The Future of Microreactors: Technological Advantages, Economic Challenges, and Innovative Licensing Solutions with Blockchain
Abstract
1. Introduction
2. Overview of Microreactors
2.1. Microreactor Designs
2.2. Technological Features and Advantages
2.3. Expectations and Challenges
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aziz, S.; Ahmed, I.; Khan, K.; Khalid, M. Emerging trends and approaches for designing net-zero low-carbon integrated energy networks: A review of current practices. Arab. J. Sci. Eng. 2024, 49, 6163–6185. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Zhang, Q.; Alotaibi, B.S.; Abuhussain, M.A.; Alvarado, R. Toward sustainable development goals 7 and 13: A comprehensive policy framework to combat climate change. Environ. Impact Assess. Rev. 2024, 105, 107415. [Google Scholar] [CrossRef]
- Li, K.; Zhou, Y.; Huang, X.; Xiao, H.; Shan, Y. Low-carbon development pathways for resource-based cities in China under the carbon peaking and carbon neutrality goals. Environ. Sci. Pollut. Res. 2024, 31, 10213–10233. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Kessides, I.N. The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise. Energy Policy 2012, 48, 185–208. [Google Scholar] [CrossRef]
- Wang, S.; Zafar, M.W.; Vasbieva, D.G.; Yurtkuran, S. Economic growth, nuclear energy, renewable energy, and environmental quality: Investigating the environmental Kuznets curve and load capacity curve hypothesis. Gondwana Res. 2024, 129, 490–504. [Google Scholar] [CrossRef]
- Agyekum, E.B. Evaluating the linkages between hydrogen production and nuclear power plants–A systematic review of two decades of research. Int. J. Hydrogen Energy 2024, 65, 606–625. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, T.; Ma, Y. An Overview on Microgrid Technology. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 76–81. [Google Scholar]
- Kutscher, C.F.; Milford, J.B.; Kreith, F. Principles of Sustainable Energy Systems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2018; p. 655. [Google Scholar]
- Nuclear Power and the Environment-U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/energyexplained/nuclear/nuclear-power-and-the-environment.php (accessed on 27 February 2020).
- US Public Opinion Evenly Split on Nuclear: Nuclear Policies-World Nuclear News. Available online: https://world-nuclear-news.org/Articles/US-public-opinion-evenly-split-on-nuclear (accessed on 25 September 2020).
- Bragg-Sitton, S.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.; Collins, J. Integrated Nuclear-Renewable Energy Systems; Foundational Workshop Report; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2014; p. 1170315.
- Gabbar, H.A.; Zidan, A. Optimal scheduling of interconnected micro energy grids with multiple fuel options. Sustain. Energy Grids Netw. 2016, 7, 80–89. [Google Scholar] [CrossRef]
- Hu, P.; Cao, C.; Dai, S. Optimal dispatch of combined heat and power units based on particle swarm optimization with genetic algorithm. AIP Adv. 2020, 10, 045008. [Google Scholar] [CrossRef]
- Suman, S. Hybrid nuclear-renewable energy systems: A review. J. Clean. Prod. 2018, 181, 166–177. [Google Scholar] [CrossRef]
- Ruth, M.F.; Zinaman, O.R.; Antkowiak, M.; Boardman, R.D.; Cherry, R.S.; Bazilian, M.D. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs. Energy Convers. Manag. 2014, 78, 684–694. [Google Scholar] [CrossRef]
- Boldon, L.; Sabharwall, P.; Bragg-Sitton, S.; Abreu, N.; Liu, L. Nuclear renewable energy integration: An economic case study. Int. J. Energy Environ. Econ. 2015, 28, 85–95. [Google Scholar]
- Bragg-Sitton, S.M.; Boardman, R.; Rabiti, C.; Suk Kim, J.; McKellar, M.; Sabharwall, P.; Chen, J.; Cetiner, M.S.; Harrison, T.J.; Qualls, A.L. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2016; p. 1333006.
- Baker, T.E.; Epiney, A.S.; Rabiti, C.; Shittu, E. Optimal sizing of flexible nuclear hybrid energy system components considering wind volatility. Appl. Energy 2018, 212, 498–508. [Google Scholar] [CrossRef]
- Peakman, A.; Hodgson, Z.; Merk, B. Advanced micro-reactor concepts. Prog. Nucl. Energy 2018, 107, 61–70. [Google Scholar] [CrossRef]
- Kalinichenko, D.; Wodrich, L.; Lee, A.J.; Kozlowski, T.; Brooks, C.S. Analysis of nuclear microreactor efficacy with hydrogen production methods. Prog. Nucl. Energy 2024, 168, 104994. [Google Scholar] [CrossRef]
- L’Her, G.F.; Kemp, R.S.; Bazilian, M.D.; Deinert, M.R. Potential for small and micro modular reactors to electrify developing regions. Nat. Energy 2024, 9, 725–734. [Google Scholar] [CrossRef]
- Andrade Aparicio, S. Technical and Commercial Feasibility Assessment of Nuclear Microreactors as a Clean Energy Source for Data Centers and Mining Sites. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2023. [Google Scholar]
- Shropshire, D.E.; Black, G.; Araújo, K. Global Market Analysis of Microreactors; No. INL/EXT-21-63214-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021.
- Testoni, R.; Bersano, A.; Segantin, S. Review of nuclear microreactors: Status, potentialities and challenges. Prog. Nucl. Energy 2021, 138, 103822. [Google Scholar] [CrossRef]
- Black, G.; Shropshire, D.; Araújo, K.; van Heek, A. Prospects for nuclear microreactors: A review of the technology, economics, and regulatory considerations. Nucl. Technol. 2023, 209 (Suppl. S1), S1–S20. [Google Scholar] [CrossRef]
- Apolinar-Hernández, J.E.; Bertoli, S.L.; Riella, H.G.; Soares, C.; Padoin, N. An Overview of Low-Temperature Fischer–Tropsch Synthesis: Market Conditions, Raw Materials, Reactors, Scale-Up, Process Intensification, Mechanisms, and Outlook. Energy Fuels 2023, 38, 1–28. [Google Scholar] [CrossRef]
- Ingersoll, D.T. Deliberately small reactors and the second nuclear era. Prog. Nucl. Energy 2009, 51, 589–603. [Google Scholar] [CrossRef]
- Arostegui, D.A.; Holt, M. Advanced nuclear reactors: Technology overview and current issues. In Congressional Research Service Report for Congress; Library of Congress: Washington, DC, USA, 2019. [Google Scholar]
- Thomas, S.; Ramana, M.V. A hopeless pursuit? National efforts to promote small modular nuclear reactors and revive nuclear power. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, e429. [Google Scholar] [CrossRef]
- Petti, D.A.; Hill, R.; Gehin, J.; Gougar, H.D.; Strydom, G.; Heidet, F.; Kinsey, J.; Grandy, C.; Qualls, A.; Brown, N.; et al. Advanced Demonstration and Test Reactor Options Study; No. INL/EXT-16-37867; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2017.
- Roberto, M.J.; Meyerson, G.; Essex, J.; Noonan, J. Moment of Transition: Structural Crisis and the Case for a Democratic Socialist Party. Cult. Log. J. Marx. Theory Pract. 2010, 17. [Google Scholar] [CrossRef]
- Holladay, J.D.; Wang, Y.; Jones, E. Review of developments in portable hydrogen production using microreactor technology. Chem. Rev. 2004, 104, 4767–4790. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Boeltken, T.; Piermartini, P.; Selinsek, M.; Loewert, M.; Dallmann, F.; Kreuder, H.; Cholewa, M.; Wunsch, A.; Belimov, M.; et al. Micro and micro membrane reactors for advanced applications in chemical energy conversion. Curr. Opin. Chem. Eng. 2017, 17, 108–125. [Google Scholar] [CrossRef]
- Pennemann, H.; Watts, P.; Haswell, S.J.; Hessel, V.; Löwe, H. Benchmarking of microreactor applications. Org. Process Res. Dev. 2004, 8, 422–439. [Google Scholar] [CrossRef]
- Kolb, G. Microstructured reactors for distributed and renewable production of fuels and electrical energy. Chem. Eng. Process. Process Intensif. 2013, 65, 1–44. [Google Scholar] [CrossRef]
- El-Genk, M.S.; Schriener, T.M.; Palomino, L.M. Passive and Walk-Away Safe Small and Microreactors for Electricity Generation and Production of Process Heat for Industrial Uses. J. Nucl. Eng. Radiat. Sci. 2021, 7, 031302. [Google Scholar] [CrossRef]
- Abou-Jaoude, A.; Arafat, Y.; Foss, A.W.; Dixon, B.W. An Economics-by-Design Approach Applied to a Heat Pipe Microreactor Concept; No. INL/EXT-21-63067-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021.
- Wodrich, L.A. Modeling of Microreactors for Clean Dispatch of Electricity and Process Heat in a Campus Setting. Doctoral Dissertation, University of Illinois Urbana-Champaign, Champaign, IL, USA, 2022. [Google Scholar]
- Yan, B.H.; Wang, C.; Li, L.G. The technology of micro heat pipe cooled reactor: A review. Ann. Nucl. Energy 2020, 135, 106948. [Google Scholar] [CrossRef]
- Deng, J.; Guan, C.; Sun, Y.; Liu, X.; Zhang, T.; He, H.; Chai, X. Techno-economic analysis and dynamic performance evaluation of an integrated green concept based on concentrating solar power and a transportable heat pipe-cooled nuclear reactor. Energy 2024, 303, 132022. [Google Scholar] [CrossRef]
- Cukalovic, A.; Monbaliu, J.C.M.; Stevens, C.V. Microreactor technology as an efficient tool for multicomponent reactions. Synth. Heterocycles Multicomponent React. I 2010, 23, 161–198. [Google Scholar]
- Mehla, S.; Gudi, R.D.; Mandaliya, D.D.; Hisatomi, T.; Domen, K.; Bhargava, S.K. Additive Manufacturing as the Future of Green Chemical Engineering. In Additive Manufacturing for Chemical Sciences and Engineering; Springer Nature: Singapore, 2022; pp. 239–307. [Google Scholar]
- Soler, A.V. The future of nuclear energy and small modular reactors. In Living with Climate Change; Elsevier: Amsterdam, The Netherlands, 2024; pp. 465–512. [Google Scholar]
- Araújo, K.; Koerner, C.; Carcas, F.; Hampshire, J.; Peterson, K. Appendix A BSU An Assessment of Policies and Regional Diversification with Energy, Critical Minerals and Economic Development in Emerging Marketsf. In Microreactor Applications in U.S. Markets; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2023; Volume 29. [Google Scholar]
- Sabharwall, P.; Gibb, J.; Ritter, C.; Araújo, K.; Gupta, A.; Ferguson, I.; Rolston, B.; Fisher, R.; Gehin, J.; Ballout, Y. Cyber security for microreactors in advanced energy systems. Cyber Secur. Peer-Rev. J. 2021, 4, 345–367. [Google Scholar] [CrossRef]
- Stevens, K.; Oncken, J.; Boring, R.; Ulrich, T.; Culler, M.; Bryan, H.; Browning, J.; Gutowska, I. Opportunities, Challenges, and Research Needs for Remote Microreactor Operations. Nucl. Technol. 2024, 1–17. [Google Scholar] [CrossRef]
- Mills, P.L.; Quiram, D.J.; Ryley, J.F. Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chem. Eng. Sci. 2007, 62, 6992–7010. [Google Scholar] [CrossRef]
- Omar, H.; Graetz, G.; Ho, M. Decarbonizing with nuclear power, current builds, and future trends. In The 4Ds of Energy Transition: Decarbonization, Decentralization, Decreasing Use and Digitalization; Wiley: Hoboken, NJ, USA, 2022; pp. 103–151. [Google Scholar]
- Chaube, A.; Ahmed, Z.; Sieh, B.; Brooks, C.S.; Bindra, H. Nuclear microreactors and thermal integration with hydrogen generation processes. Nucl. Eng. Des. 2024, 419, 112968. [Google Scholar] [CrossRef]
- Shobeiri, E.; Genco, F.; Hoornweg, D.; Tokuhiro, A. Small modular reactor deployment and obstacles to Be overcome. Energies 2023, 16, 3468. [Google Scholar] [CrossRef]
- Finan, A.; Foss, A.; Goff, M.; King, C.; Lohse, C. Nuclear Energy: Supply Chain Deep Dive Assessment; USDOE Office of Policy (PO): Washington, DC, USA, 2022.
- Ghimire, L.; Waller, E. Small Modular Reactors: Opportunities and Challenges as Emerging Nuclear Technologies for Power Production. J. Nucl. Eng. Radiat. Sci. 2023, 9, 044501. [Google Scholar] [CrossRef]
- Li, N. New paradigm for civil nuclear energy. Perspectives from the hierarchy of energy sources and fundamental safety. Uspekhi Fiz. Nauk. 2022, 192, 1231–1274. [Google Scholar]
- Yancey Spencer, K.D.; Kitcher, E.D.; Welty, B.D.; Woolf, M.S.; Smith, A.J.; Harper, J.; King, J.A.; Smith, N.V. Special Considerations for the Removal and Disposal of Micro-Reactor Experiments; No. INL/CON-23-74343-Rev002; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2024.
- Bojang, A.A.; Wu, H.S. Design, fundamental principles of fabrication and applications of microreactors. Processes 2020, 8, 891. [Google Scholar] [CrossRef]
- Esfandiary, M.; Saedodin, S.; Karimi, N. On the effects of surface waviness upon catalytic steam reforming of methane in micro-structured reactors-a computational study. Int. J. Hydrogen Energy 2024, 52, 465–481. [Google Scholar] [CrossRef]
- Ramuhalli, P.; Cetiner, S.M. Concepts for Autonomous Operation of Microreactors; No. ORNL/TM-2019/1305; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2019.
- Suryawanshi, P.L.; Gumfekar, S.P.; Bhanvase, B.A.; Sonawane, S.H.; Pimplapure, M.S. A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 2018, 189, 431–448. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- McJunkin, T.R.; Reilly, J.T. Net-Zero Carbon Microgrids; No. INL/EXT-21-65125; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021.
- Arvanitidis, A.I.; Agarwal, V.; Alamaniotis, M. Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review. Energies 2023, 16, 4293. [Google Scholar] [CrossRef]
- Krūmiņš, J.; Kļaviņš, M. Investigating the potential of nuclear energy in achieving a carbon-free energy future. Energies 2023, 16, 3612. [Google Scholar] [CrossRef]
- Ho, M.; Obbard, E.; Burr, P.A.; Yeoh, G. A review on the development of nuclear power reactors. Energy Procedia 2019, 160, 459–466. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Constantin, A.; Bhattacharyya, R.; Ishaq, H.; Ricotti, M.E. Nuclear and renewables in multipurpose integrated energy systems: A critical review. Renew. Sustain. Energy Rev. 2024, 192, 114157. [Google Scholar] [CrossRef]
- Series, I.E.T.R.E. Microgrids and Active Distribution Networks; The Institution of Engineering and Technology: Stevenage, UK, 2009; p. 332. [Google Scholar]
- Baranwal, R. Office of Nuclear Energy: Strategic Vision; DOE, Office of Nuclear Energy: Washington, DC, USA, 2021. Available online: https://www.energy.gov/ne/downloads/office-nuclear-energy-strategic-vision (accessed on 15 January 2022).
- Lee, D.; Diaconeasa, M.A. Preliminary siting, operations, and transportation considerations for licensing fission batteries in the United States. Eng 2022, 3, 373–386. [Google Scholar] [CrossRef]
- Agarwal, V.; Gehin, J.C.; Ballout, Y.A. Fission Battery Initiative: Research and Development Plan; No. INL/EXT-21-61275-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021.
- Forsberg, C. Co-siting Fission Battery Refurbishment, Nuclear Hydrogen and Fuel-Cycle Facilities with Waste Disposal Sites. In Proceedings of the 2021 ANS Winter Meeting, Washington, DC, USA, 30 November–3 December 2021. [Google Scholar]
- Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J. 2017, 327, 792–821. [Google Scholar] [CrossRef]
- Owusu, D.; Holbrook, M.R.; Sabharwall, P. Regulatory and Licensing Strategy for Microreactor Technology; No. INL/EXT-18-51111-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2018.
- Engelbrecht, N.; Everson, R.C.; Bessarabov, D.; Kolb, G. Microchannel reactor heat-exchangers: A review of design strategies for the effective thermal coupling of gas phase reactions. Chem. Eng. Process.-Process Intensif. 2020, 157, 108164. [Google Scholar] [CrossRef]
- Hafeez, S.; Manos, G.; Al-Salem, S.M.; Aristodemou, E.; Constantinou, A. Liquid fuel synthesis in microreactors. React. Chem. Eng. 2018, 3, 414–432. [Google Scholar] [CrossRef]
- Zohuri, B.; Zohuri, B. Design and analysis of core design for small modular reactors. In Heat Pipe Applications in Fission Driven Nuclear Power Plants; Springer: Berlin/Heidelberg, Germany, 2019; pp. 87–116. [Google Scholar]
- Nascimento, J.A.D.; Guimaraes, L.N.; Ono, S. Fuel, structural material and coolant for an advanced fast micro-reactor. JBIS 2014, 67, 381–389. [Google Scholar]
- Shirvan, K.; Buongiorno, J.; MacDonald, R.; Dunkin, B.; Cetiner, S.; Saito, E.; Conboy, T.; Forsberg, C. UO2-fueled microreactors: Near-term solutions to emerging markets. Nucl. Eng. Des. 2023, 412, 112470. [Google Scholar] [CrossRef]
- Hessel, V.; Knobloch, C.; Lowe, H. Review on patents in microreactor and micro process engineering. Recent Pat. Chem. Eng. 2008, 1, 1–16. [Google Scholar] [CrossRef]
- Kornecki, K.; Wise, C.F. The role of advanced nuclear reactors and fuel cycles in a future energy system–CLEAN. PNAS Nexus 2024, 3, 030. [Google Scholar] [CrossRef] [PubMed]
- Trellue, H.R.; O’Brien, J.; Reid, R.S.; Guillen, D.; Sabharwall, P. Microreactor Agile Nonnuclear Experimental Testbed Test Plan; No. LA-UR-20-20824; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2020.
- Mays, G. Small modular reactors (SMRs): The case of the United States of America. In Handbook of Small Modular Nuclear Reactors; Woodhead Publishing: Sawston, UK, 2021; pp. 521–553. [Google Scholar]
- Poudel, B.; McJunkin, T.R.; Kang, N.; Reilly, J.T.; Guerrero, R.; Stadler, M. Small Reactors in Microgrids: Technology Modeling and Selection; No. INL/RPT-23-73046-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2023.
- Zohuri, B.; McDaniel, P. Advanced Smaller Modular Reactors; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bollini, P.; Diwan, M.; Gautam, P.; Hartman, R.L.; Hickman, D.A.; Johnson, M.; Kawase, M.; Neurock, M.; Patience, G.S.; Stottlemyer, A.; et al. Vision 2050: Reaction Engineering Roadmap. ACS Eng. Au 2023, 3, 364–390. [Google Scholar] [CrossRef]
- Cipiti, B.B.; Fitzwater, S.; Breshears, A.; Gariazzo, C.; Hoyt, N.; Cheng, L.; Cui, Y.; Smith, C.; Croce, M.; Dion, M.; et al. Advanced Reactor Safeguards: 2022 Program Roadmap; No. SAND2022-11143R; Sandia National Laboratory (SNL-NM): Albuquerque, NM, USA, 2022.
- Li, M.; Andersson, D.; Dehoff, R.; Jokisaari, A.; van Rooyen, I.; Cairns-Gallimore, D. Advanced Materials and Manufacturing Technologies (AMMT) 2022 Roadmap; No. ANL-23/12; Argonne National Laboratory (ANL): Argonne, IL, USA, 2022.
- Lohse, C.S.; Abou Jaoude, A.; Jenson, W.D.; Prado, I.F. Advanced Reactor Supply Chain Assessment (GAIN Report); No. INL/RPT-23-70928-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2023.
- McDowell, B.; Goodman, D. Advanced Nuclear Reactor Plant Parameter Envelope and Guidance; NRIC-21-ENG-0001; National Reactor Innovation Center (NRIC): Washington, DC, USA, 2021.
- Vinoya, C.L.; Ubando, A.T.; Culaba, A.B.; Chen, W.H. State-of-the-Art Review of Small Modular Reactors. Energies 2023, 16, 3224. [Google Scholar] [CrossRef]
- Holcomb, D.E.; Huning, A.J.; Belles, R.J.; Flanagan, G.; Poore, W.P. Integrating the Safety Evaluation for a Molten Salt Reactor Operation and Fuel Cycle Facility Application; No. ORNL/TM-2022/2671; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2022.
- Lalena, J.N.; Fox, R.V.; Snyder, S.W. Material for Harsh Environments: 2020 Virtual Workshop Summary Report; No. INL/EXT-21-62085; Idaho National Laboratory (INL): Idaho Falls, ID, USA; Advanced Manufacturing Office, US Department of Energy (USDOE): Washington, DC, USA, 2020.
- Murakami, T.; Anbumozhi, V. Global Situation of Small Modular Reactor Development and Deployment; Economic Research Institute for ASEAN and East Asia (ERIA): Senayan, Indonesia, 2021. [Google Scholar]
- Vaya Soler, A.; Berthelemy, M.; Verma, A.; Bilbao y Leon, S.; Kwong, G.; Sozoniuk, V.; White, A.; Rouyer, V.; Sexton Nick, K.; Vasquez-Maignan, X. Small Modular Reactors: Challenges and Opportunities; NEA: Washington, DC, USA, 2021. [Google Scholar]
- Westinghouse Nuclear Energy Systems eVinciTM Micro-Reactor. Available online: https://westinghousenuclear.com/energy-systems/evinci-microreactor/ (accessed on 3 August 2022).
- Westinghouse Global Technology Office. Westinghouse eVinci Micro Reactor Factsheet. Westinghouse Electric Company, October 2017. Available online: https://westinghousenuclear.com/flysheet-directory/evinci-microreactor-the-next-generation-nuclear-research-reactor/ (accessed on 15 January 2023).
- Arafat, Y. Westinghouse eVinciTM Micro-Reactor Program. WIdaho National Laboratory, June 2019. Available online: https://inl.gov/trending-topics/microreactors/ (accessed on 15 January 2023).
- Demkowicz, P.A.; Liu, B.; Hunn, J.D. Coated particle fuel: Historical perspectives and current progress. J. Nucl. Mater. 2018, 515, 434–450. [Google Scholar] [CrossRef]
- Maioli, A.; Detar, H. Westinghouse eVinci Micro-Reactor Licensing Modernization Project Demonstration; Southern Company: Atlanta, GA, USA, 2019. [Google Scholar]
- Backgrounder on Biological Effects of Radiation. NRC Web. Available online: https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/bio-effects-radiation.html (accessed on 17 June 2023).
- Price, D.; Roskoff, N.; Radaideh, M.I.; Kochunas, B. Thermal Modeling of an eVinci™-like heat pipe microreactor using OpenFOAM. Nucl. Eng. Des. 2023, 415, 112709. [Google Scholar] [CrossRef]
- Laturkar, K.; Laturkar, K. Advances in Very Small Modular Nuclear Reactors; CEP: Enterprise, AL, USA, 2022. [Google Scholar]
- Wang, J.; Apresa, J.A.; Weathered, M.; Perez, A.; Corradini, M. Transient safety evaluation of the heat pipe microreactor–Potential energy source for hydrogen production. Int. J. Hydrogen Energy 2021, 46, 38887–38902. [Google Scholar] [CrossRef]
- Weinmann-Smith, R.K.; Sagadevan, A.A.; Morris, C.; Guardincerri, E.; Carpenter, M.H.; Gehring, A.E.; Trellue, H.R.; Mehta, V.K.; Browne, M.C. Material Control and Accounting Regulatory and Technical Considerations for Microreactors; LA-UR-20-30489; Los Alamos National Laboratory: Los Alamos, NM, USA, 2020.
- Shropshire, D.E.; Kurt, E.G.; Huning, A. Cost Efficient-by-Design Microreactors, Trade-Offs between Cost-, Technical-and Regulatory-Factors; No. INL/RPT-23-71387-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2022.
- Zhou, Y.; Wang, J.; Guo, Z.; He, Y.; Zhang, Y.; Qiu, S.; Su, G.H.; Corradini, M.L. 3D-2D coupling multi-dimension simulation for the heat pipe micro-reactor by MOOSE&SAM. Prog. Nucl. Energy 2021, 138, 103790. [Google Scholar]
- Patterson, E.A.; Taylor, R.J. The commoditization of civil nuclear power. R. Soc. Open Sci. 2024, 11, 240021. [Google Scholar] [CrossRef]
- Wang, E.; Ren, T.; Li, L. Review of reactor conceptual design and thermal hydraulic characteristics for heat pipe in nuclear systems. Front. Energy Res. 2023, 11, 1264168. [Google Scholar] [CrossRef]
- Walker, E.; Skutnik, S.; Wieselquist, W.; Shaw, A.; Bostelmann, F. SCALE Modeling of the Fast Spectrum Heat Pipe Reactor; No. ORNL/TM-2021/2021; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2022.
- O’Neill, M.J. Forging a clear path for advanced reactor licensing in the United States: Approaches to streamlining the NRC environmental review process. Nucl. L. Bull. 2020, 105, 31. [Google Scholar]
- Weathered, M.; Kultgen, D.; Kent, E.; Grandy, C.; Sumner, T.; Moisseytsev, A.; Kim, T. Thermal Hydraulic Experimental Test Article (FY2020 Status Report); No. ANL-ART-211; ANL-METL-25; Argonne National Laboratory (ANL): Argonne, IL, USA, 2020.
- Stauff, N.; Lee, C.H.; Filippone, C. Core Design of the Holos-Quad Microreactor; No. ANL/NSE-22/4; Argonne National Laboratory (ANL): Argonne, IL, USA, 2022.
- Moisseytsev, A.; Filippone, C. Load Following Analysis of the Holos-Quad 10MWe Micro-Reactor with Plant Dynamics Code; No. ANL/NSE-21/32; Argonne National Laboratory (ANL): Argonne, IL, USA, 2022.
- Price, D.; Radaideh, M.I.; Kochunas, B. Multiobjective optimization of nuclear microreactor reactivity control system operation with swarm and evolutionary algorithms. Nucl. Eng. Des. 2022, 393, 111776. [Google Scholar] [CrossRef]
- Larsen, A.; Lee, R.; Wilson, C.; Hedengren, J.; Benson, J.; Memmott, M. Multi-objective optimization of molten salt microreactor shielding perturbations employing machine learning. Nucl. Eng. Des. 2024, 426, 113372. [Google Scholar] [CrossRef]
- Moisseytsev, A.; Hollrah, B.P.; Filippone, C. Analysis of HolosGen Sub-Scale Simulator with Plant Dynamics Code; No. ANL/NSE-22/27; Argonne National Laboratory (ANL): Argonne, IL, USA, 2022.
- Duchnowski, E.M.; Kile, R.F.; Bott, K.; Snead, L.L.; Trelewicz, J.R.; Brown, N.R. Pre-conceptual high temperature gas-cooled microreactor design utilizing two-phase composite moderators. Part I: Microreactor design and reactor performance. Prog. Nucl. Energy 2022, 149, 104257. [Google Scholar] [CrossRef]
- Stauff, N.E.; Abdelhameed, A.; Cao, Y.; Kristina, N.; Miao, Y.; Mo, K.; Nunez, D. Multiphysics Analysis of Load Following and Safety Transients for Microreactors; No. ANL/NEAMS-22/1; Argonne National Laboratory (ANL): Argonne, IL, USA; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2022.
- Acir, A. Utilization of the Thorium of the Holos-Quad Micro-Reactor Concept. SSRN 2023. [Google Scholar] [CrossRef]
- He, D.; Li, Y.; Zhang, T.; Liu, X. The development of the combined fission matrix method in small advanced reactor design and optimization. Ann. Nucl. Energy 2023, 180, 109488. [Google Scholar] [CrossRef]
- Hoffman, E.; Abou-Jaoude, A.; Foss, A. Improvement of ACCERT Algorithm-FY20; No. ANL/NSE-20/28; Argonne National Laboratory (ANL): Argonne, IL, USA, 2020.
- Vitali, J.A.; Lamothe, J.G.; Toomey, C.J.; Peoples, V.O.; Mccabe, K.A. Mobile Nuclear Power Plants for Ground Operations; HQDA G-4 Future Operations and Strategy: Washington, DC, USA, 2018. [Google Scholar]
- Holos-Quad Microreactor. Available online: https://www.holosgen.com/technology/ (accessed on 17 June 2024).
- Matteo, E.; Price, L.; Pulido, R.; Weck, P.; Taconi, A.; Mariner, P.; Hadgu, T.; Park, H.; Greathouse, J.; Sassani, D.; et al. Advanced Reactors Spent Fuel and Waste Streams Disposition Strategies; No. SAND2023-08602R; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2023.
- Mulder, E.J. X-Energy’s Xe-100 Reactor Design Status. Presentation to National Academy of Sciences; 26 May 2021. Available online: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=X-Energy%E2%80%99s+Xe-100+Reactor+Design+Status&btnG= (accessed on 17 June 2024).
- Demkowicz, P.A. AGR Program Path Forward; No. INL/MIS-21-63335-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021.
- Demkowicz, P.A. DOE Advanced Gas Reactor Fuel Development and Qualification Program; No. INL/MIS-23-75732-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2023.
- Atz, M.I.; Joseph, R.A.; Hoffman, E.A. A Framework to Assess Advanced Reactor Spent Fuel Management Facility Deployment. Nucl. Technol. 2024, 1–21. [Google Scholar] [CrossRef]
- Xe-Mobile (Xe-100). Available online: https://x-energy.com/reactors/xe-100/ (accessed on 17 June 2024).
- Pino-Medina, S.; François, J.L. Neutronic analysis of the NuScale core using accident tolerant fuels with different coating materials. Nucl. Eng. Des. 2021, 377, 111169. [Google Scholar] [CrossRef]
- Niemi, M. Simulation and Safety Features of Nuscale Small Modular Reactor. Master’s Thesis, Aalto University, Espoo, Finland, 2017. [Google Scholar]
- Rahnama, Z.; Ansarifar, G.R. Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms. Ann. Nucl. Energy 2021, 161, 108375. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Rao, Y.; Bromley, B.P. Development and Testing of a System Thermal-Hydraulics Model for a 50-MWel-Class Pressurized Water Reactor–Small Modular Reactor. J. Nucl. Eng. Radiat. Sci. 2024, 10. [Google Scholar] [CrossRef]
- Noll, B.; Iten, T.; Lüscher, F. A Synthesized Analysis of the State of the “Advanced” US Nuclear Industry. 2021. Available online: https://energie-stiftung.ch/files/energiestiftung/pdf/aktuell/20210921_ST_Non-traditional%20nuclear%20reactor%20design%20concepts.pdf (accessed on 17 June 2024).
- Merzari, E.; Hamilton, S.; Evans, T.; Min, M.; Fischer, P.; Kerkemeier, S.; Fang, J.; Romano, P.; Lan, Y.H.; Phillips, M.; et al. Exascale multiphysics nuclear reactor simulations for advanced designs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 1–11. [Google Scholar]
- Ray, S. Steam Turbine Development for Small Modular Reactors. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2023; Volume 87042, p. V010T20A017. [Google Scholar]
- Mikkelson, D.M. Integrated Energy Systems with Thermal Energy Storage: Technology Selection, Preliminary Design, and Analysis. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2021. [Google Scholar]
- de Stefani, G.L.; Gonçalves, D.M.E.; Raitz, C.; da Silva, M.V. Feasibility to Convert the NuScale SMR from UO2 to a Mixed (U, Th) O2 Core: A parametric study of fuel element—Seed-blanket concept. World J. Nucl. Sci. Technol. 2023, 13, 11–28. [Google Scholar] [CrossRef]
- Stevens, K.R. Steady-State Computational Fluid Dynamics Analysis of a Quarter-Core Liquid Metal-hydride Cooled Microreactor. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2021. [Google Scholar]
- Hamilton, S.P.; Min, M.; Kerkemeier, S.; Biondo, E.; Royston, K.; Evans, T.; Merzari, E.; Romano, P.; Fischer, P.; Phillips, M.; et al. Exascale Multiphysics Nuclear Reactor Simulations for Advanced Designs; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2023.
- Campos-Muñoz, A.; Sanchez-Espinoza, V.; Redondo-Valero, E.; Queral, C. Validation of Neutronic and Thermal-Hydraulic Multi-physics calculations for SMRs rod ejection accident with PARCS/TWOPORFLOW. In Proceedings of the International Conference in Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Niagara Falls, ON, Canada, 13–17 August 2023. [Google Scholar]
- Bridger, K. Modular In-Chamber Electron Beam Welding–Process Planning: Welding, Cladding, Inspection, and Manufacturing; No. ANT LR 2020-01; Electric Power Research Institute: Washington, DC, USA, 2020.
- Tsai, K.; Reichenberger, M.A.; Izarra, G.D.; Barbot, L. Performance Benchmark of Commercial and Developmental Fission Chambers in Elevated Temperatures; No. INL/RPT-23-75886-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2024.
- Kim, J.Y.; Park, Y.Y.; Bang, I.C. Investigation of the Heat Removal Capability of the Hybrid Control Rod in Natural Circulation-type SMR under Station Black Out Accident with MARS-KS code. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Republic of Korea, 19–20 May 2022. [Google Scholar]
- Smith, C.F.; Cinotti, L. lead-cooled fast reactors (LFRs). In Handbook of Generation IV Nuclear Reactors; Woodhead Publishing: Sawston, UK, 2023; pp. 195–230. [Google Scholar]
- Khan, S.U.D.; Khan, R. Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia. Nucl. Eng. Technol. 2023, 55, 1244–1249. [Google Scholar] [CrossRef]
- Michaelson, D.; Jiang, J. Review of integration of small modular reactors in renewable energy microgrids. Renew. Sustain. Energy Rev. 2021, 152, 111638. [Google Scholar] [CrossRef]
- Yetisir, M. Small modular reactors (SMRs): The case of Canada. In Handbook of Small Modular Nuclear Reactors; Woodhead Publishing: Sawston, UK, 2021; pp. 375–393. [Google Scholar]
- Mijolović, D. Risk Implications of Small Modular Nuclear Reactor Implementations: The Case of the Nordics. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2023. [Google Scholar]
- Nelson, S.W.; Greenwood, M.S. Survey of Advanced Generation IV Reactor Parameters for Integrated Energy System Modeling Capabilities; No. ORNL/SPR-2021/1947.R1; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2021.
- Wallenius, J.; Qvist, S.; Mickus, I.; Bortot, S.; Szakalos, P.; Ejenstam, J. Design of SEALER, a very small lead-cooled reactor for commercial power production in off-grid applications. Nucl. Eng. Des. 2018, 338, 23–33. [Google Scholar] [CrossRef]
- Ding, M.; Kloosterman, J.L.; Kooijman, T.; Linssen, R.; Abram, T.; Marsden, B.; Wickham, T. Design of a U-Battery; Delft Technical University: Delft, The Netherlands, 2011. [Google Scholar]
- Grodzki, M.; Darnowski, P.; Niewiński, G. Monte Carlo analysis of the battery-type high temperature gas cooled reactor. Arch. Thermodyn. 2017, 4, 209–227. [Google Scholar] [CrossRef]
- Atkinson, S.; Aoki, T. The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor. Nucl. Eng. Technol. 2024, 56, 785–792. [Google Scholar] [CrossRef]
- Rabir, M.H.; Ismail, A.F.; Yahya, M.S. Review of the microheterogeneous thoria-urania fuel for micro-sized high temperature reactors. Int. J. Energy Res. 2021, 45, 11440–11458. [Google Scholar] [CrossRef]
- Böse, F.; Wimmers, A.; Steigerwald, B.; von Hirschhausen, C. Questioning nuclear scale-up propositions: Availability and economic prospects of light water, small modular and advanced reactor technologies. Energy Res. Soc. Sci. 2024, 110, 103448. [Google Scholar] [CrossRef]
- Turner, J. The Performance of a Nuclear Fuel-Matrix Material in a Sealed CO2 System. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2013. [Google Scholar]
- Atkinson, S.; Litskevich, D.; Merk, B. Small modular high temperature reactor optimisation part 2: Reactivity control for prismatic core high temperature small modular reactor, including fixed burnable poisons, spectrum hardening and control rods. Prog. Nucl. Energy 2019, 111, 233–242. [Google Scholar] [CrossRef]
- Zohuri, B. Nuclear Industry Trend toward Small and Micro Nuclear Power Plants. In Nuclear Micro Reactors; Springer: Berlin/Heidelberg, Germany, 2020; pp. 41–97. [Google Scholar]
- Radiant Nuclear. Available online: https://www.radiantnuclear.com/ (accessed on 25 June 2024).
- Kaleidos Microreactor. Available online: https://www.nrc.gov/reactors/new-reactors/advanced/who-were-working-with/licensing-activities/pre-application-activities/kaleidos.html (accessed on 25 June 2024).
- Morones-García, E.; François, J.L. Nuclear microreactors: Status review and potential applications; the Mexican case. Nucl. Eng. Des. 2024, 420, 113021. [Google Scholar] [CrossRef]
- Guan, C.; Chai, X.; Zhang, T.; Liu, X.; He, H. The investigation of thermo-economic performance for dry-cooled closed Brayton cycle coupled to nuclear microreactors using different coolants. J. Clean. Prod. 2024, 455, 142314. [Google Scholar] [CrossRef]
- Dupre, J.B. Sustainable Energy for Scientific Antarctic Stations: Development of a Concept Power Plant Using a Small Modular Reactor Coupled with a Supercritical CO2 Brayton Cycle. Doctoral Dissertation, Pontificia Universidad Catolica de Chile, Santiago, Chile, 2020. [Google Scholar]
- Rabir, M.H.; Ismail, A.F.; Yahya, M.S. The neutronics effect of TRISO duplex fuel packing fractions and their comparison with homogeneous thorium-uranium fuel. Int. J. Energy Res. 2022, 46, 19072–19089. [Google Scholar] [CrossRef]
- Morales Pedraza, J.; Morales Pedraza, J. The Current Situation and Perspective of the Small Modular Reactors Market in the European Region. In Small Modular Reactors for Electricity Generation: An Economic and Technologically Sound Alternative; Springer: Berlin/Heidelberg, Germany, 2017; pp. 155–196. [Google Scholar]
- Hawari, A.I.; Venneri, F. Development and Deployment Assessment of a Melt-Down Proof Modular Micro Reactor (MDP-MMR); No. 14-6782; North Carolina State University: Raleigh, NC, USA, 2018.
- Peguero, L.; Zou, Y.; Batra, C.; Bouchet, S.; Subki, M.H.; Monti, S. Advances in high temperature gas-cooled reactor technology developments and related IAEA activities to support near-term deployment. AIP Conf. Proc. 2022, 2501, 040014. [Google Scholar]
- Jo, C.K.; Chang, J.; Venneri, F.; Hawari, A. Preliminary core analysis of a micro modular reactor. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Republic of Korea, 29–30 May 2014; pp. 29–30. [Google Scholar]
- Hesketh, K.W.; Barron, N.J. Small modular reactors (SMRs): The case of the United Kingdom. In Handbook of Small Modular Nuclear Reactors; Woodhead Publishing: Sawston, UK, 2021; pp. 503–520. [Google Scholar]
- Matthews, S.Y.Y.; Kuntjoro, Y.D.; Yusgiantoro, P. The Usage of Micro Modular Nuclear Reactors on Military Headquarters as a Prospective Solution to Achieve Energy Security and Improve National Defense. East Asian J. Multidiscip. Res. 2023, 2, 627–642. [Google Scholar] [CrossRef]
- Kelk, R.; Murad, A.; de Oliveira, R.; Jeltsov, M. Emergency Planning Zones for Small Modular Reactors; National Institute of Chemical Physics and Biophysics Nuclear Science and Engineering: Tallinn, Estonia, 2020. [Google Scholar]
- Suh, R.; Martinson, S.; Boldon, L.; Breshears, A.; Therios, I. Safeguards Considerations for Coated Particle Fuel Fabrication Facilities; No. ANL/SSS-21/8; Argonne National Laboratory (ANL): Argonne, IL, USA, 2022.
- Melichar, T.; Lukášová, P.; Šilhan, M. A proposal for advanced supplementary technologies and a hybrid system with gas-cooled fast reactor concept ALLEGRO. Nucl. Eng. Des. 2023, 415, 112645. [Google Scholar] [CrossRef]
- Constantin, A. Nuclear hydrogen projects to support clean energy transition: Updates on international initiatives and IAEA activities. Int. J. Hydrogen Energy 2024, 54, 768–779. [Google Scholar] [CrossRef]
- Choi, Y.; Park, K.S.; Park, N.C.; Park, Y.P.; Jeong, K.H. Seismic analysis model construction of the integrated reactor internals. Procedia Eng. 2014, 79, 362–368. [Google Scholar] [CrossRef]
- Tomberlin, T.A. Beryllium–A Unique Material in Nuclear Applications; Idaho National Engineering and Environmental Laboratory: Idaho Falls, ID, USA, 2004. [Google Scholar]
- Hernández, F.A.; Pereslavtsev, P. First principles review of options for tritium breeder and neutron multiplier materials for breeding blankets in fusion reactors. Fusion Eng. Des. 2018, 137, 243–256. [Google Scholar] [CrossRef]
- Zuckerman, D.S.; Waganer, L.M.; Dudziak, D.J.; Bathke, C.G. Impact of blanket and shield materials on cost of an EBT fusion power plant. J. Nucl. Mater. 1981, 103, 603–607. [Google Scholar] [CrossRef]
- Lohse, C.S.; Abou Jaoude, A.; Larsen, L.M.; Guaita, N.; Trivedi, I.; Joseck, F.C.; Hoffman, E.; Stauff, N.; Shirvan, K.; Stein, A. Meta-Analysis of Advanced Nuclear Reactor Cost Estimations; No. INL/RPT-24-77048-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2024.
- Wainwright, H.M.; Christiaen, C.; Atz, M.; Tchakerian, J.S.; Yu, J.; Ridley, G.K.; Shirvan, K. Cross-disciplinary Reactor-to-Repository Framework for Evaluating Spent Nuclear Fuel from Advanced Reactors. arXiv 2024, arXiv:2405.12805. [Google Scholar]
- Fakhry, F.; Buongiorno, J.; Rhyne, S.; Cross, B.; Roege, P.; Landrey, B. A central facility concept for nuclear microreactor maintenance and fuel cycle management. Nucl. Eng. Technol. 2024, 56, 855–865. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Huo, E.; Yu, Y.; Huang, R.; Wang, S. Parameters analysis and techno-economic comparison of various ORCs and sCO2 cycles as the power cycle of Lead–Bismuth molten nuclear micro-reactor. Energy 2024, 295, 131103. [Google Scholar] [CrossRef]
- Huning, A.; Arndt, S.; Christensen, J.A. An Introduction to Microreactor Licensing Basis Events; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2023.
- Larsen, A.; Clayton, B.; Gunnell, L.; Bryner, A.; Brown, L.; Rollins, N.; Memmott, M. Thermal design and analysis of a passive modular molten salt microreactor concept. Nucl. Eng. Des. 2023, 402, 112107. [Google Scholar] [CrossRef]
- Zuraiqi, K.; Zavabeti, A.; Allioux, F.M.; Tang, J.; Nguyen, C.K.; Tafazolymotie, P.; Mayyas, M.; Ramarao, A.V.; Spencer, M.; Shah, K.; et al. Liquid metals in catalysis for energy applications. Joule 2020, 4, 2290–2321. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, J.; Chen, S.; Cui, Y.; Chen, J.; Cai, X. Conceptual Design of a Novel Megawatt Molten Salt Reactor Cooled by He-Xe Gas. Int. J. Energy Res. 2023, 2023, 8825501. [Google Scholar] [CrossRef]
- Hussein, E.M. Emerging small modular nuclear power reactors: A critical review. Phys. Open 2020, 5, 100038. [Google Scholar] [CrossRef]
- Ancheyta, J.; Avci, A.K.; Buwa, V.V.; Cabral, J.M.; Chatterjee, S.; Davis, B.H.; Fernandes, P.; Fushimi, R.R.; Gleaves, J.T.; Grace, J.R.; et al. Anton Alvarez-Majmutov. Multiphase Catalytic Reactors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wang, B.; Xu, S.; Wang, B.; Wang, W.; Liu, Y.; Li, T.; Hu, S.; Zhang, J.; Wang, M. Review of recent research on heat pipe cooled reactor. Nucl. Eng. Des. 2023, 415, 112679. [Google Scholar]
- Tu, S. Emerging challenges to structural integrity technology for high-temperature applications. Front. Mech. Eng. China 2007, 2, 375–387. [Google Scholar] [CrossRef]
- Carlson, L.; Miller, J.; Wu, Z. Implications of HALEU fuel on the design of SMRs and micro-reactors. Nucl. Eng. Des. 2022, 389, 111648. [Google Scholar] [CrossRef]
- Bostelmann, R.; Davidson, E.; Wieselquist, W.; Luxat, D.L.; Wagner, K.; Albright, L. Non-LWR Fuel Cycle Scenarios for SCALE and MELCOR Modeling Capability Demonstration; No. ORNL/TM-2023/2954; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2023.
- Joo, S. Preconceptual Design of Irradiated Fuel Salt Management System; No. INL/RPT-22-66120-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2022.
- Rao, D.V.; Trellue, H.; Arafat, M.Y. Microreactors: A Technology Option for Accelerated Innovation. In Presentation at Gen IV International Forum; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Hu, G.; Hu, R.; Kelly, J.M.; Ortensi, J. Multi-Physics Simulations of Heat Pipe Micro Reactor; No. ANL-NSE-19/25; Argonne National Laboratory (ANL): Argonne, IL, USA, 2019.
- Zasadni, K. Integration of biorefineries with small modular reactors (SMR) and micro-reactors: Techno-economical analysis. Master’s Thesis, Lappeenranta-Lahti University of Technology LUT, Lappeenranta, Finland, 2024. [Google Scholar]
- Stevanka, K.; Chvala, O. Deployment of small modular reactors in the European Union. Nucl. Sci. Technol. Open Res. 2024, 2, 24. [Google Scholar] [CrossRef]
- Kennedy, J.C.; Sabharwall, P.; Bragg-Sitton, S.M.; Frick, K.L.; McClure, P.; Rao, D.V. Special Purpose Application Reactors: Systems Integration Decision Support; No. INL/EXT-18-51369-Rev001; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2018.
- Geng, X.; Wang, J. Simplified Reactor Model for Microreactor Coupled with Helium Closed Brayton Cycle. Nucl. Technol. 2024, 210, 941–957. [Google Scholar] [CrossRef]
- Huning, A. Assessment of Microreactor Safety Analysis Challenges and Recommendations for Utilization of the Comprehensive Reactor Analysis Bundle; No. ORNL/TM-2023/3147; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2023.
- Kitcher, E.D. Microreactor Spent Nuclear Fuel Transportation, Management, and Disposition Options; Idaho National Laboratory: Idaho Falls, ID, USA, 2020.
- Gateau, E.; Todreas, N.; Buongiorno, J. Consequence-based security for microreactors. Nucl. Eng. Technology. 2024, 56, 1108–1115. [Google Scholar] [CrossRef]
- Christensen, J.A.; Moe, W.; Poore, W.; Belles, R. Regulatory Research Planning for Micro-Reactor Development; No. INL/EXT-21-61847-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021.
- Nagy, K.; Lathouwers, D.; T’Joen, C.G.A.; Kloosterman, J.L.; Van Der Hagen, T.H.J.J. Steady-state and dynamic behavior of a moderated molten salt reactor. Ann. Nucl. Energy 2014, 64, 365–379. [Google Scholar] [CrossRef]
- Maheras, S.J.; Adkins, H.E. Concept of Operations for Microreactor Transportation; No. PNNL-30166 Revision 1; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2020.
- Huning, A.; Shropshire, D.E.; Kurt, E. ORNL Progress Report on Microreactor Functional Containment Economics; No. ORNL/LTR-2022/2576; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2022.
- Moe, W.L. Key Regulatory Issues in Nuclear Micro-Reactor Transport and Siting; No. INL/EXT-19-55257-Rev.000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2019.
- Antonello, F.; Buongiorno, J.; Zio, E. Insights in the safety analysis of an early microreactor design. Nucl. Eng. Des. 2023, 404, 112203. [Google Scholar] [CrossRef]
- Koreshi, Z.U. Design and Non-Proliferation Viability of Small Modular Reactors. In International Conference on Nuclear Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 51432, p. V001T13A013. [Google Scholar]
- Kok, K.D.; Harvego, E.A. Nuclear Power Technologies through Year 2035. In Energy Conversion; CRC Press: Boca Raton, FL, USA, 2017; pp. 455–490. [Google Scholar]
- Zohuri, B.; McDaniel, P.; Zohuri, B.; McDaniel, P. Energy Resources and the Role of Nuclear Energy. In Advanced Smaller Modular Reactors: An Innovative Approach to Nuclear Power; Springer: Berlin/Heidelberg, Germany, 2019; pp. 23–67. [Google Scholar]
- DeHart, M.D.; Bess, J.D.; Ilas, G. A Review of Candidates for a Validation Data Set for High-Assay Low-Enrichment Uranium Fuels. J. Nucl. Eng. 2023, 4, 602–624. [Google Scholar] [CrossRef]
- Kim, T.K.; Stauff, N.; Abdelhameed, A.; Hoffman, E.; Cuadra, A.; Lu, C.; Davidson, E. Values of Recovered Uranium from HALEU Used Nuclear Fuels (Rev. 1); No. ANL/NSE-23/77-Rev. 1; Argonne National Laboratory (ANL): Argonne, IL, USA, 2024.
- Irving, J.S. Environmental Assessment for Use of DOE-Owned High-Assay Low-Enriched Uranium Stored at Idaho National Laboratory; No. INL/MIS-18-51903-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2019.
- Kitcher, E.D. Initial Evaluation of Microreactor Disposition Options; No. INL/EXT-20-57291-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2020.
- Macdonald, R.; Nonproliferation Policy Education Center. More than We Need: Projected World Uranium Enrichment Capacity. 2021. Available online: https://npolicy.org/wp-content/uploads/2021/09/Estimates-of-Uranium.pdf (accessed on 25 June 2024).
- Fassino, L.; Dupont, M.N.; Al-Qasir, I.; Wieselquist, W.A.; Marshall, W.B. Current State of Benchmark Applicability for Commercial-Scale HALEU Fuel Transport. 2024. Available online: https://www.nrc.gov/docs/ML2410/ML24107A030.pdf (accessed on 17 June 2024).
- Kim, T.K.; Hoffman, E.; Dixon, B.; Cuadra, A. Pros and Cons Analysis of HALEU Utilization in Example Fuel Cycles; No. ANL/NSE-22/21; Argonne National Laboratory (ANL): Argonne, IL, USA, 2023.
- Buongiorno, J. An Economic Evaluation of Micro-Reactors for the State of Washington; MIT-ANP-TR-190; Massachusetts Institute of Technology Center for Advanced Nuclear Energy Systems: Cambridge, MA, USA, 2021. [Google Scholar]
- DelCul, G.D.; Trowbridge, L.D.; Renier, J.P.; Ellis, R.J.; Williams, K.A.; Spencer, B.B.; Collins, E.D. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel; No. ORNL/TM-2009/023; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2009.
- National Research Council, Division on Earth, Life Studies, Radiation Studies Board, & Committee on Medical Isotope Production without Highly Enriched Uranium. Medical Isotope Production without Highly Enriched Uranium; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Kessler, G. Uranium enrichment. In Sustainable and Safe Nuclear Fission Energy: Technology and Safety of Fast and Thermal Nuclear Reactors; Springer: Berlin/Heidelberg, Germany, 2021; pp. 59–71. [Google Scholar]
- Kim, T.K.; Boing, L.; Dixon, B. Nuclear waste attributes of near-term deployable small modular reactors. Nucl. Eng. Technol. 2024, 56, 1100–1107. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Q.; Xiao, W.; Luo, C.; Liu, X. A review on emerging mixed-spectrum nuclear reactors for safety and sustainability of nuclear energy systems. Renew. Sustain. Energy Rev. 2024, 202, 114666. [Google Scholar] [CrossRef]
- Dixon, B.W.; Kim, S.H.; Feng, B.; Kim, T.; Richards, S.; Bae, J.W. Estimated HALEU Requirements for Advanced Reactors to Support a Net-Zero Emissions Economy by 2050; No. INL/EXT-21-64913-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2022.
- Kralisch, D.; Kreisel, G. Assessment of the ecological potential of microreaction technology. Chem. Eng. Sci. 2007, 62, 1094–1100. [Google Scholar] [CrossRef]
- Lin, T.Y.; Ajay, K.; Bindra, H. Numerical Simulations of Passive Heat Removal from Mobile Microreactors. Nucl. Sci. Eng. 2024, 1–15. [Google Scholar] [CrossRef]
- Peakman, A.; Lindley, B. A review of nuclear electric fission space reactor technologies for achieving high-power output and operating with HALEU fuel. Prog. Nucl. Energy 2023, 163, 104815. [Google Scholar] [CrossRef]
- Lu, C.; Kardoulaki, E.; Stauff, N.E.; Cuadra, A. The Use of the High-Density UN Fuel in Heat-Pipe Microreactors; No. BNL-225060-2023-INRE; Brookhaven National Laboratory (BNL): Upton, NY, USA, 2023.
- Ecemis, I.N.; Ekinci, F.; Acici, K.; Guzel, M.S.; Medeni, I.T.; Asuroglu, T. Exploring Blockchain for Nuclear Material Tracking: A Scoping Review and Innovative Model Proposal. Energies 2024, 17, 3028. [Google Scholar] [CrossRef]
- Lindley, B.A.; Mohamed, H.; Parks, G.T.; Hosking, J.G.; Lillington, J.N. Double-Heterogeneity Modelling of High Temperature Reactors Containing Particulate Fuel; TOPFUEL: Zurich, Switzerland, 2015. [Google Scholar]
- Eldridge, J. U-Battery Enhancing Safety through Innovative Design; No. IAEA-CN—308; IAEA: Vienna, Austria, 2022.
- Fiori, F.; Zhou, Z. Sustainability of the Chinese nuclear expansion: The role of ADS to close the nuclear fuel cycle. Prog. Nucl. Energy 2015, 83, 123–134. [Google Scholar] [CrossRef]
- Karavaeva, E. Floating nuclear power plants: Risks and opportunities for the development of Arctic ports. AIP Conf. Proc. 2023, 2700, 060009. [Google Scholar]
- Blaise, K.; Stensil, S.P. Nuclear Non-Proliferation in International Law-Volume V: Legal Challenges for Nuclear Security and Deterrence. In Small Modular Reactors in Canada: Eroding Public Oversight and Canada’s Transition to Sustainable Development; T.M.C. Asser Press: Hague, The Netherlands, 2020; pp. 209–234. [Google Scholar]
- Burdick, S.J.; Wagner, J.C.; Gehin, J.C. Recommendations to Improve the Nuclear Regulatory Commission Reactor Licensing and Approval Process; No. INL/RPT-23-72206; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2023.
Database | Search Strategy |
---|---|
Google Scholar | (“Microreactor” OR “Nuclear fuel” OR “HALEU” OR “Nuclear energy” OR “Small Modular Reactor (SMR)” OR “blockchain” AND PUBYEAR > 1980 AND PUBYEAR < 2025) |
Web of Science | (“Microreactor” OR “Nuclear fuel” OR “HALEU” OR “Nuclear energy” OR “Small Modular Reactor (SMR)” OR “blockchain” AND PUBYEAR > 1980 AND PUBYEAR < 2025) |
Scopus | (“Microreactor” OR “Nuclear fuel” OR “HALEU” OR “Nuclear energy” OR “Small Modular Reactor (SMR)” OR “blockchain” AND PUBYEAR > 1980 AND PUBYEAR < 2025) |
ScienceDirect | (“Microreactor” OR “Nuclear fuel” OR “HALEU” OR “Nuclear energy” OR “Small Modular Reactor (SMR)” OR “blockchain” AND PUBYEAR > 1980 AND PUBYEAR < 2025) |
ProQuest | (“Microreactor” OR “Nuclear fuel” OR “HALEU” OR “Nuclear energy” OR “Small Modular Reactor (SMR)” OR “blockchain” AND PUBYEAR > 1980 AND PUBYEAR < 2025) |
Engineering Village | (“Microreactor” OR “Nuclear fuel” OR “HALEU” OR “Nuclear energy” OR “Small Modular Reactor (SMR)” OR “blockchain” AND PUBYEAR > 1980 AND PUBYEAR < 2025) |
Reactor Name | Power Output (MWe) | Operating Time (years) | Fuel | Coolant | Features |
---|---|---|---|---|---|
eVinci™ | 0.2–5 | ≥3 | HALEU TRISO | Liquid sodium | High-temperature heat pipe, compact design, reliability |
Aurora | 1.5 | 20 | Metallic | Liquid sodium | Long autonomous operation, nuclear waste burning |
Holos Generators | 1–100 | 3–20 | TRISO | Helium/CO2 | Turbojet engine-like, simple design, high efficiency |
Xe-Mobile | ≥1 | 3 | TRISO | Helium | Portable, autonomous operation |
NuScale | 1–50 | ≥10 | HALEU | Pressurized water | Suitable for small power grids and remote facilities |
SEALER | 3 | 30 | UO2 or UN | Lead | Sealed core, long operation without refuelling |
U-Battery | 4 | 30 | TRISO | Helium | Annular prismatic core, indirect Brayton cycle |
MMR™ | 5 | 20 | TRISO/FCM™ | Helium | Flexible heat transfer, high temperature stability |
Kaleidos | 0–1 | 20 | UO2 | Helium | Portable, autonomous operation |
Reactor Name | Advantages | Disadvantages |
---|---|---|
eVinci™ | High-temperature heat pipe, compact design, reliability, ≥3 years without refueling | Limited operational data, high initial costs |
Aurora | Long autonomous operation (20 years), nuclear waste burning, compact design | Developmental stage, insufficient technical data, safety measures for sodium coolant |
Holos Generators | Turbojet engine-like, simple design, high efficiency (up to 60%), scalable power options | Innovative design not widely commercially applied, potential safety and operational challenges |
Xe-Mobile | Portable, autonomous operation, ≥3 years without refueling, TRISO fuel | Requires sophisticated control systems for autonomous operation, increased costs |
NuScale | Suitable for small power grids and remote facilities, ≥10 years without refueling, high safety and efficiency | Not yet widely commercially applied, high initial investment costs |
SEALER | Sealed core, long operation without refueling (30 years), passive decay heat removal | Technical challenges with lead coolant management and operation |
U-Battery | Annular prismatic core, indirect Brayton cycle, 4 MWe power, 5 EFPY core life | Complexity due to helium turbine development requirements, developmental stage |
MMR™ | Flexible heat transfer, high temperature stability, 20 years without refueling, TRISO/FCM™ fuel | Developmental stage, high operational costs |
Kaleidos | Portable and compact design, operates autonomously, ≥5 years without refueling, meltdown-proof TRISO fuel, air-cooled system, eliminates the need for on-site water use | Developmental stage, high initial investment costs, potential regulatory challenges due to new technology |
Design | Spectrum | Fuel Enrichment |
---|---|---|
eVinci™ | Thermal | 5–19.75% |
Aurora | Fast | <20% |
Holos generators | Thermal | 8–15% |
Xe-Mobile | Thermal | <20% |
NuScale | Thermal | <20% |
SEALER | Fast | 19.75% |
U-Battery | Thermal | <20% |
MMR | Thermal | 19.75% |
Kaleidos | Thermal | 20% |
Country | Developed SMR Projects | Technological Advancements | Regulatory Framework | Market Acceptance and Applications | Start Date | Type of Fuel Used |
---|---|---|---|---|---|---|
United States | NuScale Power | Advanced safety systems, modular design | Ongoing approval processes by NRC | Commercial applications and public–private partnerships | 2007 | Low enriched uranium (LEU) |
Canada | Ontario Power Generation SMR Projects | Innovative fuel use, environmental sustainability | Supported regulatory processes by CNSC | Provincial government and private sector support | 2011 | Low enriched uranium (LEU) |
Russia | Floating Nuclear Power Plants | Mobile and flexible energy production, supplying remote areas | Supported regulatory framework by Rosatom | Successful applications in remote and hard-to-reach areas | 2010 | Low enriched uranium (LEU) |
United Kingdom | Rolls-Royce SMR Project | Compact and economic design, rapid construction times | Ongoing approval processes by ONR | Government support and international collaborations | 2015 | Low enriched uranium (LEU) |
China | ACP100 | Small scale, multipurpose use | Approved by NNSA | Increasing interest in local and international markets | 2010 | Low enriched uranium (LEU) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, F.; Guzel, M.S.; Acici, K.; Asuroglu, T. The Future of Microreactors: Technological Advantages, Economic Challenges, and Innovative Licensing Solutions with Blockchain. Appl. Sci. 2024, 14, 6673. https://doi.org/10.3390/app14156673
Ekinci F, Guzel MS, Acici K, Asuroglu T. The Future of Microreactors: Technological Advantages, Economic Challenges, and Innovative Licensing Solutions with Blockchain. Applied Sciences. 2024; 14(15):6673. https://doi.org/10.3390/app14156673
Chicago/Turabian StyleEkinci, Fatih, Mehmet Serdar Guzel, Koray Acici, and Tunc Asuroglu. 2024. "The Future of Microreactors: Technological Advantages, Economic Challenges, and Innovative Licensing Solutions with Blockchain" Applied Sciences 14, no. 15: 6673. https://doi.org/10.3390/app14156673
APA StyleEkinci, F., Guzel, M. S., Acici, K., & Asuroglu, T. (2024). The Future of Microreactors: Technological Advantages, Economic Challenges, and Innovative Licensing Solutions with Blockchain. Applied Sciences, 14(15), 6673. https://doi.org/10.3390/app14156673