retrofitted metallic beams. Eng. Struct. 2015, 84, 29–41. [Google Scholar] [CrossRef]
- Linghoff, D.; Al-Emrani, M. Performance of steel beams strengthened with CFRP laminate—Part 2: FE analyses. Compos. Part B Eng. 2010, 41, 516–522. [Google Scholar] [CrossRef]
- Deng, J.; Li, J.; Wang, Y.; Xie, W. Numerical study on notched steel beams strengthened by CFRP plates. Constr. Build. Mater. 2018, 163, 622–633. [Google Scholar] [CrossRef]
- Wang, Z.; Xian, G.; Yue, Q. Finite element modeling of debonding failure in CFRP-strengthened steel beam using a ductile adhesive. Compos. Struct. 2023, 311, 116818. [Google Scholar] [CrossRef]
CFRP Type | CFRP Modulus | CFRP Modulus Relative to Steel |
---|---|---|
Low Modulus (LM) | ˂100 GPa | ECFRP ˂ 0.5 Esteel |
Normal Modulus (NM) | 100–200 GPa | 0.5 Esteel ≤ ECFRP ˂ Esteel |
High Modulus (HM) | 200–400 GPa | Esteel ≤ ECFRP ˂ 2 Esteel |
Ultra-High Modulus (UHM) | ≥400 GPa | ECFRP ≥ 2 Esteel |
Study | Software | Steel Element Type | CFRP Element Type | Adhesive Element Type | Interactions |
---|---|---|---|---|---|
[39] | ANSYS (2009) | 8-node SOLID45 | 8-node SOLID45 | 8-node SOLID45 | Perfect interface |
[60] | ABAQUS (V6.8) | CPE4R | CPE4R | COH2D4 | Quadratic traction damage initiation criterion |
[46] | ABAQUS (V6.13) | C3D8R | SC8R | COH3D8 | Tie constraint |
[18] | ANSYS (V17) | SOLID186 | SOLID186 | INTER204 | Mixed-mode bi-linear CZM |
[77] | ABAQUS | T2D2 | T2D2 | COH2D4 | Bi-linear bond–slip derived from experimental data |
[106] | ABAQUS | 2-node beam element | 8-node plane stress element | 8-node plane stress element | Multipoint constraints |
[122] | Not specified | 8-node element with 2 DOF per node | 8-node element with 2 DOF per node | Not specified | Reciprocal work contour integral method |
[59] | ABAQUS (2004) | C3D8 | S4R | COH3D8 | Tie constraint |
[126] | ABAQUS (V6.4.1) | C3D20R | C3D20R | C3D20R | Common nodes merged |
[16] | ANSYS | SOLID45 | LINK8 | COMBIN39 | Bi-linear bond–slip model |
[127] | ABAQUS | C3D8I | COH3D8 | COH3D8 | Mixed-mode cohesive law |
[128] | ABAQUS | C3D8I | C3D8R | COH3D8 | Trapezoidal mixed-mode CZM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delzendeh Moghadam, M.; Fathi, A.; Chaallal, O. Retrofitting of Steel Structures with CFRP: Literature Review and Research Needs. Appl. Sci. 2024, 14, 5958. https://doi.org/10.3390/app14135958
Delzendeh Moghadam M, Fathi A, Chaallal O. Retrofitting of Steel Structures with CFRP: Literature Review and Research Needs. Applied Sciences. 2024; 14(13):5958. https://doi.org/10.3390/app14135958
Chicago/Turabian StyleDelzendeh Moghadam, Mohamadreza, Abbas Fathi, and Omar Chaallal. 2024. "Retrofitting of Steel Structures with CFRP: Literature Review and Research Needs" Applied Sciences 14, no. 13: 5958. https://doi.org/10.3390/app14135958
APA StyleDelzendeh Moghadam, M., Fathi, A., & Chaallal, O. (2024). Retrofitting of Steel Structures with CFRP: Literature Review and Research Needs. Applied Sciences, 14(13), 5958. https://doi.org/10.3390/app14135958