Globally Conditioned Conditional FLOW (GCC-FLOW) for Sea Clutter Data Augmentation
Abstract
:1. Introduction
2. Methods
2.1. Autoregressive Data Generation Using GCC-FLOW
2.2. Architecture of GCC-FLOW
3. Experiment Settings
3.1. Dataset
- (1)
- High sea state data: The 3rd range bin of data file #269 at Dartmouth labeled as high. The average wave height is 1.8 m (max 2.9 m);
- (2)
- Low sea state data: The 5th range bin of data file #287 at Dartmouth labeled as low. The average wave height is 0.8 m (max 1.3 m);
- (3)
- Unidentified sea state data: The 11th range bin of data file #155 at Grimsby.
3.2. GCC-FLOW Settings
3.3. Complexity
4. Experiment Results
4.1. Sea Clutter Augmentation Using GCC-FLOW
4.2. Sea Clutter Generation Using GCC-FLOW with Global Condition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keith, W.; Robert, T.; Simon, W. Sea clutter: Scattering, the K distribution and radar performance. Waves Random Complex Media 2007, 17, 233–234. [Google Scholar]
- Klemm, R. Introduction to space-time adaptive processing. In Proceedings of the IEE Colloquium on Space-Time Adaptive Processing (Ref. No. 1998/241), London, UK, 6 April 1998; pp. 1–11. [Google Scholar]
- Ernesto, C.; Maurizio, L. Characterisation of radar clutter as a spherically invariant random process. IEE Proc. F (Commun. Radar Signal Process.) 1987, 134, 191–197. [Google Scholar]
- Rangaswamy, M.; Weiner, D.; Ozturk, A. Computer generation of correlated non-Gaussian radar clutter. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 106–116. [Google Scholar] [CrossRef]
- Rangaswamy, M. Spherically invariant random processes for modeling non-Gaussian radar clutter. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; Volume 2, pp. 1106–1110. [Google Scholar]
- Barnard, T.; Weiner, D. Non-Gaussian clutter modeling with generalized spherically invariant random vectors. IEEE Trans. Signal Process. 1996, 44, 2384–2390. [Google Scholar] [CrossRef]
- Armstrong, B.; Griffiths, H. Modelling spatially correlated K-distributed clutter. Electron. Lett. 1991, 27, 1355–1356. [Google Scholar] [CrossRef]
- Li, X.; Xu, X. A Statistical Model for Correlated K-distributed Sea Clutter. In Proceedings of the 2008 Congress on Image and Signal Processing, Hainan, China, 27–30 May 2008; Volume 5, pp. 408–412. [Google Scholar]
- Wang, J.; Xu, X. Simulation of Correlated Low-Grazing-Angle Sea Clutter Based on Phase Retrieval. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3917–3930. [Google Scholar] [CrossRef]
- Goldstein, H. Sea echo. In Propagation of Short Radio Waves; McGraw-Hill: New York, NY, USA, 1951; Volume 13, pp. 481–527. [Google Scholar]
- Trunk, G.V.; George, S.F. Detection of Targets in Non-Gaussian Sea Clutter. IEEE Trans. Aerosp. Electron. Syst. 1970; AES-6, 620–628. [Google Scholar]
- Jakeman, E.; Pusey, P. A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propag. 1976, 24, 806–814. [Google Scholar] [CrossRef]
- Matsuo, S.; Yuhai, H.M. Weibull Radar Clutter; Radar, Sonar and Navigation; Institution of Engineering and Technology: London, UK, 1990. [Google Scholar]
- Ishikawa, Y.; Sekine, M.; Musha, T. Observation of k-distributed sea clutter via an x-band radar. Electron. Commun. Jpn. Part I Commun. 1994, 77, 72–82. [Google Scholar] [CrossRef]
- Bouvier, C.; Martinet, L.; Favier, G.; Artaud, M. Simulation of radar sea clutter using autoregressive modelling and K-distribution. In Proceedings of the International Radar Conference, Alexandria, VA, USA, 8–11 May 1995; pp. 425–430. [Google Scholar]
- Middleton, D. New physical-statistical methods and models for clutter and reverberation: The KA-distribution and related probability structures. IEEE J. Ocean. Eng. 1999, 24, 261–284. [Google Scholar] [CrossRef]
- Rosenberg, L.; Crisp, D.J.; Stacy, N.J. Analysis of the KK-distribution with X-band medium grazing angle sea-clutter. In Proceedings of the 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009), Bordeaux, France, 12–16 October 2009; pp. 1–6. [Google Scholar]
- Dong, Y. Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter; Citeseer: San Diego, CA, USA, 2006. [Google Scholar]
- Farshchian, M.; Posner, F.L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter. In Proceedings of the 2010 IEEE Radar Conference, Paris, France, 30 September–1 October 2010; pp. 789–793. [Google Scholar]
- Bocquet, S. Simulation of correlated Pareto distributed sea clutter. In Proceedings of the 2013 International Conference on Radar, Adelaide, Australia, 9–12 September 2013; pp. 258–261. [Google Scholar]
- Tough, R.J.A.; Ward, K.D. The correlation properties of gamma and other non-Gaussian processes generated by memoryless nonlinear transformation. J. Phys. D Appl. Phys. 1999, 32, 3075. [Google Scholar] [CrossRef]
- Watts, S.; Rosenberg, L. Challenges in radar sea clutter modelling. IET Radar Sonar Navig. 2022, 16, 1403–1414. [Google Scholar] [CrossRef]
- Lample, G.; Zeghidour, N.; Usunier, N.; Bordes, A.; DENOYER, L.; Ranzato, M.A. Fader Networks:Manipulating Images by Sliding Attributes. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Brooklyn, NY, USA, 2017; Volume 30. [Google Scholar]
- He, Z.; Zuo, W.; Kan, M.; Shan, S.; Chen, X. AttGAN: Facial Attribute Editing by Only Changing What You Want. IEEE Trans. Image Process. 2019, 28, 5464–5478. [Google Scholar] [CrossRef] [PubMed]
- Bin, D.; Xue, X.; Xuefeng, L. Sea Clutter Data Augmentation Method Based on Deep Generative Adversarial Network. J. Electron. Inf. Technol. 2021, 43, 1985. [Google Scholar]
- Zhang, X.; Wang, Z.; Lu, K.; Pan, Q.; Li, Y. Data Augmentation and Classification of Sea–Land Clutter for Over-the-Horizon Radar Using AC-VAEGAN. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; Dasgupta, S., McAllester, D., Eds.; Proceedings of Machine Learning Research. JMLR: Norfolk, MA, USA, 2013; Volume 28, pp. 1310–1318. [Google Scholar]
- Pumarola, A.; Popov, S.; Moreno-Noguer, F.; Ferrari, V. C-flow: Conditional generative flow models for images and 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7949–7958. [Google Scholar]
- Kingma, D.P.; Dhariwal, P. Glow: Generative Flow with Invertible 1x1 Convolutions. In Proceedings of the Advances in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Brooklyn, NY, USA, 2018; Volume 31. [Google Scholar]
- Carretero-Moya, J.; Gismero-Menoyo, J.; Blanco-del Campo, A.; Asensio-Lopez, A. Statistical Analysis of a High-Resolution Sea-Clutter Database. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2024–2037. [Google Scholar] [CrossRef]
- IPIX Radar. Available online: http://soma.ece.mcmaster.ca/ipix/dartmouth/index.html (accessed on 25 April 2023).
GCC-FLOW | Training Time | # of Params | Generation Time (per 512 Samples) | |
---|---|---|---|---|
Global Condition | Training Data | |||
Fixed | Dartmouth high sea state | 2.6 h | 71 k | 1.17 s |
Dartmouth low sea state | 2.9 h | |||
Grimsby 11th range of #155 | 2.2 h | |||
Variable | Dartmouth high and low sea state | 18.5 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Chung, W. Globally Conditioned Conditional FLOW (GCC-FLOW) for Sea Clutter Data Augmentation. Appl. Sci. 2024, 14, 6538. https://doi.org/10.3390/app14156538
Lee S, Chung W. Globally Conditioned Conditional FLOW (GCC-FLOW) for Sea Clutter Data Augmentation. Applied Sciences. 2024; 14(15):6538. https://doi.org/10.3390/app14156538
Chicago/Turabian StyleLee, Seokwon, and Wonzoo Chung. 2024. "Globally Conditioned Conditional FLOW (GCC-FLOW) for Sea Clutter Data Augmentation" Applied Sciences 14, no. 15: 6538. https://doi.org/10.3390/app14156538
APA StyleLee, S., & Chung, W. (2024). Globally Conditioned Conditional FLOW (GCC-FLOW) for Sea Clutter Data Augmentation. Applied Sciences, 14(15), 6538. https://doi.org/10.3390/app14156538