Innovative Approaches to Clinical Diagnosis: Transfer Learning in Facial Image Classification for Celiac Disease Identification
Abstract
:1. Introduction
2. Background and Related Work
2.1. Machine Learning and Deep Neural Network
2.2. Transfer Learning
3. Materials and Method
3.1. Collection and Preparation of Datasets
3.2. The Workflow
3.2.1. Image Preprocessing
3.2.2. Model Configuration
3.2.3. Adding Custom Layers
3.2.4. Compilation
3.2.5. Data Augmentation
3.2.6. Data Generators
3.2.7. Training Loop
3.2.8. Evaluation and Metrics
3.2.9. Visualization
3.2.10. Classification Report and Confusion Matrix
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 142. [Google Scholar] [CrossRef]
- Valitutti, F.; Cucchiara, S.; Fasano, A. Celiac Disease and the Microbiome. Nutrients 2019, 11, 2403. [Google Scholar] [CrossRef]
- Elli, L.; Branchi, F.; Tomba, C.; Villalta, D.; Norsa, L.; Ferretti, F.; Roncoroni, L.; Bardella, M.T. Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity. World J. Gastroenterol. 2015, 21, 7110–7119. [Google Scholar] [CrossRef]
- Kayar, Y.; Dertli, R. Association of autoimmune diseases with celiac disease and its risk factors. Pak. J. Med. Sci. 2019, 35, 1548–1553. [Google Scholar] [CrossRef]
- Sadeghi, A.; Rad, N.; Ashtari, S.; Rostami-Nejad, M.; Moradi, A.; Haghbin, M.; Rostami, K.; Volta, U.; Zali, M.R. The value of a biopsy in celiac disease follow up: Assessment of the small bowel after 6 and 24 months treatment with a gluten free diet. Rev. Esp. Enferm. Dig. 2019, 112, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Keskin, E. Clinical Decision Support Systems in Diagnosis of Autoimmune Diseases. In Proceedings of the Bilge Kagan 2nd International Science Congress Barcelona, Barcelona, Spain, 5–7 November 2019; pp. 239–250. [Google Scholar]
- Russo, E.; Di Gloria, L.; Cerboneschi, M.; Smeazzetto, S.; Baruzzi, G.P.; Romano, F.; Ramazzotti, M.; Amedei, A. Facial Skin Microbiome: Aging-Related Changes and Exploratory Functional Associations with Host Genetic Factors, a Pilot Study. Biomedicines 2023, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Lin, G.; Ferenczi, K. The skin microbiome and the gut-skin axis. Clin. Dermatol. 2021, 39, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Finizio, M.; Quaremba, G.; Mazzacca, G.; Ciacci, C. Large forehead: A novel sign of undiagnosed coeliac disease. Dig. Liver Dis. 2005, 37, 659–664. [Google Scholar] [CrossRef]
- Caproni, M.; Bonciolini, V.; D’Errico, A.; Antiga, E.; Fabbri, P. Celiac Disease and Dermatologic Manifestations: Many Skin Clue to Unfold Gluten-Sensitive Enteropathy. Gastroenterol. Res. Pract. 2012, 2012, 952753. [Google Scholar] [CrossRef]
- Krzywicka, B.; Herman, K.; Kowalczyk-Zając, M.; Pytrus, T. Celiac disease and its impact on the oral health status—Review of the literature. Adv. Clin. Exp. Med. 2014, 23, 675–681. [Google Scholar] [CrossRef]
- Sernicola, A.; Alaibac, M. Editorial: Cutaneous manifestations of systemic disease. Front. Med. 2023, 10, 1236570. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, M.; Ferro, A.; Brascugli, I.; Mattivi, S.; Fagoonee, S.; Pellicano, R. Extra-Intestinal Manifestations of Celiac Disease: What Should We Know in 2022? J. Clin. Med. 2022, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Sali, R.; Adewole, S.; Ehsan, L.; Denson, L.A.; Kelly, P.; Amadi, B.C.; Holtz, L.; Ali, S.A.; Moore, S.R.; Syed, S.; et al. Hierarchical Deep Convolutional Neural Networks for Multi-category Diagnosis of Gastrointestinal Disorders on Histopathological Images. In Proceedings of the 2020 IEEE International Conference on Healthcare Informatics (ICHI), Oldenburg, Germany, 30 November–3 December 2020. [Google Scholar]
- Singh, A.; Kisku, D.R. Detection of Rare Genetic Diseases using Facial 2D Images with Transfer Learning. In Proceedings of the 2018 8th International Symposium on Embedded Computing and System Design, ISED 2018, Cochin, India, 13–15 December 2018; pp. 26–30. [Google Scholar] [CrossRef]
- Ismail, A.R.; Nisa, S.Q.; Shaharuddin, S.A.; Masni, S.I.; Amin, S.A.S. Utilising VGG-16 of Convolutional Neural Network for Medical Image Classification. Int. J. Perceptive Cogn. Comput. 2024, 10, 113–118. [Google Scholar] [CrossRef]
- Cireşan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, High Performance Convolutional Neural Networks for Image Classification. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp. 1237–1242. [Google Scholar]
- Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 2016, 67. [Google Scholar] [CrossRef]
- Zheng, J.; Shen, F.; Fan, H.; Zhao, J. An online incremental learning support vector machine for large-scale data. Neural Comput. Appl. 2012, 22, 1023–1035. [Google Scholar] [CrossRef]
- Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Fur Med. Phys. 2018, 29, 102–127. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef]
- Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. 2012. Available online: http://www.causality.inf.ethz.ch/unsupervised-learning.php (accessed on 8 July 2024).
- Gadermayr, M.; Wimmer, G.; Kogler, H.; Vécsei, A.; Merhof, D.; Uhl, A. Automated classification of celiac disease during upper endoscopy: Status quo and quo vadis. Comput. Biol. Med. 2018, 102, 221–226. [Google Scholar] [CrossRef]
- Seguí, S.; Drozdzal, M.; Pascual, G.; Radeva, P.; Malagelada, C.; Azpiroz, F.; Vitrià, J. Generic feature learning for wireless capsule endoscopy analysis. Comput. Biol. Med. 2016, 79, 163–172. [Google Scholar] [CrossRef]
- Wang, X.; Qian, H.; Ciaccio, E.J.; Lewis, S.K.; Bhagat, G.; Green, P.H.; Xu, S.; Huang, L.; Gao, R.; Liu, Y. Celiac disease diagnosis from videocapsule endoscopy images with residual learning and deep feature extraction. Comput. Methods Programs Biomed. 2019, 187, 105236. [Google Scholar] [CrossRef] [PubMed]
- Amirkhani, A.; Mosavi, M.R.; Mohammadi, K.; Papageorgiou, E.I. A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Comput. Appl. 2018, 30, 1573–1588. [Google Scholar] [CrossRef]
- Vimal, C.; Shirivastava, N. Face and Face-mask Detection System using VGG-16 Architecture based on Convolutional Neural Network. Int. J. Comput. Appl. 2022, 183, 16–21. [Google Scholar] [CrossRef]
- Hands-On Transfer Learning with Keras and the VGG16 Model—LearnDataSci. Available online: https://www.learndatasci.com/tutorials/hands-on-transfer-learning-keras/ (accessed on 3 April 2024).
- Akhand, M.A.H.; Roy, S.; Siddique, N.; Kamal, A.S.; Shimamura, T. Facial emotion recognition using transfer learning in the deep CNN. Electronics 2021, 10, 1036. [Google Scholar] [CrossRef]
- Su, Z.; Liang, B.; Shi, F.; Gelfond, J.; Šegalo, S.; Wang, J.; Jia, P.; Hao, X. Deep learning-based facial image analysis in medical research: A systematic review protocol. BMJ Open 2021, 11, e047549. [Google Scholar] [CrossRef]
- Sharma, R.; Scholar, M.T. Dataset to Model: Optimization of Image Classification with Neural Networks. 2023. Available online: http://www.ijeast.com (accessed on 8 July 2024).
Model | Total Parameters | Trainable | Non-Trainable |
---|---|---|---|
Customized Model | 39,805,690 | 25,091,002 | 14,714,688 |
No. of Epoch | Learning Rate | Testing Loss | Testing Accuracy | Validation Loss | Validation Accuracy |
---|---|---|---|---|---|
Epoch 1/10 | 15 s 3 s/step | 6.2137 | 0.5000 | 6.2114 | 0.5000 |
Epoch 2/10 | 16 s 3 s/step | 2.0953 | 0.5217 | 2.1691 | 0.5100 |
Epoch 3/10 | 15 s 3 s/step | 1.7656 | 0.5669 | 1.7505 | 0.5500 |
Epoch 4/10 | 16 s 3 s/step | 0.8504 | 0.7587 | 0.9814 | 0.7300 |
Epoch 5/10 | 15 s 3 s/step | 0.9370 | 0.7054 | 0.7952 | 0.7400 |
Epoch 6/10 | 16 s 3 s/step | 0.6226 | 0.7319 | 0.6401 | 0.7100 |
Epoch 7/10 | 15 s 3 s/step | 0.6660 | 0.7668 | 0.7453 | 0.7400 |
Epoch 8/10 | 15 s 3 s/step | 0.5976 | 0.7720 | 0.6835 | 0.7400 |
Epoch 9/10 | 20 s 5 s/step | 0.5129 | 0.7398 | 0.5192 | 0.7400 |
Epoch 10/10 | 16 s 3 s/step | 0.6034 | 0.7305 | 0.6018 | 0.7300 |
Precision | Recall | F1 Score | Support | |
---|---|---|---|---|
Celiac | 0.57 | 0.56 | 0.52 | 50 |
Nonceliac | 0.54 | 0.70 | 0.61 | 50 |
Accuracy | 0.55 | 100 | ||
Macro Avg | 0.55 | 0.55 | 0.54 | 100 |
Weighted Avg | 0.55 | 0.55 | 0.54 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskin Bilgiç, E.; Zaim Gökbay, İ.; Kayar, Y. Innovative Approaches to Clinical Diagnosis: Transfer Learning in Facial Image Classification for Celiac Disease Identification. Appl. Sci. 2024, 14, 6207. https://doi.org/10.3390/app14146207
Keskin Bilgiç E, Zaim Gökbay İ, Kayar Y. Innovative Approaches to Clinical Diagnosis: Transfer Learning in Facial Image Classification for Celiac Disease Identification. Applied Sciences. 2024; 14(14):6207. https://doi.org/10.3390/app14146207
Chicago/Turabian StyleKeskin Bilgiç, Elif, İnci Zaim Gökbay, and Yusuf Kayar. 2024. "Innovative Approaches to Clinical Diagnosis: Transfer Learning in Facial Image Classification for Celiac Disease Identification" Applied Sciences 14, no. 14: 6207. https://doi.org/10.3390/app14146207