A Geospatial Framework of Food Demand Mapping
Abstract
:1. Introduction
1.1. Growing Urban Areas and the Emergence of Food Deserts
1.2. Evolving Consumer Purchasing Behavior
1.3. Need for Spatial Representation of Food Demand
1.4. Novel Food Demand Mapping Framework
- Create a robust methodology for mapping food demand based on survey data that capture both individual and regional consumption patterns.
- Implement a pilot survey in Lithuania to gather preliminary data on individual eating habits and preferences, laying the groundwork for more comprehensive future studies.
- Employ advanced spatial analysis techniques to generate visual maps representing food demand across different regions, with a focus on identifying and highlighting areas of concern such as food deserts and food swamps, thereby validating the proposed framework.
2. Materials and Methods
2.1. Food Demand Mapping Framework
2.2. Ethics Approval
2.3. Study Design
2.4. Inclusion and Exclusion Criteria
2.5. Instruments
2.6. Statistical Analysis
2.7. Integration with Population Data
2.8. Food Map Generation
2.9. Map Creation Procedure
- Generate Grid:
- Input into Shepard’s Interpolator:
- Interpolation to Grid Points:
3. Results
3.1. Individual Behavior
3.2. Food Regional Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision, Online Edition. 2018. Available online: https://population.un.org/wup/Download/ (accessed on 17 July 2024).
- World Bank. Urban Development Overview. 2023. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 17 July 2024).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights. 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 17 July 2024).
- Liddy, H.; Mowlds, S.; McKeown, P.C.; Lundy, M.; Spillane, C. Food mapping approaches for understanding food system transformations in rapid-growth city regions in the Global South. Front. Sustain. Food Syst. 2023, 7, 1238124. [Google Scholar] [CrossRef]
- Keller, C.; Siegrist, M. Does personality influence eating styles and food choices? Direct and indirect effects. Appetite 2015, 84, 128–138. [Google Scholar] [CrossRef]
- Beaulac, J.; Kristjansson, E.; Cummins, S. A Systematic Review of Food Deserts, 1966–2007. Prev. Chronic Dis. 2009, 6, A105. [Google Scholar] [PubMed]
- Salari, M.; Kramer, M.R.; Reyna, M.A.; Taylor, H.A.; Clifford, G.D. Combining Crowd-Sourcing, Census Data, and Public Review Forums for Real-Time, High-Resolution Food Desert Estimation. BioMed. Eng. OnLine 2023, 22, 69. [Google Scholar] [CrossRef]
- Cooksey-Stowers, K.; Schwartz, M.B.; Brownell, K.D. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States. Int. J. Environ. Res. Public Health 2017, 14, 1366. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.M.M.; Mawah, J.; Banik, E.; Akter, Y.; Deen, J.I.; Jahan, A.; Khan, N.M.; Rahman, M.M.; Lipi, N.; Akter, F.; et al. Prevalence and impact of the use of electronic gadgets on the health of children in secondary schools in Bangladesh: A cross-sectional study. Health Sci. Rep. 2021, 4, e388. [Google Scholar] [CrossRef]
- Nawi, A.; Zameran, F.A. Exploring the Relationship Between Smartphone Use and Adolescent Well-Being: A Systematic Literature Review. In Proceedings of the Intelligent Communication Technologies and Virtual Mobile Networks (ICICV 2022), Singapore, 10–11 February 2022; pp. 461–471. Available online: https://link.springer.com/chapter/10.1007/978-981-19-1844-5_36 (accessed on 17 July 2024).
- Kyrou, I.; Randeva, H.S.; Tsigos, C.; Kaltsas, G.; Weickert, M.O. Clinical Problems Caused by Obesity. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., Herder, W.W.d., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2018. Available online: https://pubmed.ncbi.nlm.nih.gov/25905207/ (accessed on 17 July 2024).
- Sanyaolu, A.; Okorie, C.; Qi, X.; Locke, J.; Rehman, S. Childhood and Adolescent Obesity in the United States: A Public Health Concern. Glob. Pediatr. Health 2019, 6. [Google Scholar] [CrossRef]
- Rafacz, S.D. Healthy Eating: Approaching the Selection, Preparation, and Consumption of Healthy Food as Choice Behavior. Perspect. Behav. Sci. 2019, 42, 647–674. [Google Scholar] [CrossRef] [PubMed]
- Ammann, J.; Ritzel, C.; El Benni, N. How did the COVID-19 pandemic influence health-related behaviour? An online survey on food choice, physical activity and changes in body weight among Swiss adults. Food Qual. Prefer. 2022, 100, 104625. [Google Scholar] [CrossRef]
- Emilien, C.; Hollis, J.H. A Brief Review of Salient Factors Influencing Adult Eating Behaviour. Nutr. Res. Rev. 2017, 30, 233–246. [Google Scholar] [CrossRef]
- Abdella, H.M.; El Farssi, H.O.; Broom, D.R.; Hadden, D.A.; Dalton, C.F. Eating Behaviours and Food Cravings; Influence of Age, Sex, BMI and FTO Genotype. Nutrients 2019, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gully, S.M.; Eden, D. Validation of a New General Self-Efficacy Scale. Organ. Res. Methods 2001, 4, 62–83. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Smit, E.; Mahoney, S. Physical Activity and Dietary Behavior in US Adults and Their Combined Influence on Health. Mayo Clin. Proc. 2014, 89, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Carraça, E.V.; Rodrigues, B.; Teixeira, D.S. A Motivational Pathway Linking Physical Activity to Body-Related Eating Cues. J. Nutr. Educ. Behav. 2020, 52, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.M.; Coutinho, S.R.; Silva, M.N.; Mata, J.; Vieira, P.N.; Minderico, C.S.; Melanson, K.J.; Baptista, F.; Sardinha, L.B.; Teixeira, P.J. The Effect of Physical Activity on Weight Loss Is Mediated by Eating Self-Regulation. Patient Educ. Couns. 2010, 79, 320–326. [Google Scholar] [CrossRef]
- Castro, E.A.; Carraça, E.V.; Cupeiro, R.; López-Plaza, B.; Teixeira, P.J.; González-Lamuño, D.; Peinado, A.B. The Effects of the Type of Exercise and Physical Activity on Eating Behavior and Body Composition in Overweight and Obese Subjects. Nutrients 2020, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S. Social Norms and Their Influence on Eating Behaviours. Appetite 2015, 86, 38–44. [Google Scholar] [CrossRef]
- Story, M.; Kaphingst, K.M.; Robinson-O’Brien, R.; Glanz, K. Creating Healthy Food and Eating Environments: Policy and Environmental Approaches. Annu. Rev. Public Health 2008, 29, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Oeser, G.; Aygün, T.; Balan, C.L.; Corsten, T.; Dechêne, C.; Ibald, R.; Schuckel, M.T. Implications of the Ageing Population for the Food Demand Chain in Germany. Int. J. Retail Distrib. Manag. 2018, 46, 163–193. [Google Scholar] [CrossRef]
- Livings, M.S.; Wilson, J.; Miller, S.; Bruine de Bruin, W.; Weber, K.; Babboni, M.; de la Haye, K. Spatial Characteristics of Food Insecurity and Food Access in Los Angeles County During the COVID-19 Pandemic. Food Secur. 2023, 15, 1255–1271. [Google Scholar] [CrossRef]
- Government of Northwest Territories. Healthy Eating Assessment. 2017. Available online: https://www.hss.gov.nt.ca/sites/hss/files/resources/healthy-eating-assessment.pdf (accessed on 17 July 2024).
- Pitts, S.B.J.; Ng, S.W.; Blitstein, J.L.; Gustafson, A.; Niculescu, M. Online grocery shopping: Promise and pitfalls for healthier food and beverage purchases. Public Health Nutr. 2018, 21, 3360–3376. [Google Scholar] [CrossRef]
- Wichern, J.; van Heerwaarden, J.; de Bruin, S.; Descheemaeker, K.; van Asten, P.J.; Giller, K.E.; van Wijk, M.T. Using household survey data to identify large-scale food security patterns across Uganda. PLoS ONE 2018, 13, e0208714. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Yue, T.; Wang, C.; Wilson, J.P. Using Models and Spatial Analysis to Analyze Spatio-Temporal Variations of Food Provision and Food Potential Across China’s Agro-Ecosystems. Ecol. Model. 2015, 306, 152–159. [Google Scholar] [CrossRef]
- Hood, N.; Urquhart, R.; Newing, A.; Heppenstall, A. Sociodemographic and Spatial Disaggregation of E-Commerce Channel Use in the Grocery Market in Great Britain. J. Retail. Consum. Serv. 2020, 55, 102076. [Google Scholar] [CrossRef]
- Betzek, N.M.; de Souza, E.G.; Bazzi, C.L.; Schenatto, K.; Gavioli, A.; Magalhães, P.S.G. Computational routines for the automatic selection of the best parameters used by interpolation methods to create thematic maps. Comput. Electron. Agric. 2019, 157, 49–62. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, T.; Lei, M.; Yang, J.; Guo, Q.; Song, B.; Zhou, X. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 2011, 82, 468–476. [Google Scholar] [CrossRef]
- Shepard, D. A Two Dimensional Interpolation Function for Irregularly Spaced Data. In Proceedings of the ACM ’68: Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- Harman, B.I.; Koseoglu, H.; Yigit, C.O. Performance evaluation of IDW, Kriging and multiquadric interpolation methods in producing noise mapping: A case study at the city of Isparta, Turkey. Appl. Acoust. 2016, 112, 147–157. [Google Scholar] [CrossRef]
- De Mesnard, L. Pollution models and inverse distance weighting: Some critical remarks. Comput. Geosci. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Buscemi, J.; O’Donnell, A.; Takgbajouah, M.; Patano, P. A Spatial Analysis of Food Insecurity and Body Mass Index with Income and Grocery Store Density in a Diverse Sample of Adolescents and Young Adults. Nutrients 2023, 15, 1435. [Google Scholar] [CrossRef]
- Lithuania Co-Create. Lithuania among Strongest Countries in the World in Digital Quality of Life. Lithuania Co-Create. 13 September 2022. Available online: https://lithuania.lt/governance-in-lithuania/lithuania-among-strongest-countries-in-the-world-in-digital-quality-of-life/ (accessed on 17 July 2024).
- Valstybės Duomenų Agentūra. Gyventojų ir Būstų Surašymas 2021—Gyventojai (GRID 1km). 2021. Available online: https://open-data-ls-osp-sdg.hub.arcgis.com/datasets/80272a0f7a7e4905bc379f0ae921e5b7_1/about (accessed on 17 July 2024).
- Valentas, G.; Aurelija, B.; Artur, A. Digital transformation in food retail: A case study of Lithuania egrocery buying behaviours. Entrep. Sustain. Issues 2024, 11, 65–84. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial Interpolation Methods Applied in the Environmental Sciences: A Review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Widener, M.J.; Metcalf, S.S.; Bar-Yam, Y. Developing a Mobile Produce Distribution System for Low-Income Urban Residents in Food Deserts. J. Urban Health 2012, 89, 733–745. [Google Scholar] [CrossRef]
- Su, S.; Li, Z.; Xu, M.; Cai, Z.; Weng, M. A Geo-Big Data Approach to Intra-Urban Food Deserts: Transit-Varying Accessibility, Social Inequalities, and Implications for Urban Planning. Habitat Int. 2017, 64, 22–40. [Google Scholar] [CrossRef]
- Sarkar, A.; Roy, D.; Mandal, D.K. Assessment of Spatial Variability Mapping of Soil Properties and Its Impacts on Agricultural Productivity Using GIS Approach in Siliguri Sub-Division, West Bengal, India. Curr. World Environ. 2023, 18, 28. [Google Scholar] [CrossRef]
Min | Max | Median | Mean | |
---|---|---|---|---|
Actual data (Lithuania) | 21.00 | 42.00 | 33.00 | 32.84 |
Actual data (Vilnius) | 21.00 | 42.00 | 32.00 | 32.62 |
Results (Lithuania) | 21.00 | 42.00 | 32.88 | 33.02 |
Results (Vilnius) | 21.00 | 42.00 | 32.66 | 32.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruzauskas, V.; Burinskiene, A.; Airapetian, A.; Urbonaitė, N. A Geospatial Framework of Food Demand Mapping. Appl. Sci. 2024, 14, 6677. https://doi.org/10.3390/app14156677
Gruzauskas V, Burinskiene A, Airapetian A, Urbonaitė N. A Geospatial Framework of Food Demand Mapping. Applied Sciences. 2024; 14(15):6677. https://doi.org/10.3390/app14156677
Chicago/Turabian StyleGruzauskas, Valentas, Aurelija Burinskiene, Artur Airapetian, and Neringa Urbonaitė. 2024. "A Geospatial Framework of Food Demand Mapping" Applied Sciences 14, no. 15: 6677. https://doi.org/10.3390/app14156677
APA StyleGruzauskas, V., Burinskiene, A., Airapetian, A., & Urbonaitė, N. (2024). A Geospatial Framework of Food Demand Mapping. Applied Sciences, 14(15), 6677. https://doi.org/10.3390/app14156677