Artificial Intelligence in Biomaterials: A Comprehensive Review
Abstract
:1. Introduction
- Artificial Intelligence and Machine Learning Methods
1.1. Supervised Learning (SL)
- Classification: When the output variable is categorical, the problem is known as classification. The goal is to assign an input to one of several predefined classes. This can involve binary classification, where there are only two classes, or multiclass classification, where there are more than two classes. To address these issues, commonly employed classification algorithms include logistic regression, support vector machines, decision trees, and neural networks. Classification model performance is frequently assessed using metrics such as accuracy, precision, recall, and the F1 score [21].
- Regression: When the output variable is continuous, the problem is referred to as regression. The objective in this context is to forecast a continuous value from the input features. Frequently used regression algorithms include linear regression, ridge regression, lasso regression, least absolute deviations (LAD), partial least squares (PLS), and more sophisticated models like random forests and gradient boosting machines. The effectiveness of regression models is generally evaluated using metrics like mean squared error (MSE), mean absolute error (MAE), and R-squared (R2) [22].
1.2. Unsupervised Learning (UL)
- Clustering: Clustering is one of the primary techniques in UL, where the algorithm groups similar data points into clusters. The goal is to ensure that data points within the same cluster are more alike to each other than to those in different clusters. This technique is widely used in market segmentation, social network analysis, and bioinformatics [24]. Common clustering algorithms include:
- Dimensionality reduction: This method decreases the number of random variables by identifying a set of principal variables. Dimensionality reduction is essential for managing high-dimensional data, enhancing computational efficiency, and boosting model performance.Techniques include:
- Association rules: This method is used to find interesting relationships or associations among variables in large databases. Association rules are widely used in market basket analysis to identify items that frequently co-occur in transactions [29].
1.3. Reinforcement Learning (RL)
1.4. Deep Learning (DL)
2. Artificial Intelligence and Machine Learning in the Biomaterial Field
2.1. Metal Materials
2.2. Polymer Materials
2.3. Composite Materials
2.4. Inorganic Materials
3. Discussion
3.1. Impact on Biomaterials Research
3.2. Challenges and Limitations
- The development of robust ML models requires large, high-quality datasets [107]. However, the field of biomaterials often faces limitations in terms of standardized, large-scale datasets. Ensuring data quality and consistency is crucial for the reliability of ML predictions.
- ML models, particularly deep learning models, are often considered “black-box” systems, making it challenging to interpret their decisions [108]. Enhancing the interpretability of these models is essential, especially in applications where transparency and accountability are critical.
- Training complex ML models, such as deep neural networks, requires significant computational power and specialized hardware like GPUs and TPUs [109]. This requirement can limit the accessibility of ML techniques to researchers with limited resources.
- The use of ML in biomaterials research raises ethical concerns, including data privacy, bias in training data, and the potential for unintended consequences [110]. Addressing these issues is vital to ensure the responsible application of ML technologies.
- While ML can significantly accelerate material discovery and optimization, it is crucial to integrate these computational approaches with experimental validation [111]. Ensuring that ML predictions are experimentally validated can enhance the reliability and applicability of the findings.
- In biomaterials research, the biocompatibility of materials and potential toxicity issues are of paramount importance [8]. However, utilizing ML and AI techniques to evaluate and predict these factors presents notable challenges [12]. Moreover, the standards for sensitivity and accuracy required for biomedical applications are high. ML and AI methods play a crucial role in meeting these standards, yet their application in biomaterials research can be complex and demanding.
- Biomaterials often exhibit complex structures, making it difficult to fully characterize these materials [112]. ML models must effectively navigate this complexity to provide comprehensive insights.
3.3. Future Directions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecen, A.; Dai, H.; Yabansu, Y.C.; Kalidindi, S.R.; Song, L. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater. 2018, 146, 76–84. [Google Scholar] [CrossRef]
- Vasilevich, A.; Boer, J.d. Robot-scientists will lead tomorrow’s biomaterials discovery. Curr. Opin. Biomed. Eng. 2018, 6, 74–80. [Google Scholar] [CrossRef]
- Suwardi, A.; Wang, F.; Xue, K.; Han, M.Y.; Teo, P.; Wang, P.; Wang, S.; Liu, Y.; Ye, E.; Li, Z.; et al. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2022, 34, 2102703. [Google Scholar] [CrossRef] [PubMed]
- Lazarovits, J.; Sindhwani, S.; Tavares, A.J.; Zhang, Y.; Song, F.; Audet, J.; Krieger, J.R.; Syed, A.M.; Stordy, B.; Chan, W.C.W. Supervised Learning and Mass Spectrometry Predicts the in Vivo Fate of Nanomaterials. ACS Nano 2019, 13, 8023–8034. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, O.; Krallinger, M.; Ginebra, M.-P. Time to kick-start text mining for biomaterials. Nat. Rev. Mater. 2020, 5, 8. [Google Scholar] [CrossRef]
- Kwaria, R.J.; Mondarte, E.A.Q.; Tahara, H.; Chang, R.; Hayashi, T. Data-Driven Prediction of Protein Adsorption on Self-Assembled Monolayers toward Material Screening and Design. ACS Biomater. Sci. Eng. 2020, 6, 4949–4956. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ping, X.; Guo, Y.; Heng, B.C.; Wang, Y.; Meng, Y.; Jiang, S.; Wei, Y.; Lai, B.; Zhang, X.; et al. Assessing Biomaterial-Induced Stem Cell Lineage Fate by Machine Learning-Based Artificial Intelligence. Adv. Mater. 2023, 35, e2210637. [Google Scholar] [CrossRef] [PubMed]
- Al-Kharusi, G.; Dunne, N.J.; Little, S.; Levingstone, T.J. The Role of Machine Learning and Design of Experiments in the Advancement of Biomaterial and Tissue Engineering Research. Bioengineering 2022, 9, 561. [Google Scholar] [CrossRef] [PubMed]
- Ke, R.; Li, B. A Review for Machine Learning Applications in Characterizing Biomaterials and Biological Materials Properties. Am. J. Biomed. Sci. Res. 2021, 13, 432–436. [Google Scholar]
- Kerner, J.; Alan Dogan, H.v.R. Machine learning and big data provide crucial insight for future biomaterials discovery and research. Acta Biomater. 2021, 130, 54–65. [Google Scholar] [CrossRef]
- Pratap, A.; Sardana, N. Machine learning-based image processing in materials science and engineering: A review. Mater. Today Proc. 2022, 62, 7341–7347. [Google Scholar] [CrossRef]
- Vinoth, A.; Datta, S. Computational intelligence-based design of biomaterials. Comput. Methods Mater. Sci. 2022, 22, 229–262. [Google Scholar] [CrossRef]
- Mateu-Sanz, M.; Fuenteslópez, C.V.; Uribe-Gomez, J.; Haugen, H.J.; Pandit, A.; Ginebra, M.P.; Hakimi, O.; Krallinger, M.; Samara, A. Redefining biomaterial biocompatibility: Challenges for artificial intelligence and text mining. Trends Biotechnol. 2024, 42, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M. Artificial Intelligence: A Guide for Thinking Humans. Farrar, Straus and Giroux: New York, NY, USA, 2019; ISBN 9780374715236. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Shrestha, Y.R.; Ben-Menahem, S.M.; Von Krogh, G. Organizational decision-making structures in the age of artificial intelligence. Calif. Manag. Rev. 2021, 63, 73–96. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 51, 436–444. [Google Scholar] [CrossRef]
- Madani, K.; Velay, M.; Mosser, L.; Debayle, J. Enhancing human decision making using deep learning for complex problems. IEEE Access 2018, 6, 14697–14705. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1, No. 14. [Google Scholar]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 26–28 May 1993. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.; Mané, D. Concrete Problems in AI Safety. arXiv 2016, arXiv:1606.06565. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 3320–3328. [Google Scholar]
- Li, J.; Yao, W.; Lu, Y.; Chen, J.; Sun, Y.; Hu, X. High fidelity FEM based on deep learning for arbitrary composite material structure. Compos. Struct. 2024, 340, 118176. [Google Scholar] [CrossRef]
- Ford, E.; Maneparambil, K.; Rajan, S.; Neithalath, N. Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis. Comput. Mater. Sci. 2021, 191, 110328. [Google Scholar] [CrossRef]
- Chahar, R.S.; Mukhopadhyay, T. Multi-fidelity machine learning based uncertainty quantification of progressive damage in composite laminates through optimal data fusion. Eng. Appl. Artif. Intell. 2023, 125, 106647. [Google Scholar] [CrossRef]
- Zhou, K.; Sun, H.; Enos, R.; Zhang, D.; Tang, J. Harnessing deep learning for physics-informed prediction of composite strength with microstructural uncertainties. Comput. Mater. Sci. 2021, 197, 110663. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, T.-Y.; Shi, S.-Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 2019, 9, 576–585. [Google Scholar] [CrossRef]
- Han, T.; Stone-Weiss, N.; Huang, J.; Goel, A.; Kumar, A. Machine learning as a tool to design glasses with controlled dissolution for healthcare applications. Acta Biomater. 2020, 107, 286–298. [Google Scholar] [CrossRef]
- Moghadam, P.Z.; Rogge, S.M.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D.A.; Van Speybroeck, V.; et al. Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning. Matter 2019, 1, 219–234. [Google Scholar] [CrossRef]
- Festas, A.; Ramos, A.; Davim, J. Medical devices biomaterials—A review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 218–228. [Google Scholar] [CrossRef]
- Jones, D.E.; Ghandehari, H.; Facelli, J.C. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput. Methods Programs Biomed. 2016, 132, 93–103. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahmani, K.; Rajabi, M.; Reyhani, A.; Moudi, M. Random forest classifier for high entropy alloys phase diagnosis. Afrika Matematika 2024, 35, 57. [Google Scholar] [CrossRef]
- Janet, J.P.; Kulik, H.J. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property Relationships. J. Phys. Chem. 2017, 121, 8939–8954. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, J.; Liu, Z.; Ding, Q.; Zhu, W.; Zhang, J.; Zhang, W. CA method with machine learning for simulating the grain and pore growth of aluminum alloys. Comput. Mater. Sci. 2018, 142, 244–254. [Google Scholar] [CrossRef]
- He, Y.; Cubuk, E.D.; Allendorf, M.D.; Reed, E.J. Metallic Metal–Organic Frameworks Predicted by the Combination of Machine Learning Methods and Ab Initio Calculations. J. Phys. Chem. Lett. 2018, 9, 4562–4569. [Google Scholar] [CrossRef]
- Gajewicz, A.; Puzyn, T.; Rasulev, B. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology 2017, 11, 751–758. [Google Scholar] [CrossRef]
- Nandy, A.; Duan, C.; Janet, J.P.; Gugler, S.; Kulik, H.J. Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry. Ind. Eng. Chem. Res. 2018, 57, 13973–13986. [Google Scholar] [CrossRef]
- Toyao, T.; Suzuki, K.; Kikuchi, S.; Takakusagi, S.; Shimizu, K.-i.; Takigawa, I. Toward Effective Utilization of Methane: Machine Learning Prediction of Adsorption Energies on Metal Alloys. J. Phys. Chem. 2018, 122, 8315–8326. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2017, 170, 109–117. [Google Scholar] [CrossRef]
- Shi, S.; Xıong, J. Data for: A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mendeley Data 2020. [Google Scholar] [CrossRef]
- Demir, H.; Daglar, H.; Gulbalkan, H.C.; Aksu, G.O.; Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 2023, 484, 215112. [Google Scholar] [CrossRef]
- Anderson, D.; Akinc, A.; Hossain, N.; Langer, R. Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters). Mol. Ther. 2005, 11, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Kholodovych, V.; Knight, D.; Welsh, W.J.; Kohn, J. QSAR Models for the Analysis of Bioresponse Data from Combinatorial Libraries of Biomaterials. QSAR Comb. Sci. 2005, 24, 99–113. [Google Scholar] [CrossRef]
- Yang, J.; Mei, Y.; Hook, A.L.; Taylor, M.; Urquhart, A.J.; Bogatyrev, S.R.; Langer, R.; Anderson, D.G.; Davies, M.C.; Alexander, M.R. 3-Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials 2010, 31, 8827–8838. [Google Scholar] [CrossRef] [PubMed]
- Hook, A.L.; Anderson, D.G.; Langer, R.; Williams, P.; Davies, M.C.; Alexander, M.R. High throughput methods applied in biomaterial development and discovery. Biomaterials 2010, 31, 187–198. [Google Scholar] [CrossRef]
- Epa, V.; Yang, J.; Mei, Y.; Hook, A.; Langer, R.; Anderson, D.; Davies, M.; Alexander, M.; Winkler, D. Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. J. Mater. Chem. 2012, 22, 20902–20906. [Google Scholar] [CrossRef]
- Khademhosseini, A.; Langer, R.A. A decade of progress in tissue engineering. Nat. Protoc. 2016, 11, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.; Huan, T.D.; Pilania, G.; Botu, V.; Ramprasad, R. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. Mater. Today 2018, 21, 785–796. [Google Scholar] [CrossRef]
- Rovinelli, A.; Sangid, M.D.; Proudhon, H.; Ludwig, W. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. npj Comput. Mater. 2018, 4, 35. [Google Scholar] [CrossRef]
- Li, F.; Han, J.; Cao, T.; Lam, W.; Fan, B.; Tang, W.; Chen, S.; Fok, K.; Li, L. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc. Natl. Acad. Sci. USA 2019, 116, 11259–11264. [Google Scholar] [CrossRef] [PubMed]
- Tourlomousis, F.; Jia, C.; Karydis, T.; Mershin, A.; Wang, H.; Kalyon, D.; Chang, R. Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates. Microsyst. Nanoeng. 2019, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, J.; Jiang, E.S.; Oya, Y.; Saeki, A.; Kikugawa, G. Structure–Property Correlation Study for Organic Photovoltaic Polymer Materials Using Data Science Approach. J. Phys. Chem. C 2020, 124, 12871–12882. [Google Scholar] [CrossRef]
- Rostam, H.M.; Fisher, L.E.; Hook, A.L.; Burroughs, L.; Luckett, J.C.; Figueredo, G.P.; Mbadugha, C.; Teo, A.C.; Latif, A.; Kämmerling, L.; et al. Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo. Matter 2020, 2, 1564–1581. [Google Scholar] [CrossRef]
- Yu, C.H.; Chen, W.; Chiang, Y.H.; Guo, K.; Moldes, Z.M.; Kaplan, D.L.; Buehler, M.J. End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins. ACS Biomater. Sci. Eng. 2022, 8, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-H.; Khare, E.; Narayan, O.P.; Parker, R.; Kaplan, D.L.; Buehler, M.J. ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. J. Mech. Behav. Biomed. Mater. 2022, 125, 104921. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.M.; Augustine, E.K.; Lanners, Q.; Rudin, C.; Brinson, L.C.; Becker, M.L. Applied machine learning as a driver for polymeric biomaterials design. Nat. Commun. 2023, 14, 4838. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yabansu, Y.C.; Agrawal, A.; Kalidindi, S.R.; Choudhary, A.N. Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integr. Mater. Manuf. Innov. 2015, 4, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yabansu, Y.C.; Al-Bahrani, R.; Liao, W.-k.; Choudhary, A.N.; Kalidindi, S.R.; Agrawal, A. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 2018, 151, 278–287. [Google Scholar] [CrossRef]
- Gu, G.X.; Chen, C.-T.; Richmond, D.J.; Buehler, M.J. Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment. Mater. Horiz. 2018, 5, 939–945. [Google Scholar] [CrossRef]
- Yu, C.-H.; Qin, Z.; Buehler, M.J. Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. Nano Futures 2019, 3, 035001. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Jui, C.-Y.; Lee, W.-J.; Yeh, A.-C. Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning. JOM-J. Miner. Met. Mater. Soc. 2019, 71, 3433–3442. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Yu, C.-H.; Buehler, M.J. Using Deep Learning to Predict Fracture Patterns in Crystalline Solids. Matter 2020, 3, 197–211. [Google Scholar] [CrossRef]
- Wu, C.-T.; Chang, H.-T.; Wu, C.-Y.; Chen, S.-W.; Huang, S.-Y.; Huang, M.; Pan, Y.-T.; Bradbury, P.; Chou, J.; Yen, H.-W. Machine learning recommends affordable new Ti alloy with bone-like modulus. Mater. Today 2020, 34, 41–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, C.; Wang, C.; Antonov, S.; Xue, D.; Bai, Y.; Su, Y. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 2020, 185, 528–539. [Google Scholar] [CrossRef]
- Ansah, I.B.; Leming, M.; Lee, S.H.; Yang, J.-Y.; Mun, C.; Noh, K.; An, T.; Kim, S.L.D.-H.; Kim, M.; Im, H.; et al. Label-free detection and discrimination of respiratory pathogens based on electrochemical synthesis of biomaterials-mediated plasmonic composites and machine learning analysis. Biosens. Bioelectron. 2023, 227, 115178. [Google Scholar] [CrossRef]
- Jiang, D.; Xie, L.; Wang, L. Current application status of multi-scale simulation and machine learning in research on high-entropy alloys. J. Mater. Res. Technol. 2023, 26, 1341–1374. [Google Scholar] [CrossRef]
- Sun, M.; Dong, Z.; Wu, L.; Yao, H.; Niu, W.; Xu, D.; Chen, P.; Gupt, H.S.; Zhang, Y.; Dong, Y.; et al. Fast extraction of three-dimensional nanofiber orientation from WAXD patterns using machine learning. IUCrJ 2023, 10, 297–308. [Google Scholar] [CrossRef]
- Javaid, S.; Gorji, H.T.; Soulami, K.B.; Kaabouch, N. Identification and ranking biomaterials for bone scaffolds using machine learning and PROMETHEE. Res. Biomed. Eng. 2023, 39, 129–138. [Google Scholar] [CrossRef]
- Wang, Z.; Dabaja, R.; Chen, L.; Banu, M. Machine learning unifies flexibility and efficiency of spinodal structure generation for stochastic biomaterial design. Sci. Rep. 2023, 13, 5414. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Glavatskikh, M.; Leguy, J.; Hunault, G.; Cauchy, T.; Da Mota, B. Dataset’s chemical diversity limits the generalizability of machine learning predictions. J. Cheminform. 2019, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xu, X.; Yang, B.; Cook, B.; Ramos, H.; Krishnan, N.M.A.; Smedskjaer, M.M.; Hoover, C.; Bauchy, M. Predicting the Young’s Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning. Sci. Rep. 2019, 9, 8739. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, S.; Singh, S.; Ravinder, R.; Bauchy, M.; Gosvami, N.N.; Kodamana, H.; Krishnan, N.M.A. Predicting Young’s modulus of oxide glasses with sparse datasets using machine learning. J. Non-Cryst. Solids 2019, 524, 119643. [Google Scholar] [CrossRef]
- Buehler, M.J. Diatom-inspired architected materials using language-based deep learning: Perception, transformation and manufacturing. In Perspectives on the Mechanics of Fracture & Biological Materials; LuLu Publishing: Morrisville, NC, USA, 2023. [Google Scholar]
- Kopeliovich, M.V.; Petrushan, M.V.; Matukhno, A.E.; Lysenko, L.V. Towards detection of cancer biomarkers in human exhaled air by transfer-learning-powered analysis of odor-evoked calcium activity in rat olfactory bulb. Heliyon 2024, 10, e20173. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, F.; Bölükdemir, M.H. The Effect of the Second Peak formed in Biomaterials used in a Slab Head Phantom on the Proton Bragg Peak. J. Polytechnıc 2020, 23, 129–136. [Google Scholar]
- Ekinci, F.; Acici, K.; Asuroglu, T.; Soylu, B.E. MC TRIM Algorithm in Mandibula Phantom in Helium Therapy. In Healthcare. MDPI, 2023; Volume 11, p. 2523.
- Fatih, E.; Erkan, B.; Serdar, G.M.; Özlem, D. Analysing the effect of a cranium thickness on a Bragg peak range in the proton therapy: A TRIM and GEANT4 based study. Научнo-технические ведoмoсти Санкт-Петербургскoгo гoсударственнoгo пoлитехническoгo университета. Физикo-математические науки 2022, 15, 64–78. [Google Scholar]
- Ekinci, F.; Asuroglu, T.; Acici, K. Monte Carlo Simulation of TRIM Algorithm in Ceramic Biomaterial in Proton Therapy. Materials 2023, 16, 4833. [Google Scholar] [CrossRef]
- Ekinci, F.; Bostanci, E.; Güzel, M.S.; Dagli, Ö. A Monte Carlo Study for Soft Tissue Equivalency of Potential Polymeric Biomaterials Used in Carbon Ion Radiation Therapy. Nucl. Technol. 2023, 209, 1229–1239. [Google Scholar] [CrossRef]
- Ekinci, F. Investigation of tissue equivalence of phantom biomaterials in 4He heavy ion therapy. In Radiation Effects and Defects in Solids; Taylor and Francis: Oxfordshire, UK, 2022. [Google Scholar]
- Demirel, G.; Orhan, A.I.; Irmak, O.; Aydın, F.; Büyüksungur, A.; Bilecenoğlu, B.; Orhan, K. Effects of preheating and sonic delivery techniques on the internal adaptation of bulk-fill resin composites. Oper. Dent. 2021, 46, 226–233. [Google Scholar] [CrossRef]
- Demirel, İ.; Yücel, H. Development of a flexible composite based on vulcanized silicon casting with bismuth oxide and characterization of its radiation shielding effectiveness in diagnostic X-ray energy range and medium gamma-ray energies. Nucl. Eng. Technol. 2024, 56, 2570–2575. [Google Scholar] [CrossRef]
- Yücel, H.; Safi, A. Investigation of the suitability of new developed epoxy based-phantom for child’s tissue equivalency in paediatric radiology. Nucl. Eng. Technol. 2021, 53, 4158–4165. [Google Scholar] [CrossRef]
- Buyuksungur, S.; Tanir, T.E.; Buyuksungur, A.; Bektas, E.I.; Kose, G.T.; Yucel, D.; Beyzadeoglu, T.; Cetinkaya, E.; Yenigun, C.; Tönük, E.; et al. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater. Sci. 2017, 5, 2144–2158. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, F.; Aşlar, E. Thyroid and contralateral breast surface dose variation in mammography: A phantom study on the role of breast tissue composition. Eur. Phys. J. Plus 2024, 139, 330. [Google Scholar] [CrossRef]
- Zhou, T.; Song, Z.; Sundmacher, K. Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design. Engineering 2019, 5, 1017–1026. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Gu, N. Application of Artificial Intelligence in the Exploration and Optimization of Biomedical Nanomaterials. Nano Biomed. Eng. 2023, 15, 342–353. [Google Scholar] [CrossRef]
- Gubskaya, A.V.; Kholodovych, V.; Knight, D.; Kohn, J.; Welsh, W.J. Prediction of fibrinogen adsorption for biodegradable polymers: Integration of molecular dynamics and surrogate modeling. Polymer 2007, 48, 5788–5801. [Google Scholar] [CrossRef] [PubMed]
- Miryala, B.; Zhen, Z.; Potta, T.; Breneman, C.M.; Rege, K. Parallel synthesis and quantitative structure–activity relationship (QSAR) modeling of aminoglycoside-derived lipopolymers for transgene expression. ACS Biomater. Sci. Eng. 2015, 1, 656–668. [Google Scholar] [CrossRef]
- Baudis, S.; Behl, M. High-throughput and combinatorial approaches for the development of multifunctional polymers. Macromol. Rapid Commun. 2022, 43, 2100400. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, E.; Espinosa, H.D. Recent advances and applications of machine learning in experimental solid mechanics: A review. Appl. Mech. Rev. 2023, 75, 061001. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, C.H.; Buehler, M.J. Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci. Adv. 2021, 7, eabd7416. [Google Scholar] [CrossRef] [PubMed]
- Lwakatare, L.E.; Raj, A.; Crnkovic, I.; Bosch, J.; Olsson, H.H. Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions. Inf. Softw. Technol. 2020, 127, 106368. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.; Ko, G.; Lee, J.; Lee, H.; Ha, D.; Ro, W.W. Deep learning with GPUs. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2021; Volume 122, pp. 167–215. [Google Scholar]
- de Kanter, A.F.J.; Jongsma, K.R.; Verhaar, M.C.; Bredenoord, A.L. The ethical implications of tissue engineering for regenerative purposes: A systematic review. Tissue Eng. Part B Rev. 2023, 29, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Hou, B.; Jiang, H.; Zhang, J. Machine learning and artificial neural network accelerated computational discoveries in materials science. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1450. [Google Scholar] [CrossRef]
- Xue, K.; Wang, F.; Suwardi, A.; Han, M.-Y.; Teo, P.; Wang, P.; Wang, S.; Ye, E.; Li, Z.; Loh, X.J. Biomaterials by design: Harnessing data for future development. Mater. Today Bio 2021, 12, 100165. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Rosenkranz, D.; Ansari, M.H.D.; Singh, R.; Kanase, A.; Singh, S.P.; Kanase, A.; Singh, S.P.; Johnston, B.D.; Tentschert, J.; et al. Artificial Intelligence and Machine Learning Empower Advanced Biomedical Material Design to Toxicity Prediction. Adv. Intell. Syst. 2020, 2, 2000084. [Google Scholar] [CrossRef]
- Basu, B.; Gowtham, N.H.; Xiao, Y.; Kalidindi, S.R.; Leong, K.W. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater. 2022, 143, 1–25. [Google Scholar] [CrossRef]
- Kasun, M.; Ryan, K.; Paik, J.; Lane-McKinley, K.; Dunn, L.B.; Roberts, L.W.; Kim, J.P. Academic machine learning researchers’ ethical perspectives on algorithm development for health care: A qualitative study. J. Am. Med. Inform. Assoc. 2024, 31, 563–573. [Google Scholar] [CrossRef]
- Rudin, C.; Chen, C.; Chen, Z.; Huang, H.; Semenova, L.; Zhong, C. Interpretable machine learning: Fundamental principles and 10 grand challenges. Stat. Surv. 2022, 16, 1–85. [Google Scholar]
Database | Search Strategy |
---|---|
Google Scholar | (“Artificial Intelligence (AI)” OR “Machine learning (ML)” OR “biomaterials” OR “Deep Learning (DL)” OR “Polymers” OR “Metals” OR “Composites” OR “Inorganic Materials”) AND PUBYEAR > 2002 AND PUBYEAR < 2025 |
Web of Science | (“Artificial Intelligence (AI)”)) AND ALL = (“Machine learning (ML)”)) AND ALL = (“Deep Learning (DL)” OR “biomaterials” OR “Polymers” OR “Metals” OR “Composites” OR “Inorganic Materials”) AND PUBYEAR > 2002 AND PUBYEAR < 2025 |
Scopus | (“Artificial Intelligence (AI)” AND “Machine learning (ML)” OR “biomaterials” OR “Polymers” OR “Metals” OR “Composites” OR “Inorganic Materials”) AND (“Deep Learning (DL)”) AND PUBYEAR > 2002 AND PUBYEAR < 2025) |
ScienceDirect | (“Artificial Intelligence (AI)” AND “Machine learning (ML)” OR “biomaterials” OR “Polymers” OR “Metals” OR “Composites” OR “Inorganic Materials”) AND (“Deep Learning (DL)”) AND PUBYEAR > 2003 AND PUBYEAR < 2025 |
ProQuest | (“Artificial Intelligence (AI)” AND “Machine learning (ML)” OR “biomaterials” OR “Polymers” OR “Metals” OR “Composites” OR “Inorganic Materials”) AND (“Deep Learning (DL)”) AND PUBYEAR > 2002 AND PUBYEAR < 2025 |
Engineering Village | (“Artificial Intelligence (AI)” AND “Machine learning (ML)” OR “biomaterials” OR “Polymers” OR “Metals” OR “Composites” OR “Inorganic Materials”) AND (“Deep Learning (DL)”) AND PUBYEAR > 2002 AND PUBYEAR < 2025 |
Categories | Applications |
---|---|
Predictive modeling | Corrosion resistance: Predicting corrosion behavior under different conditions. Mechanical properties: Forecasting tensile strength, hardness, and ductility. |
Material design and discovery | Alloy design: Discovering new alloys with desired properties. Additive manufacturing: Optimizing parameters for metal 3D printing processes. |
Process optimization | Heat treatment: Predicting outcomes to optimize time and temperature profiles. Casting and forging: Minimizing defects and optimizing process parameters. |
Failure analysis and prevention | Fatigue and fracture: Analyzing data to predict failure points. Crack propagation: Modeling initiation and growth of cracks. |
Surface engineering | Coating design: Designing advanced coatings to enhance properties like wear resistance. Surface treatment: Optimizing treatments such as anodizing, plating, and chemical vapor deposition. |
Subfields in biomaterials | Biomedical implants: Titanium alloys and stainless steel for orthopedic and dental implants. Bioactive metals: Magnesium alloys for biodegradable implants; Nitinol for flexible medical devices. Metallic scaffolds: Porous metals for tissue engineering applications. |
Categories | Applications |
---|---|
Predictive modeling | Mechanical properties: Predicting tensile strength, elasticity, and impact resistance of polymers. |
Material design and discovery | Polymer synthesis: Discovering new polymer structures with desired properties. Drug delivery systems: Designing polymer-based carriers for controlled drug release. |
Process optimization | Polymerization processes: Optimizing conditions for polymer synthesis such as temperature, pressure, and catalysts. Extrusion and molding: Improving process parameters to enhance the quality and performance of polymer products. |
Failure analysis and prevention | Degradation and aging: Predicting the lifespan and degradation behavior of polymers under various environmental conditions. Fatigue resistance: Modeling the resistance of polymers to cyclic loading and stress. |
Surface engineering | Surface modification: Designing surface treatments to improve properties like hydrophobicity, adhesion, and biocompatibility. Coating applications: Developing advanced polymer coatings for protection and functionalization. |
Subfields in biomaterials | Tissue engineering scaffolds: Creating biodegradable polymer scaffolds for cell growth and tissue regeneration. Biodegradable polymers: Designing environmentally friendly polymers for medical implants and drug delivery systems. Smart polymers: Developing stimuli-responsive polymers for applications in drug delivery, tissue engineering, and diagnostics. |
Categories | Applications |
---|---|
Material design and discovery | Optimization of fiber–matrix combinations: Discovering new fiber and matrix combinations to improve properties like strength and stiffness. Tailoring interfaces: Designing interfaces at the nano and microscale to enhance load transfer and durability. |
Structural health monitoring | Real-time monitoring: Using ML algorithms to monitor the structural integrity of composites in real time. Damage prediction: Predicting potential failure points and remaining useful life of composite structures. |
Manufacturing process optimization | Automated lay-up: Optimizing automated lay-up processes for consistent and high-quality composite production. Cure monitoring: Using AI to optimize cure cycles in autoclave and out-of-autoclave processes. |
Performance enhancement | Lightweighting: Designing lightweight composites for aerospace and automotive applications without compromising strength. Impact resistance: Developing composites with improved impact resistance for use in critical applications. |
Recycling and sustainability | Recyclability assessment: Assessing and improving the recyclability of composite materials. Sustainable composites: Designing eco-friendly composites with biodegradable or recyclable matrices and fibers. |
Biomedical applications | Composite implants: Designing composites for load-bearing implants with tailored mechanical properties. Biocompatible composites: Developing composites that are compatible with biological tissues for implants and prosthetics. |
Categories | Applications |
---|---|
Electronic properties | Band gap prediction: Using ML to predict band gaps of various inorganic compounds, aiding in the design of semiconductors. Electrical conductivity: Forecasting electrical conductivity for materials used in electronic devices and sensors. |
Thermal management | Thermal conductivity: Predicting thermal conductivity to optimize materials for heat dissipation in electronics and other high-temperature applications. Thermal expansion: Modeling thermal expansion coefficients to prevent material failure due to temperature changes. |
Material discovery | Crystal structure prediction: Identifying new stable crystal structures with desired electronic and mechanical properties. Doping optimization: Using AI to determine optimal doping levels and types to enhance material properties like conductivity and magnetism. |
Synthesis optimization | Chemical vapor deposition (CVD): Optimizing CVD processes for high-quality thin films and coatings. Sol–gel processes: Enhancing sol–gel synthesis parameters to produce materials with improved purity and properties. |
Mechanical enhancement | Hardness and strength: Developing materials with superior hardness and tensile strength for industrial applications. Fracture toughness: Improving fracture toughness to create more durable materials. |
Environmental applications | Catalytic converters: Designing materials for efficient catalytic converters and pollution control systems. Photocatalysis: Developing materials for photocatalytic applications like water splitting and CO2 reduction. |
Energy applications | Battery components: Enhancing materials used in batteries, such as anodes, cathodes, and electrolytes, for better performance and longevity. Photovoltaic materials: Optimizing materials for solar cell applications, including perovskites and other semiconductors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokcekuyu, Y.; Ekinci, F.; Guzel, M.S.; Acici, K.; Aydin, S.; Asuroglu, T. Artificial Intelligence in Biomaterials: A Comprehensive Review. Appl. Sci. 2024, 14, 6590. https://doi.org/10.3390/app14156590
Gokcekuyu Y, Ekinci F, Guzel MS, Acici K, Aydin S, Asuroglu T. Artificial Intelligence in Biomaterials: A Comprehensive Review. Applied Sciences. 2024; 14(15):6590. https://doi.org/10.3390/app14156590
Chicago/Turabian StyleGokcekuyu, Yasemin, Fatih Ekinci, Mehmet Serdar Guzel, Koray Acici, Sahin Aydin, and Tunc Asuroglu. 2024. "Artificial Intelligence in Biomaterials: A Comprehensive Review" Applied Sciences 14, no. 15: 6590. https://doi.org/10.3390/app14156590
APA StyleGokcekuyu, Y., Ekinci, F., Guzel, M. S., Acici, K., Aydin, S., & Asuroglu, T. (2024). Artificial Intelligence in Biomaterials: A Comprehensive Review. Applied Sciences, 14(15), 6590. https://doi.org/10.3390/app14156590