Critical Review of LPBF Metal Print Defects Detection: Roles of Selective Sensing Technology
Abstract
:1. Introduction
2. Classification of LPBF Defects
2.1. Geometrical/Dimensional Defects
2.2. Surface-Quality Defects
2.3. Microstructure Defects
2.4. Mechanical Defects
3. LPBF Sensing Techniques
3.1. Optical Techniques
3.1.1. Techniques with Electron Source
Material | SEM | TEM | EBSD | EDS | XPS | EPMA |
---|---|---|---|---|---|---|
Stainless-Steel-Based Alloys | ||||||
SS316L [41,47] | ✓ | |||||
GH3536 [46] | ✓ | ✓ | ✓ | ✓ | ||
Custom austenitic SS. [37] | ✓ | ✓ | ✓ | |||
SS316L [48,49,50,51], 1.2767L tool steel [52] | ✓ | |||||
SS316L [53,54], Maraging steel, 2205 Duplex SS. [55,56] | ✓ | ✓ | ✓ | ✓ | ||
17-4PH SS [57] | ✓ | ✓ | ✓ | |||
Maraging steel [58] | ✓ | ✓ | ✓ | ✓ | ||
AISI 420 Steel [59] | ✓ | ✓ | ||||
Titanium-Based Alloys | ||||||
Ti6Al4V [43], IN718 [60] | ✓ | ✓ | ✓ | |||
TiB/Ti6Al4V [44] | ✓ | ✓ | ✓ | ✓ | ||
TiNi [61], NiTi [62] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Ti6Al4V [63], Ti and Ti-13Nb-13Zr [63], Ti–43Al–9V-0.5Y [64] | ✓ | ✓ | ✓ | |||
Nickel-Based Alloys | ||||||
IN625 [65] | ✓ | ✓ | ✓ | ✓ | ||
Hastelloy X [66] | ✓ | ✓ | ||||
Ni + SAF2205-22Cr [67], IN718 [68,69] | ✓ | ✓ | ✓ | |||
Nickel-based alloy [38], IN718 [70,71] | ✓ | ✓ | ||||
IN718 [60], alloy 247LC [72] | ✓ | ✓ | ✓ | |||
Aluminum-Based Alloys | ||||||
AlSi7Mg0.3 [73], AlSi10Mg [72,73,74], Al-33Cu [75] | ✓ | |||||
Al2024 [74] | ✓ | ✓ | ✓ | |||
AlSi10Mg [76,77] | ✓ | ✓ | ||||
AlSi10Mg [78,79] | ✓ | ✓ | ||||
Al-3.6Zn-0.6Mg [79] | ✓ | ✓ | ✓ | ✓ | ✓ | |
AddalloyTM [80], AlSi10Mg [81] | ✓ | ✓ | ✓ | ✓ | ||
Other alloys/elements | ||||||
Ta [82] | ✓ | ✓ | ✓ | |||
Zn alloy [83] | ✓ | ✓ | ||||
Nb [84] | ✓ | ✓ | ||||
Ag [85], W [86] | ✓ |
3.1.2. Techniques Using an X-ray Source
3.1.3. Techniques Using a Visible Light Source
Material | XCT | XRD |
---|---|---|
Stainless-Steel-Based Alloys | ||
1.2767L Tool Steel [52], SS316L [47,92], RAFM steel [93], 18Ni maraging steel [94] | ✓ | ✓ |
Custom austenitic SS. [36], SS316L [90,95], AISI 420 Steel [59,96] | ✓ | |
A800H [97], SS316L [98,99,100] | ✓ | |
Titanium-Based Alloys | ||
Ti-TiB [101,102], Ti6Al4V [88,103,104], Ti64 [105] | ✓ | |
TiNi [61], Ti6Al4V [91,103], Ti–43Al–9V-0.5Y [64], Ti6Al7Nb [106] | ✓ | |
NiTi [62], Ti6Al4V [107,108] | ✓ | ✓ |
Nickel-Based Alloys | ||
IN625 [109], IN718 [69,110,111], Ni10Cr6W1Fe9Ti1 [112] | ✓ | |
Hastelloy X [66], nickel-based superalloy [113] | ✓ | |
IN718 [114] | ✓ | ✓ |
Aluminum-Based Alloys | ||
AlMgScZr [115], AlSi10Mg [116,117] | ✓ | ✓ |
Al-33Cu [75], AlSi10Mg [77] | ✓ | |
AlSi10Mg [118,119,120] | ✓ | |
Other alloys/elements | ||
Ta [82], CoCrMo [121], Nb [84], Cu10Zn [122] | ✓ | |
Zn-alloy [83], Ag [85], CoCr [123] | ✓ |
3.1.4. Techniques Using Other Sources
Material | OM | CLSM | DSLR | DIC |
---|---|---|---|---|
Stainless-Steel-Based Alloys | ||||
SS316L [41,42,53,92,128], 17-4PH SS. [129], A800H [130], RAFM steel [93], CLF-1 steel [131], 17-4 PH SS [13], SS316L-SS431 [132], AISI 420 Steel [59,96] | ✓ | |||
GP-1 Steel [133], SS316L [134,135,136] | ✓ | ✓ | ||
SS316L [40,51,124] | ✓ | |||
Titanium-Based Alloys | ||||
Ti6Al4V [137,138,139], TiB [140], Ti [141], NiTi [62], TiB2-B4C [142], Ti6Al7Nb [106] | ✓ | |||
TiNi [61] | ✓ | |||
Ti–43Al–9V-0.5Y [64] | ✓ | |||
Ti6Al4V [91,143] | ✓ | ✓ | ||
Nickel-Based Alloys | ||||
Haynes 282 [144], Ni10Cr6W1Fe9Ti1 [112], Nickel-based superalloy [113] | ✓ | |||
IN718 [111,114] | ✓ | |||
IN718 [110] | ✓ | ✓ | ||
Aluminum-Based Alloys | ||||
AlMgScZr [115] | ✓ | ✓ | ||
AlSi10Mg [8,77,81,102], AlSi7Mg0.3 [73], Al2024 [74] | ✓ | ✓ | ||
Other alloys/elements | ||||
Ta [82], Nb [84], Ag [85], Cu [145], CoCrMo [121], Cu10Zn [122] | ✓ | ✓ |
Name | Processed | C | Si | Mn | Cr | Mo | N | Ni | Fe | PREN |
---|---|---|---|---|---|---|---|---|---|---|
AISI 316L | Cast/Rolled | 0.022 | 0.32 | 1.67 | 16.6 | 2.02 | 0.08 | 10.02 | Bal. | 25 |
AISI 316L | LPBF | 0.022 | 0.64 | 1.39 | 16.6 | 2.14 | 0.06 | 10.54 | Bal. | 25 |
M7-3 | LPBF | 0.029 | 0.61 | 1.08 | 18.9 | 2.63 | 0.09 | 9.02 | Bal. | 30 |
M5-5 | LPBF | 0.030 | 0.61 | 1.11 | 20.4 | 2.76 | 0.14 | 7.31 | Bal. | 32 |
M3-7 | LPBF | 0.026 | 0.67 | 1.04 | 21.1 | 2.98 | 0.15 | 6.73 | Bal. | 33 |
AISI 318LN | LPBF + SA | 0.022 | 0.70 | 0.81 | 22.9 | 3.23 | 0.17 | 5.66 | Bal. | 35 |
AISI 318LN | Cast/SA | 0.038 | 0.68 | 1.27 | 22.5 | 3.01 | 0.17 | 6.32 | Bal. | 36 |
AISI 316L | Cast/ Rolled | 0.022 | 0.32 | 1.67 | 16.6 | 2.02 | 0.08 | 10.02 | Bal. | 25 |
AISI 316L | LPBF | 0.022 | 0.64 | 1.39 | 16.6 | 2.14 | 0.06 | 10.54 | Bal. | 25 |
M7-3 | LPBF | 0.029 | 0.61 | 1.08 | 18.9 | 2.63 | 0.09 | 9.02 | Bal. | 30 |
3.2. Thermal Techniques
3.3. Acoustic Techniques
3.4. Ultrasonic Techniques
3.5. Miscellaneous Techniques
4. Recommended Sensing Technologies for Defect Types
4.1. Recommended Optical Sensing Techniques for Defect Types
4.2. Recommended Thermal Sensing Techniques for Defect Types
Defect Type | Defect | SEM | TEM * | EBSD | EDS | XPS | EPMA |
---|---|---|---|---|---|---|---|
Surface-quality defects | Balling [6] | ✓ | |||||
Surface oxidation [46,58,65,76,109] | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Surface roughness [50] | ✓ | ||||||
Denudation [6] | ✓ | ||||||
Vaporization [67] | ✓ | ||||||
Microstructure defects | LOF porosities [20,61] | ✓ | ✓ | ||||
Gas porosities [20] | ✓ | ||||||
Keyhole porosities [8,24,57] | ✓ | ✓ | ✓ | ||||
Mech. defects | Liq. cracking [29,64,232] | ✓ | ✓ | ✓ | |||
Sol. cracking [29,65] | ✓ | ✓ | |||||
Delamination [44] | ✓ | ✓ |
Defect Type | Defect | XCT | XRD | OM | CLSM | DSLR | DIC | OES * | APT * |
---|---|---|---|---|---|---|---|---|---|
Surface-quality defects | Balling [12,191] | ✓ | ✓ | ||||||
Surface oxidation [11,82,108,128] | ✓ | ✓ | ✓ | ✓ | |||||
Surface roughness [13,49,91,125,146] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Denudation [15,16] | ✓ | ✓ | ✓ | ||||||
Vaporization [15,17] | ✓ | ✓ | |||||||
Microstructure defects | LOF porosities [59,66,191] | ✓ | ✓ | ✓ | |||||
Gas porosities [20,190,197] | ✓ | ✓ | ✓ | ||||||
Keyhole porosities [98,156] | ✓ | ✓ | |||||||
Mech. defects | Liq. cracking [29,32,115] | ✓ | ✓ | ✓ | |||||
Sol. cracking [32,118,190] | ✓ | ✓ | ✓ | ||||||
Delamination [17,33,191] | ✓ | ✓ | ✓ |
4.3. Recommended Acoustic and Ultrasonic Sensing Techniques for Defect Types
Defect Type | Defect | AES | FBG | NRS | IU | LU * | PU | RUS | PAUT |
---|---|---|---|---|---|---|---|---|---|
Surface-quality defects | Balling [173,181] | ✓ | ✓ | ||||||
Microstructure defects | LOF porosities [179,181,182,187,191,200,202] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Gas porosities [183,187] | ✓ | ✓ | |||||||
Keyhole porosities [184] | ✓ | ||||||||
Mech. defects | Liq. cracking [168] | ✓ | |||||||
Sol. cracking [170,184,189] | ✓ | ✓ | ✓ | ||||||
Delamination [184,188] | ✓ | ✓ |
4.4. Recommended Miscellaneous Sensing Techniques for Defect Types
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, K. Chapter 7-Metal additive manufacturing. In Digital Manufacturing: The Industrialization of Art to Part 3D Additive Printing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–298. [Google Scholar] [CrossRef]
- Malekipour, E.; El-Mounayri, H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: A review. Int. J. Adv. Manuf. Technol. 2018, 95, 527–550. [Google Scholar] [CrossRef]
- Qiu, C.; Panwisawas, C.; Ward, M.; Basoalto, H.C.; Brooks, J.W.; Attallah, M.M. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 2015, 96, 72–79. [Google Scholar] [CrossRef]
- Shen, Y.F.; Gu, D.; Pan, Y.F. Balling Process in Selective Laser Sintering 316 Stainless Steel Powder. Key Eng. Mater. 2006, 316, 315–316. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. A study of thermal expansion coefficients and microstructure during selective laser melting of invar 36 and stainless steel 316L. Addit. Manuf. 2018, 24, 405–418. [Google Scholar] [CrossRef]
- Olakanmi, E.O.; Dalgarno, K.W.; Cochrane, R.F. Laser sintering of blended Al-Si powders. Rapid Prototyp. J. 2012, 18, 109–119. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.M.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1–4, 77–86. [Google Scholar] [CrossRef]
- Felix, S.; Majumder, S.R.; Mathews, H.K.; Lexa, M.; Lipsa, G.; Ping, X.; Roychowdhury, S.; Spears, T. In situ process quality monitoring and defect detection for direct metal laser melting. Sci. Rep. 2022, 12, 8503. [Google Scholar] [CrossRef]
- Simonelli, M.; Tuck, C.; Aboulkhair, N.T.; Maskery, I.; Ashcroft, I.; Wildman, R.D.; Hague, R. A study on the laser spatter and the oxidation reactions during selective laser melting of 316l stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall. Mater. Trans. 2015, 46, 3842–3851. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Lin, X.; Huang, W.; Li, J.; Zhou, Y. The influences of processing parameters on forming characterizations during laser rapid forming. Mater. Sci. Eng. 2003, 360, 18–25. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modeling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Nezhadfar, P.D.; Shrestha, R.; Phan, N.; Shamsaei, N. Fatigue behavior of additively manufactured 17-4 PH stainless steel: Synergistic effects of surface roughness and heat treatment. Int. J. Fatigue 2019, 124, 188–204. [Google Scholar] [CrossRef]
- Gusarov, A.; Yadroitsev, I.; Bertrand, P.; Smurov, I. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J. Heat Transf. 2009, 131, 072101. [Google Scholar] [CrossRef]
- Matthews, M.J.; Guss, G.; Khairallah, S.A.; Rubenchik, A.M.; Depond, P.J.; King, W.E. Denudation of metal powder layers in laser powder bed fusion. Acta Mater. 2016, 114, 33–42. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Bertrand, P.; Smurov, I. Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 2007, 253, 8064–8069. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, C.; Escano, L.I.; Young, Z.; Xiong, L.; Fezzaa, K.; Everhart, W.; Brown, B.; Sun, T.; Chen, L. Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high energy x-ray imaging. Acta Mater. 2018, 151, 169–180. [Google Scholar] [CrossRef]
- Cao, X.; Jahazi, M.; Immarigeon, J.; Wallace, W. A review of laser welding techniques for magnesium alloys. J. Mater. Process. Technol. 2006, 171, 188–204. [Google Scholar] [CrossRef]
- Rombout, M.; Kruth, J.P.; Froyen, L.; Mercelis, P. Fundamentals of Selective laser melting of alloyed steel powders. CIRP Ann. 2006, 55, 187–192. [Google Scholar] [CrossRef]
- Eliasu, A.; Czekanski, A.; Boakye-Yiadom, S. Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel. Int. J. Adv. Manuf. Technol. 2021, 113, 2651–2669. [Google Scholar] [CrossRef]
- Heiden, M.J.; Deibler, L.A.; Rodelas, J.M.; Koepke, J.R.; Tung, D.J.; Saiz, D.J.; Jared, B.H. Evolution of 316L stainless steel feedstock due to laser powder bed fusion process. Addit. Manuf. 2019, 25, 84–103. [Google Scholar] [CrossRef]
- Tucho, W.M.; Lysne, V.H.; Austbø, H.; Sjolyst-Kverneland, A.; Hansen, V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloys Compd. 2018, 740, 910–925. [Google Scholar] [CrossRef]
- Gordon, J.V.; Narra, S.P.; Cunningham, R.W.; Liu, H.; Chen, H.; Suter, R.M.; Beuth, J.L.; Rollett, A.D. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 36, 101552. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, S.J.; Wang, H.L.; Hou, W.T.; Hao, Y.L.; Yang, R. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 2016, 113, 56–67. [Google Scholar] [CrossRef]
- Yang, J.; Schlenger, L.M.; Nasab, M.H.; Petegem, S.V.; Marone, F.; Logé, R.E.; Leinenbach, C. Experimental quantification of inward Marangoni convection and its impact on keyhole threshold in laser powder bed fusion of stainless steel. Addit. Manuf. 2024, 84, 104092. [Google Scholar] [CrossRef]
- Shiva, S.; Palani, I.A.; Mishra, S.K.; Paul, C.P.; Kukreja, L.M. Investigations on the Influence of Composition in the Development of Ni-Ti Shape Memory Alloy Using Laser Based Additive Manufacturing. Opt. Laser Technol. 2015, 69, 44–51. [Google Scholar] [CrossRef]
- Brennan, M.C.; Keist, J.S.; Palmer, T.A. Defects in Metal Additive Manufacturing Processes. J. Mater. Eng. Perform. 2021, 30, 4808–4818. [Google Scholar] [CrossRef]
- Simson, T.; Emmel, A.; Dwars, A.; Böhm, J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017, 17, 183–189. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, K.; Huang, J.; Hosseini, S.R.E.; Li, Z. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Mater. Des. 2016, 90, 586–594. [Google Scholar] [CrossRef]
- Marchese, G.; Basile, G.; Bassini, E.; Aversa, A.; Lombardi, M.; Ugues, D.; Fino, P.; Biamino, S. Study of the microstructure and cracking mechanisms of Hastelloy X produced by LPBF. Materials 2018, 11, 106. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, F.; Zhang, K.; Nie, P.; Hosseini, S.R.E.; Feng, K.; Li, Z. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. J. Alloys Compd. 2016, 670, 312–321. [Google Scholar] [CrossRef]
- Narasimharaju, S.R.; Zeng, W.; See, T.L.; Zhu, Z.; Scott, P.; Jiang, X.; Lou, S. A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges, and future trends. J. Manuf. Process. 2022, 75, 375–414. [Google Scholar] [CrossRef]
- Kempen, K.; Thijs, L.; Vrancken, B.; Buls, S.; Humbeeck, J.V.; Kruth, J.-P. Producing crack-free, high-density M2 HSS parts by selective laser melting: Pre-heating the baseplate. In Proceedings of the 2013 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2013. [Google Scholar]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Ye, D.; Fuh, J.Y.H.; Zhang, Y.; Hong, G.S.; Zhu, K. In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Trans. 2018, 81, 96–104. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Duan, M.-g.; Jiang, W.; Chen, D.; Li, B. An investigation of ductile fracture behavior of Ti6Al4V alloy fabricated by selective laser melting. J. Alloys Compd. 2022, 890, 161926. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, H.; Zhang, P.; Wang, Z.; Wang, M.; Sha, G.; Lin, H.; Ma, J.; Zhang, Z.; Song, Y.; et al. An exceptionally strong, ductile, and impurity-tolerant austenitic stainless steel prepared by laser additive manufacturing. Acta Mater. 2023, 250, 118868. [Google Scholar] [CrossRef]
- Kong, D.; Dong, C.; Ni, X.; Liang, Z.; Man, C.; Li, X. Hetero-deformation-induced stress in additively manufactured 316L stainless steel. Mater. Res. Lett. 2020, 8, 390–397. [Google Scholar] [CrossRef]
- Kong, D.-c.; Dong, C.-f.; Ni, X.-q.; Zhang, L.; Li, R.-x.; He, X.; Man, C.; Li, X.-g. Microstructure, and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders. Int. J. Miner. Metall. Mater. 2021, 28, 266–278. [Google Scholar] [CrossRef]
- Ghosh, A.; Biswas, S.; Turner, T.; Kietzig, A.-M.; Brochu, M. Surface, microstructure, and tensile deformation characterization of LPBF SS316L microstruts micromachined with femtosecond laser. Mater. Des. 2021, 210, 110045. [Google Scholar] [CrossRef]
- Beard, W.; Lancaster, R.; Barnard, N.; Jones, T.; Adams, J. The influence of surface finish and build orientation on the low cycle fatigue behavior of laser powder bed fused stainless steel 316L. Mater. Sci. Eng. A 2023, 864, 144593. [Google Scholar] [CrossRef]
- Huang, G.; Wei, K.; Deng, J.; Liu, M.; Zeng, X. High-power laser powder bed fusion of 316L stainless steel: Defects, microstructure, and mechanical properties. J. Manuf. Process. 2022, 83, 235–245. [Google Scholar] [CrossRef]
- Gokcekaya, O.; Ishimoto, T.; Hibino, S.; Yasutomi, J.; Narushima, T.; Nakano, T. Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy. Acta Mater. 2021, 212, 116876. [Google Scholar] [CrossRef]
- Cai, C.; Radoslaw, C.; Zhang, J.; Yan, Q.; Wen, S.; Song, B.; Shi, Y. In-situ preparation and formation of TiB/Ti-6Al-4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior. Powder Technol. 2019, 342, 73–84. [Google Scholar] [CrossRef]
- Raza, A.; Fiegl, T.; Hanif, I.; Markström, A.; Franke, M.; Körner, C.; Hryha, E. Degradation of AlSi10Mg powder during laser-based powder bed fusion processing. Mater. Des. 2021, 198, 109358. [Google Scholar] [CrossRef]
- Min, S.; Zhang, H.; Liu, H.; Zhang, K.; Huang, A.; Hou, J. Influence of defects on high-temperature oxidation performance of GH3536 superalloys fabricated by laser powder bed fusion. Addit. Manuf. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Liang, X.; Hor, A.; Robert, C.; Salem, M.; Lin, F.; Morel, F. High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode. Int. J. Fatigue 2022, 160, 106843. [Google Scholar] [CrossRef]
- Mussatto, A.; Groarke, R.; Vijayaraghavan, R.K.; Obeidi, M.A.; MacLoughlin, R.; McNally, P.J.; Nicolosi, V.; Delaure, Y.; Brabazon, D. Laser-powder bed fusion in-process dispersion of reinforcing ceramic nanoparticles onto powder beds via colloid nebulization. Mater. Chem. Phys. 2022, 287, 126245. [Google Scholar] [CrossRef]
- Obeidi, M.A.; Conway, A.; Mussatto, A.; Dogu, M.N.; Sreenilayam, S.P.; Ayub, H.; Ahad, I.U.; Brabazon, D. Effects of powder compression and laser re-melting on the microstructure and mechanical properties of additively manufactured parts in laser-powder bed fusion. Results Mater. 2022, 13, 100264. [Google Scholar] [CrossRef]
- Rivolta, B.; Gerosa, R.; Panzeri, D. Selective laser melted 316L stainless steel: Influence of surface and inner defects on fatigue behavior. Int. J. Fatigue 2023, 172, 107664. [Google Scholar] [CrossRef]
- Ghosh, A.; Wang, X.; Kietzig, A.-M.; Brochu, M. Layer-by-layer combination of laser powder bed fusion (LPBF) and femtosecond laser surface machining of fabricated stainless-steel components. J. Manuf. Process. 2018, 35, 327–336. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gu, D.D.; Ge, Q.; Shi, X.Y.; Zhang, H.M.; Wang, R.; Zhang, H.; Kosiba, K. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing. Int. J. Miner. Metall. Mater. 2021, 28, 462–474. [Google Scholar] [CrossRef]
- Javidi, M.J.; Hosseini, S.M.; Khodabakhshi, F.; Mohammadi, M.; Orovcik, L.; Trembošová, V.N.; Nagy, Š.; Nosko, M. Laser powder bed fusion of 316L stainless steel/Al2O3 nanocomposites: Taguchi analysis and material characterization. Opt. Laser Technol. 2023, 158 Part A, 108883. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, G.; Qiu, C. On the Role of Dynamic Grain Movement in Deformation and Mechanical Anisotropy Development in a Selectively Laser Melted Stainless Steel. Addit. Manuf. 2020, 35, 101329. [Google Scholar] [CrossRef]
- Dehgahi, S.; Pirgazi, H.; Sanjari, M.; Seraj, P.; Odeshi, A.; Kestens, L.A.I.; Mohammadi, M. Effect of building direction on high strain-rate compressive behavior of heat-treated LPBF-maraging steels using Split Hopkinson pressure bar apparatus. Mater. Sci. Eng. A 2022, 835, 142653. [Google Scholar] [CrossRef]
- Haghdadi, N.; Chen, H.; Chen, Z.; Babu, S.S.; Liao, X.; Ringer, S.P.; Primig, S. Intergranular precipitation and chemical fluctuations in an additively manufactured 2205 duplex stainless steel. Scr. Mater. 2022, 219, 114894. [Google Scholar] [CrossRef]
- Barroux, A.; Duguet, T.; Ducommun, N.; Nivet, E.; Delgado, J.; Laffont, L.; Blanc, C. Combined XPS/TEM study of the chemical composition and structure of the passive film formed on additive manufactured 17-4PH stainless steel. Surf. Interfaces 2021, 22, 100874. [Google Scholar] [CrossRef]
- Shakerin, S.; Hadadzadeh, A.; Amirkhiz, B.S.; Shamsdini, S.; Li, J.; Mohammadi, M. Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique. Addit. Manuf. 2019, 29, 100797. [Google Scholar] [CrossRef]
- Shen, L.C.; Yang, X.H.; Ho, J.R.; Tung, P.C.; Lin, C.K. Effects of build direction on the mechanical properties of a martensitic stainless steel fabricated by selective laser melting. Materials 2020, 13, 5142. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.Y.; Zhou, Z.J.; Li, C.P.; Chen, G.F.; Zhang, G.P. Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718. Mater. Sci. Eng. 2019, 753, 42–48. [Google Scholar] [CrossRef]
- Chen, G.; Liu, S.; Huang, C.; Ma, Y.; Li, Y.; Zhang, B.; Gao, L.; Zhang, B.; Wang, P.; Qu, X. In-situ phase transformation and corrosion behavior of TiNi via LPBF. Corros. Sci. 2022, 203, 110348. [Google Scholar] [CrossRef]
- Guo, W.; Feng, B.; Yang, Y.; Ren, Y.; Liu, Y.; Yang, H.; Yang, Q.; Cui, L.; Tong, X.; Hao, S. Effect of laser scanning speed on the microstructure, phase transformation, and mechanical property of NiTi alloys fabricated by LPBF. Mater. Des. 2022, 215, 110460. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, T.; Tang, J.; He, J.; Li, R. Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting A comparison between nearly β titanium, α titanium and α + β titanium. Opt. Laser Technol. 2019, 119, 105625. [Google Scholar] [CrossRef]
- Gao, P.; Lan, X.; Yang, S.; Wang, Z.; Li, X.; Cao, L. Defect elimination and microstructure improvement of laser powder bed fusion β-solidifying γ-TiAl alloys via circular beam oscillation technology. Mater. Sci. Eng. A 2023, 873, 145019. [Google Scholar] [CrossRef]
- Tripathy, M.; Gaskell, K.; Laureto, J.; Davami, K.; Beheshti, A. Elevated temperature fretting wear study of additively manufactured Inconel 625 superalloys. Addit. Manuf. 2023, 67, 103492. [Google Scholar] [CrossRef]
- Schwerz, C.; Bircher, B.A.; Küng, A.; Nyborg, L. In-situ detection of stochastic spatter-driven lack of fusion: Application of optical tomography and validation via ex-situ X-ray computed tomography. Addit. Manuf. 2023, 72, 103631. [Google Scholar] [CrossRef]
- Li, H.; Brodie, E.G.; Hutchinson, C. Predicting the chemical homogeneity in laser powder bed fusion (LPBF) of mixed powders after remelting. Addit. Manuf. 2023, 65, 103447. [Google Scholar] [CrossRef]
- Pant, P.; Salvemini, F.; Proper, S.; Luzin, V.; Simonsson, K.; Sjöström, S.; Hosseini, S.; Peng, R.L.; Moverare, J. A study of the influence of novel scan strategies on residual stress and microstructure of L-shaped LPBF IN718 samples. Mater. Des. 2022, 214, 110386. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, J.; Xu, G.; Luo, K.; Okulov, I.; Xue, W. Island scan length effect on processability, microstructure, and mechanical property of laser powder bed fusion processed nickel matrix composites. Mater. Sci. Eng. A 2023, 864, 144559. [Google Scholar] [CrossRef]
- Sanchez, S.; Hyde, C.J.; Ashcroft, I.A.; Ravi, G.A.; Clare, A.T. Multi-laser scan strategies for enhancing creep performance in LPBF. Addit. Manuf. 2021, 41, 101948. [Google Scholar] [CrossRef]
- Sanchez, S.; Gaspard, G.; Hyde, C.J.; Ashcroft, I.A.; Ravi, G.A.; Clare, A.T. On the thermomechanical aging of LPBF alloy 718. Mater. Sci. Eng. A 2022, 841, 142998. [Google Scholar] [CrossRef]
- Adegoke, O.; Kumara, C.; Thuvander, M.; Deirmina, F.; Andersson, J.; Brodin, H.; Harlin, P.; Pederson, R. Scanning electron microscopy and atom probe tomography characterization of laser powder bed fusion precipitation strengthening nickel-based superalloy. Micron 2023, 171, 103472. [Google Scholar] [CrossRef]
- Kimura, T.; Nakamoto, T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater. Des. 2016, 89, 1294–1301. [Google Scholar] [CrossRef]
- Kumar, M.; Gibbons, G.J.; Das, A.; Manna, I.; Tanner, D.; Kotadia, H.R. Additive manufacturing of aluminum alloy 2024 by laser powder bed fusion: Microstructural evolution, defects, and mechanical properties. Rapid Prototyp. J. 2021, 27, 1388–1397. [Google Scholar] [CrossRef]
- Vikram, R.J.; Gokulnath, S.A.; Prashanth, K.G.; Suwas, S. Effect of scanning strategy on microstructure and texture evolution in a selective laser melted Al-33Cu eutectic alloy. J. Alloys Compd. 2023, 936, 168098. [Google Scholar] [CrossRef]
- Nugraha, A.D.; Ruli; Supriyanto, E.; Rasgianti; Prawara, B.; Martides, E.; Junianto, E.; Wibowo, A.; Sentanuhady, J.; Muflikhun, M.A. First-rate manufacturing process of primary air fan (PAF) coal power plant in Indonesia using laser powder bed fusion (LPBF) technology. J. Mater. Res. Technol. 2022, 18, 4075–4088. [Google Scholar] [CrossRef]
- Liu, M.; Wei, K.; Zeng, X. High power laser powder bed fusion of AlSi10Mg alloy: Effect of layer thickness on defect, microstructure, and mechanical property. Mater. Sci. Eng. A 2022, 842, 143107. [Google Scholar] [CrossRef]
- Qin, H.; Fallah, V.; Dong, Q.; Brochu, M.; Daymond, M.R.; Gallerneault, M. Solidification pattern, microstructure, and texture development in Laser Powder Bed Fusion (LPBF) of Al10SiMg alloy. Mater. Charact. 2018, 145, 29–38. [Google Scholar] [CrossRef]
- Wang, T.; Yang, X.; Wang, Y.; Zhu, H. Effect of 0.5 wt% Zr on defects, microstructure, and mechanical properties of Al-3.6Zn-0.6Mg alloy fabricated by laser powder bed fusion. Metals 2022, 156, 108612. [Google Scholar] [CrossRef]
- Griffiths, S.; Rossell, M.D.; Croteau, J.; Vo, N.Q.; Dunand, D.C.; Leinenbach, C. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy. Mater. Charact. 2018, 143, 34–42. [Google Scholar] [CrossRef]
- Snopinski, P.; Matus, K.; Hilšer, O.; Rusz, S. Effects of Built Direction and Deformation Temperature on the Grain Refinement of 3D Printed AlSi10Mg Alloy Processed by Equal Channel Angular Pressing (ECAP). Materials 2023, 16, 4288. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Poungsiri, K.; Shinjo, J.; Panwisawas, C.; Reed, R.C.; Puncreobutr, C.; Tumkanon, K.; Kuimalee, S.; Lohwongwatana, B. Additive manufacturing of tantalum scaffolds: Processing, microstructure, and process-induced defects. Int. J. Refract. Met. Hard Mater. 2023, 112, 106132. [Google Scholar] [CrossRef]
- Guaglione, F.; Caprio, L.; Previtali, B.; Demir, A.G. Single point exposure LPBF for the production of biodegradable Zn-alloy lattice structures. Addit. Manuf. 2021, 48 Part A, 102426. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Chen, C.; Geng, Z.; Wu, Y.; Li, D.; Zhang, T.; Guo, Y. Additive manufacturing of pure niobium by laser powder bed fusion: Microstructure, mechanical behavior and oxygen assisted embrittlement. Mater. Sci. Eng. A 2023, 866, 144691. [Google Scholar] [CrossRef]
- Robinson, J.; Stanford, M.; Arjunan, A. Correlation between selective laser melting parameters, pore defects and tensile properties of 99.9% silver. Mater. Today Commun. 2020, 25, 101550. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, D.; Yang, Y.; Zhang, H.; Chen, H.; Dai, D.; Lin, K. Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering 2019, 5, 736–745. [Google Scholar] [CrossRef]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Plessis, A.D.; Stock, S.R. X-ray computed tomography. Nat. Rev. Methods Primers 2021, 1, 18. [Google Scholar] [CrossRef]
- Montalbano, T.; Briggs, B.N.; Waterman, J.L.; Nimer, S.; Peitsch, C.; Sopcisak, J.; Trigg, D.; Storck, S. Uncovering the coupled impact of defect morphology and microstructure on the tensile behavior of ti-6Al-4V fabricated via laser powder bed fusion. J. Mater. Process. Technol. 2021, 294, 117113. [Google Scholar] [CrossRef]
- Marattukalam, J.J.; Karlsson, D.; Pacheco, V.; Beran, P.; Wiklund, U.; Jansson, U.; Hjörvarsson, B.; Sahlberg, M. The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater. Des. 2020, 193, 108852. [Google Scholar] [CrossRef]
- Mussatto, A.; Groarke, R.; Vijayaraghavan, R.K.; Hughes, C.; Obeidi, M.A.; Doğu, M.N.; Yalçin, M.A.; McNally, P.J.; Delaure, Y.; Brabazon, D. Assessing dependency of part properties on the printing location in laser-powder bed fusion metal additive manufacturing. Mater. Today Commun. 2022, 30, 103209. [Google Scholar] [CrossRef]
- Cabrini, M.; Carrozza, A.; Lorenzi, S.; Pastore, T.; Testa, C.; Manfredi, D.; Fino, P.; Scenini, F. Influence of surface finishing and heat treatments on the corrosion resistance of LPBF-produced Ti-6Al-4V alloy for biomedical applications. J. Mater. Process. Technol. 2022, 308, 117730. [Google Scholar] [CrossRef]
- Lamb, K.; Koube, K.; Kacher, J.; Sloop, T.; Thadhani, N.; Babu, S.S. Anisotropic spall failure of additively manufactured 316L stainless steel. Addit. Manuf. 2023, 66, 103464. [Google Scholar] [CrossRef]
- Jiang, M.G.; Chen, Z.W.; Tong, J.D.; Liu, C.Y.; Xu, G.; Liao, H.B.; Wang, P.; Wang, X.Y.; Xu, M.; Lao, C.S. Strong and ductile reduced activation ferritic/martensitic steel additively manufactured by selective laser melting. Mater. Res. Lett. 2019, 7, 426–432. [Google Scholar] [CrossRef]
- Mutua, J.; Nakata, S.; Onda, T.; Chen, Z.C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 2018, 139, 486–497. [Google Scholar] [CrossRef]
- Mussatto, A.; Groarke, R.; Vijayaraghavan, R.K.; Obeidi, M.A.; McNally, P.J.; Nicolisi, V. Laser-powder bed fusion of silicon carbide reinforced 316L stainless steel using a sinusoidal laser scanning strategy. J. Mater. Res. Technol. 2022, 18, 2672–2698. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, W.H.; Gong, X.Z.; Niu, L.H.; Wang, Y.H.; Li, S.; Xu, X.; Wang, C.Y.; Zhang, L.C. Interplay between hierarchical microstructure and graded residual stress in a stainless steel fabricated by laser powder bed fusion. Mater. Charact. 2023, 200, 112912. [Google Scholar] [CrossRef]
- Gainov, R.R.; Faidel, D.; Behr, W.; Natour, G.; Pauly, F.; Willms, H.; Vagizov, F.G. Investigation of LPBF A800H steel parts using Computed Tomography and Mössbauer spectroscopy. Addit. Manuf. 2020, 32, 101035. [Google Scholar] [CrossRef]
- Forien, J.-B.; Calta, N.P.; DePond, P.J.; Guss, G.M.; Roehling, T.T.; Matthews, M.J. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex-situ X-ray radiography. Addit. Manuf. 2020, 35, 101336. [Google Scholar] [CrossRef]
- Guerra, M.G.; Lafirenza, M.; Errico, V.; Angelastro, A. In-process dimensional and geometrical characterization of laser-powder bed fusion lattice structures through high-resolution optical tomography. Opt. Laser Technol. 2023, 162, 109252. [Google Scholar] [CrossRef]
- Puttonen, T.; Chekurov, S.; Kuva, J.; Bjrökstrand, R.; Partanen, J.; Salmi, M. Influence of feature size and shape on corrosion of 316L lattice structures fabricated by laser powder bed fusion. Addit. Manuf. 2023, 61, 103288. [Google Scholar] [CrossRef]
- Attar, H.; Prashanth, K.G.; Zhang, L.-C.; Calin, M.; Okulov, I.V.; Scudino, S.; Yang, C.; Eckert, J. Effect of Powder Particle Shape on the Properties of In Situ Ti-TiB Composite Materials Produced by Selective Laser Melting. J. Mater. Sci. Technol. 2015, 31, 1001–1005. [Google Scholar] [CrossRef]
- Attar, H.; Löber, L.; Funk, A.; Calin, M.; Zhang, L.; Prashanth, K.; Scudino, S.; Zhang, Y.; Eckert, J. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 2015, 625, 350–356. [Google Scholar] [CrossRef]
- Baldin, E.K.; Castro, V.V.d.; Santos, P.B.; Aguzzoli, C.; Bernardi, F.; Medeiros, T.; Maurmann, N.; Pranke, P.; Frassini, R.; Roesh, M.E.; et al. Copper incorporation by low-energy ion implantation in PEO-coated additively manufactured Ti6Al4V ELI: Surface microstructure, cytotoxicity and antibacterial behavior. J. Alloys Compd. 2023, 940, 168735. [Google Scholar] [CrossRef]
- Promoppatum, P.; Chayasombat, B.; Soe, A.; Sombatmai, A.; Sato, Y.; Suga, T.; Tsukamoto, M. In-situ modification of thermal, microstructural, and mechanical responses by altering scan lengths in laser powder bed fusion additive manufacturing of Ti-6Al-4V. Opt. Laser Technol. 2023, 164, 109525. [Google Scholar] [CrossRef]
- Gray, J.; Depcik, C.; Sietins, J.M.; Kudzal, A.; Rogers, R.; Cho, K. Production of the cylinder head and crankcase of a small internal combustion engine using metal laser powder bed fusion. J. Manuf. Process. 2023, 97, 100–114. [Google Scholar] [CrossRef]
- Marcu, T.; Todea, M.; Maines, L.; Leordean, D.; Berce, P.; Popa, C. Metallurgical and mechanical characterization of titanium-based materials for endosseous applications obtained by selective laser melting. Powder Metall. 2012, 55, 309–314. [Google Scholar] [CrossRef]
- Meng, L.X.; Ben, D.D.; Yang, H.J.; Ji, H.B.; Lian, D.L.; Zhu, Y.K.; Chen, J.; Yi, J.L.; Wang, L.; Yang, J.B.; et al. Effects of embedded spherical pore on the tensile properties of a selective laser melted Ti6Al4V alloy. Mater. Sci. Eng. 2021, 815, 141254. [Google Scholar] [CrossRef]
- Zhou, X.; Dai, N.; Chu, M.; Wang, L.; Li, D.; Zhou, L.; Cheng, X. X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with Selective Laser Melting technology. Int. J. Adv. Manuf. Technol. 2020, 106, 3–14. [Google Scholar] [CrossRef]
- Parizia, S.; Marchese, G.; Rashidi, M.; Lorusso, M.; Hryha, E.; Manfredi, D.; Biamino, S. Effect of heat treatment on microstructure and oxidation properties of Inconel 625 processed by LPBF. J. Alloys Compd. 2020, 846, 156418. [Google Scholar] [CrossRef]
- Mirkoohi, E.; Liang, S.Y.; Tran, H.C.; Lo, Y.L.; Chang, Y.C.; Lin, H.Y. Mechanics modeling of residual stress considering effect of preheating in laser powder bed fusion. J. Manuf. Mater. Process. 2021, 5, 46. [Google Scholar] [CrossRef]
- Song, X.; Feih, S.; Zhai, W.; Sun, C.-N.; Li, F.; Maiti, R.; Wei, J.; Yang, Y.; Oancea, V.; Brandt, L.R. Advances in additive manufacturing process Simulation: Residual stresses and distortion predictions in complex metallic components. Mater. Des. 2020, 193, 108779. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Liu, F.; Zhang, W. Influence of the scanning angle on the grain growth and mechanical properties of Ni10Cr6W1Fe9Ti1 HEA fabricated using the LPBF–AM method. Mater. Sci. Eng. A 2023, 864, 144596. [Google Scholar] [CrossRef]
- Liu, X.; Hu, R.; Zou, H.; Yang, C.; Luo, X.; Bai, J.; Ma, R. Investigation of cracking mechanism and yield strength associated with scanning strategy for an additively manufactured nickel-based superalloy. J. Alloys Compd. 2023, 938, 168532. [Google Scholar] [CrossRef]
- Naragani, D.P.; Park, J.-S.; Kenesei, P.; Sangid, M.D. Void coalescence and ductile failure in IN718 investigated via high-energy synchrotron X-ray tomography and diffraction. J. Mech. Phys. Solids 2020, 145, 104155. [Google Scholar] [CrossRef]
- Cordova, L.; Bor, T.; Smit, M.d.; Carmignato, S.; Campos, M.; Tinga, T. Effects of powder reuse on the microstructure and mechanical behavior of Al-Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF). Addit. Manuf. 2020, 36, 101625. [Google Scholar] [CrossRef]
- Novak, N.; Biasetto, L.; Rebesan, P.; Zanini, F.; Carmignato, S.; Krstulović-Opara, L.; Vesenjak, M.; Ren, Z. Experimental and computational evaluation of tensile properties of additively manufactured hexa-and tetrachiral auxetic cellular structures. Addit. Manuf. 2021, 45, 102022. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, V.K.; Joffre, T.; Rigo, O.; Arvieu, C.; Guen, E.L.; Lacoste, E. Inline Drift Detection Using Monitoring Systems and Machine Learning in Selective Laser Melting. Adv. Eng. Mater. 2020, 22, 12. [Google Scholar] [CrossRef]
- Johnson, Q.C.; Laursen, C.M.; Spear, A.D.; Carroll, J.D.; Noell, P.J. Analysis of the interdependent relationship between porosity, deformation, and crack growth during compression loading of LPBF AlSi10Mg. Mater. Sci. Eng. A 2022, 852, 143640. [Google Scholar] [CrossRef]
- Wits, W.W.; Amsterdam, E. Fatigue prediction and life assessment method for metal laser powder bed fusion parts. CIRP Ann. 2023, 72, 129–132. [Google Scholar] [CrossRef]
- Chen, H.; Patel, S.; Vlasea, M.; Zou, Y. Enhanced tensile ductility of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scr. Mater. 2022, 221, 114954. [Google Scholar] [CrossRef]
- Atapour, M.; Sanaei, S.; Wei, Z.; Sheikholeslam, M.; Henderson, J.D.; Eduok, U.; Hosein, Y.K.; Holdsworth, D.W.; Hedberg, Y.S.; Ghorbani, H.R. In vitro corrosion and biocompatibility behavior of CoCrMo alloy manufactured by laser powder bed fusion parallel and perpendicular to the build direction. Electrochim. Acta 2023, 445, 142059. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, H.; Hu, Z.; Zeng, X.; Zhong, F. Selective Laser Melting of Cu10Zn alloy powder using high laser power. Powder Technol. 2019, 342, 613–620. [Google Scholar] [CrossRef]
- Kim, F.H.; Moylan, S.P.; Garboczi, E.J.; Slotwinski, J.A. Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis. Addit. Manuf. 2017, 17, 23–38. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Hu, J.; Liu, H.; Wu, Y.; Zhou, Q. Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Opt. Laser Technol. 2021, 142, 107246. [Google Scholar] [CrossRef]
- Grasso, M.; Laguzza, V.; Semeraro, Q.; Colosimo, B.M. In-process monitoring of selective laser melting: Spatial detection of defects via image data analysis. J. Manuf. Sci. Eng. 2017, 139, 051001. [Google Scholar] [CrossRef]
- Dolan, E.B.; Verbruggen, S.W.; Rolfe, R.A. Chapter 1–Techniques for studying mechanobiology. In Mechanobiology in Health and Disease; Academic Press: Cambridge, MA, USA, 2018; pp. 1–53. [Google Scholar] [CrossRef]
- Sun, Z.; Chueh, Y.H.; Li, L. Multiphase mesoscopic Simulation of multiple and functionally gradient materials laser powder bed fusion additive manufacturing processes. Addit. Manuf. 2020, 35, 101448. [Google Scholar] [CrossRef]
- Köhler, M.L.; Kunz, J.; Herzog, S.; Kaletsch, A.; Broeckmann, C. Microstructure analysis of novel LPBF-processed duplex stainless steels correlated to their mechanical and corrosion properties. Mater. Sci. Eng. A 2021, 801, 140432. [Google Scholar] [CrossRef]
- Alfieri, V.; Giannella, V.; Caiazzo, F.; Sepe, R. Influence of position and building orientation on the static properties of LPBF specimens in 17-4 PH stainless steel. Forces Mech. 2022, 8, 100108. [Google Scholar] [CrossRef]
- Wang, P.; Lei, H.; Zhu, X.; Chen, H.-C.; Fang, D. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J. Alloys Compd. 2019, 789, 852–859. [Google Scholar] [CrossRef]
- Liu, C.Y.; Tong, J.D.; Jiang, M.G.; Chen, Z.W.; Xu, G.; Liao, H.B.; Wang, P.; Wang, X.Y.; Xu, M.; Lao, C.S. Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel. Mater. Sci. Eng. 2019, 766, 138364. [Google Scholar] [CrossRef]
- Nie, J.; Wei, L.; Li, D.-l.; Zhao, L.; Jiang, Y.; Li, Q. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431graded material. Addit. Manuf. 2020, 35, 101295. [Google Scholar] [CrossRef]
- Gobert, C.; Reutzel, E.W.; Petrich, J.; Nassar, A.R.; Phoha, S. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high-resolution imaging. Addit. Manuf. 2018, 21, 517–528. [Google Scholar] [CrossRef]
- Bonatti, C.; Mohr, D. Mechanical performance of additively manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. J. Mech. Phys. Solids 2019, 122, 1–26. [Google Scholar] [CrossRef]
- Wilson-Heid, A.E.; Qin, S.; Beese, A.M. Multiaxial plasticity and fracture behavior of stainless steel 316L by laser powder bed fusion: Experiments and computational modeling. Acta Mater. 2020, 199, 578–592. [Google Scholar] [CrossRef]
- Wilson-Heid, A.E.; Beese, A.M. Combined effects of porosity and stress state on the failure behavior of laser powder bed fusion stainless steel 316L. Addit. Manuf. 2021, 39, 101862. [Google Scholar] [CrossRef]
- Jin, P.; Tang, Q.; Song, J.; Feng, Q.; Guo, F.; Fan, X.; Jin, M.; Wang, F. Numerical investigation of the mechanism of interfacial dynamics of the melt pool and defects during laser powder bed fusion. Opt. Laser Technol. 2021, 143, 107289. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, A. Govind, Development and validation of a material evaporation assisted thermal model for time-efficient calculation of thermal and solidification parameters during laser powder bed fusion process for Ti6Al4V. Addit. Manuf. 2023, 66, 103453. [Google Scholar] [CrossRef]
- Mishurova, T.; Artzt, K.; Rehmer, B.; Haubrich, J.; Ávila, L.; Schoenstein, F.; Serrano-Munoz, I.; Requena, G.; Bruno, G. Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature. Int. J. Fatigue 2021, 148, 106239. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Wu, X.; Dargusch, M.S. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater. Sci. Eng. A 2017, 705, 385–393. [Google Scholar] [CrossRef]
- Attar, H.; Bermingham, M.; Ehtemam-Haghighi, S.; Dehghan-Manshadi, A.; Kent, D.; Dargusch, M. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Mater. Sci. Eng. A 2019, 760, 339–345. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Li, L.; Wang, C.; Wang, Q.; Liu, Y. Interior defect-induced crack initiation mechanism and initial growth behavior for Ti6Al4V alloy fabricated using laser powder bed fusion. J. Mater. Res. Technol. 2022, 21, 2089–2104. [Google Scholar] [CrossRef]
- Alghamdi, A.; Maconachie, T.; Downing, D.; Brandt, M.; Qian, M.; Leary, M. Effect of additive manufactured lattice defects on mechanical properties: An automated method for the enhancement of lattice geometry. Int. J. Adv. Manuf. Technol. 2020, 108, 957–971. [Google Scholar] [CrossRef]
- Becker, T.; Altenburg, S.J.; Scheuschner, N.; Bresse, P.P.; Metz, C.; Hilgenberg, K.; Maierhofer, C. In-situ monitoring of the Laser Powder Bed Fusion build process via bi-chromatic optical tomography. Procedia CIRP 2022, 111, 340–344. [Google Scholar] [CrossRef]
- Singh, A.; Caprio, L.; Previtali, B.; Demir, A.G. Processability of pure Cu by LPBF using a ns-pulsed green fiber laser. Opt. Laser Technol. 2022, 154, 108310. [Google Scholar] [CrossRef]
- Lodhi, M.J.K.; Deen, K.M.; Greenlee-Wacker, M.C.; Haider, W. Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit. Manuf. 2019, 27, 8–19. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhuang, X. Quasi-in-situ monitoring of passive film growth of Inconel 718 alloy. Mater. Lett. 2023, 335, 133743. [Google Scholar] [CrossRef]
- Montazeri, M.; Nassar, A.R.; Dunbar, A.J.; Rao, P. In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Trans. 2019, 52, 500–515. [Google Scholar] [CrossRef]
- Hooper, P.A. Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf. 2018, 22, 548–559. [Google Scholar] [CrossRef]
- Santospirito, S.P.; Laptka, R.; Cerniglia, D.; Slyk, K.; Luo, B.; Panggabean, D.; Rudlin, J. Defect detection in laser powder deposition components by laser thermography and laser ultrasonic inspections. In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIII; SPIE: San Diego, CA, USA, 2013; p. 8611. [Google Scholar] [CrossRef]
- Clijsters, S.; Craeghs, T.; Buls, S.; Kempen, K.; Kruth, J.-P. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int. J. Adv. Manuf. Technol. 2014, 75, 1089–1101. [Google Scholar] [CrossRef]
- Andreyevna, D.M.; Vladimirovich, Z.I.; Ilyich, T.V.; Phillippe, B.; Yuryevich, S.I. Determination of true temperature in selective laser melting of metal powder using infrared camera. Mater. Sci. Forum 2015, 834, 93–102. [Google Scholar] [CrossRef]
- Cerniglia, D.; Montinaro, N. Defect Detection in Additively Manufactured Components: Laser Ultrasound and Laser Thermography Comparison. Procedia Struct. Integr. 2018, 8, 154–162. [Google Scholar] [CrossRef]
- Montinaro, N.; Cerniglia, D.; Pitarresi, G. Defect detection in additively manufactured titanium prosthesis by flying laser scanning thermography. Procedia Struct. Integr. 2018, 12, 165–172. [Google Scholar] [CrossRef]
- Wei, J.; He, Y.; Wang, F.; He, Y.; Rong, X.; Chen, M.; Wang, Y.; Yue, H.; Liu, J. Convolutional neural network assisted infrared imaging technology: An enhanced online processing state monitoring method for laser powder bed fusion. Infrar. Phys. Technol. 2023, 131, 104661. [Google Scholar] [CrossRef]
- Lough, C.S.; Wang, X.; Smith, C.C.; Landers, R.G.; Bristow, D.A.; Drallmeier, J.A.; Brown, B.; Kinzel, E.C. Correlation of SWIR imaging with LPBF 304L stainless steel part properties. Addit. Manuf. 2020, 35, 101359. [Google Scholar] [CrossRef]
- Estalaki, S.M.; Lough, C.S.; Landers, R.G.; Kinzel, E.C.; Luo, T. Predicting defects in laser powder bed fusion using in-situ thermal imaging data and machine learning. Addit. Manuf. 2022, 58, 103008. [Google Scholar] [CrossRef]
- Vallabh, C.K.P.; Zhao, X. Melt pool temperature measurement and monitoring during laser powder bed fusion based additive manufacturing via single-camera two-wavelength imaging pyrometry (STWIP). J. Manuf. Process. 2022, 79, 486–500. [Google Scholar] [CrossRef]
- Vallabh, C.K.P.; Sridar, S.; Xiong, W.; Zhao, X. Predicting melt pool depth and grain length using multiple signatures from in-situ single camera two-wavelength imaging pyrometry for laser powder bed fusion. J. Mater. Process. Technol. 2022, 308, 117724. [Google Scholar] [CrossRef]
- Zhang, H.; Vallabh, C.K.P.; Zhao, X. Registration and fusion of large-scale melt pool temperature and morphology monitoring data demonstrated for surface topography prediction in LPBF. Addit. Manuf. 2022, 58, 103075. [Google Scholar] [CrossRef]
- Forien, J.-B.; Guss, G.; Khairallah, S.; Smith, W.; DePond, P.; Matthews, M.; Calta, N. Detecting missing struts in metallic micro-lattices using high-speed melt pool thermal monitoring. Addit. Manuf. Lett. 2023, 4, 100112. [Google Scholar] [CrossRef]
- Duong, E.; Masseling, L.; Knaak, C.; Dionne, P.; Megahed, M. Scan path resolved thermal modeling of LPBF. Addit. Manuf. Lett. 2022, 3, 100047. [Google Scholar] [CrossRef]
- Kozjek, D.; Porter, C.; Carter, F.M., III; Mogonye, J.-E.; Cao, J. Data-driven prediction of geometry- and toolpath sequence-dependent intra-layer process conditions variations in laser powder bed fusion. J. Manuf. Process. 2023, 100, 34–46. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Kattner, U.R.; Moon, K.-W.; Perepezko, J.H. Chapter Five-DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing. In Methods for Phase Diagram Determination; Elsevier: Amsterdam, The Netherlands, 2007; pp. 151–221. [Google Scholar] [CrossRef]
- Zhuravlev, E.; Milkereit, B.; Yang, B.; Heiland, S.; Vieth, P.; Voigt, M.; Schaper, M.; Grundmeier, G.; Schick, C.; Kessler, O. Assessment of AlZnMgCu alloy powder modification for crack-free laser powder bed fusion by differential fast scanning calorimetry. Mater. Des. 2021, 204, 109677. [Google Scholar] [CrossRef]
- Takata, N.; Liu, M.; Li, H.; Suzuki, A.; Kobashi, M. Fast scanning calorimetry study of Al alloy powder for understanding microstructural development in laser powder bed fusion. Mater. Des. 2022, 219, 110830. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Lemana, Z.; Baharudin, B.T.H.T. A review of the application of acoustic emission technique in engineering. Struct. Eng. Mech. 2015, 54, 1075–1095. [Google Scholar] [CrossRef]
- Strantza, M.; Ganeriwala, R.K.; Clausen, B.; Phan, T.Q.; Levine, L.E.; Pagan, D.C.; Ruff, J.P.C.; King, W.E.; Johnson, N.S.; Martinez, R.M.; et al. Effect of the scanning strategy on the formation of residual stresses in additively manufactured Ti-6Al-4V. Addit. Manuf. 2021, 45, 102003. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Li, Z.; Davies, C.M.; Maharaj, C.; Dear, J.P.; Hooper, P.A. Acoustic resonance testing of additive manufactured lattice structures. Addit. Manuf. 2018, 24, 566–576. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Pappalettera, G.; Kanna, V.P.; Renna, G. Acoustic emission signal processing for the assessment of corrosion behavior in additively manufactured AlSi10Mg. Mech. Mater. 2022, 170, 104347. [Google Scholar] [CrossRef]
- Seleznev, M.; Gustmann, T.; Friebel, J.M.; Peuker, U.A.; Kühn, U.; Hufenbach, J.K.; Hiermann, H.; Weidner, A. In situ detection of cracks during laser powder bed fusion using acoustic emission monitoring. Addit. Manuf. Lett. 2022, 3, 100099. [Google Scholar] [CrossRef]
- Trolinger, J.D.; Lal, A.; Dioumaev, A.; Dimas, D. A non-destructive evaluation system for additive manufacturing based on acoustic signature analysis with laser Doppler vibrometry. In Interferometry XIX; SPIE: San Diego, CA, USA, 2018; p. 107490. [Google Scholar] [CrossRef]
- Ye, D.; Hong, G.S.; Zhang, Y.; Zhu, K.; Fuh, J.Y.H. Defect detection in selective laser melting technology by acoustic signals with deep belief networks. Int. J. Adv. Manuf. Technol. 2018, 96, 2791–2801. [Google Scholar] [CrossRef]
- Drissi-Daoudi, R.; Masinelli, G.; Formanoir, C.; Wasmer, K.; Jhabvala, J.; Logé, R.E. Acoustic emission for the prediction of processing regimes in Laser Powder Bed Fusion, and the generation of processing maps. Addit. Manuf. 2023, 67, 103484. [Google Scholar] [CrossRef]
- Kononenko, D.Y.; Nikonova, V.; Seleznev, M.; Brink, J.v.d.; Chernyavsky, D. An in-situ crack detection approach in additive manufacturing based on acoustic emission and machine learning. Addit. Manuf. Lett. 2023, 5, 100130. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratting, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Jinachandran, S.; Rajan, G. Fibre Bragg Grating Based Acoustic Emission Measurement System for Structural Health Monitoring Applications. Materials 2021, 14, 897. [Google Scholar] [CrossRef]
- Wasmer, K.; Le-Quang, T.; Meylan, B.; Shevchik, S.A. In situ Quality monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach. J. Mater. Eng. Perform. 2018, 28, 666–672. [Google Scholar] [CrossRef]
- Shevchik, S.A.; Kenel, C.; Leinenbach, C.; Wasmer, K. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit. Manuf. 2018, 21, 598–604. [Google Scholar] [CrossRef]
- Shevchik, S.A.; Masinelli, G.; Kenel, C.; Leinenbach, C.; Wasmer, K. Deep Learning for in situ and Real-Time Quality monitoring in Additive Manufacturing Using Acoustic Emission. IEEE Trans. Ind. Inform. 2019, 15, 5194–5203. [Google Scholar] [CrossRef]
- Johnson, W.L.; Benzing, J.T.; Kafka, O.L.; Moser, N.H.; Harris, D.; Iten, J.J.; Hrabe, N.W. Sensitivity of acoustic nonlinearity and loss to residual porosity in additively manufactured aluminum. NDT E Int. 2023, 135, 102801. [Google Scholar] [CrossRef]
- Song, Y.; Zi, X.; Fu, Y.; Li, X.; Chen, C.; Zhou, K. Nondestructive testing of additively manufactured material based on ultrasonic scattering measurement. Measurement 2018, 118, 105–112. [Google Scholar] [CrossRef]
- Davis, G.; Nagarajah, R.; Palanisamy, S.; Rashid, R.A.R.; Pajagopal, P.; Balasubramaniam, K. Laser ultrasonic inspection of additive manufactured components. Int. J. Adv. Manuf. Technol. 2019, 102, 2571–2579. [Google Scholar] [CrossRef]
- Honarvar, F.; Patel, S.; Vlasea, M.; Amini, H.; Varvani-Farahani, A. Nondestructive characterization of laser powder bed fusion components using high-frequency phased array ultrasonic testing. J. Mater. Eng. Perform. 2021, 30, 6766–6776. [Google Scholar] [CrossRef]
- Everton, S.; Dickens, P.; Tuck, C.J.; Dutton, B. Identification of Sub-Surface Defects in Parts Produced by Additive Manufacturing, Using Laser-Generated Ultrasound; University of Nottingham: Nottingham, UK, 2019; Available online: https://www.nottingham.ac.uk/research/groups/advanced-manufacturing-technology-research-group/documents/manufacturing-metrology-team/sarah-mst-2016.pdf (accessed on 7 July 2024).
- Everton, S.; Dickens, P.; Tuck, C.; Dutton, B. Using laser ultrasound to detect subsurface defects in metal laser powder bed fusion components. J. Miner. 2018, 70, 378–383. [Google Scholar] [CrossRef]
- Liu, S.; Jia, K.; Wan, H.; Ding, L.; Xu, X.; Cheng, L.; Zhang, S.; Yan, X.; Lu, M.; Ma, G.; et al. Inspection of the internal defects with different size in Ni and Ti additive manufactured components using laser ultrasonic technology. Opt. Laser Technol. 2022, 146, 107543. [Google Scholar] [CrossRef]
- Hayashi, T.; Mori, N.; Ueno, T. Non-contact imaging of subsurface defects using a scanning laser source. Ultrasonics 2022, 119, 106560. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, L.; Peng, Y.; Wang, M.; Xue, Z.; Wu, J.; Yang, Y.; Zhang, J. Ultra-fast laser ultrasonic imaging method for online inspection of metal additive manufacturing. Opt. Laser Technol. 2023, 160, 107244. [Google Scholar] [CrossRef]
- Slotwinski, J.A.; Garboczi, E.J.; Hebenstreit, K.M. Porosity measurements and analysis for metal additive manufacturing process control. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 494–528. [Google Scholar] [CrossRef]
- Ladewig, A.; Schlick, G.; Fisser, M.; Schulze, V.; Glatzel, U. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Addit. Manuf. 2016, 10, 1–9. [Google Scholar] [CrossRef]
- Roy, M.; Walton, K.; Harley, J.B.; Skliar, M. Ultrasonic Evaluation of Segmental Variability in Additively Manufactured Metal Components. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar] [CrossRef]
- Kim, C.; Yin, H.; Shmatok, A.; Prorok, B.C.; Lou, X.; Matlack, K.H. Ultrasonic nondestructive evaluation of laser powder bed fusion 316l stainless steel. Addit. Manuf. 2021, 38, 101800. [Google Scholar] [CrossRef]
- Raffestin, M.; Domashenkov, A.; Bertrand, P.; Faverjon, P.; Courbon, C. Ultrasonic diagnostic for in situ control in metal additive manufacturing. Measurement 2023, 206, 112244. [Google Scholar] [CrossRef]
- McGuigan, S.; Arguelles, A.P.; Obaton, A.-F.; Donmez, A.M.; Riviere, J.; Shokouhi, P. Resonant ultrasound spectroscopy for quality control of geometrically complex additively manufactured components. Addit. Manuf. 2021, 39, 101808. [Google Scholar] [CrossRef]
- Angel, R.J.; Jackson, J.M.; Reichmann, H.J.; Speziale, S. Elasticity measurements on minerals: A review. Eur. J. Mineral. 2009, 21, 525–550. [Google Scholar] [CrossRef]
- Garlea, E.; Choo, H.; Sluss, C.C.; Koehler, M.R.; Bridges, R.L.; Xiao, X.; Ren, Y.; Jared, B.H. Variation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. Mater. Sci. Eng. A 2019, 763, 138032. [Google Scholar] [CrossRef]
- Bozek, E.; McGuigan, S.; Snow, Z.; Reutzel, E.W.; Rivière, J.; Shokouhi, P. Nonlinear resonance ultrasonic spectroscopy (NRUS) for the quality control of additively manufactured samples. NDT E Int. 2021, 123, 102495. [Google Scholar] [CrossRef]
- Rossin, J.; Leser, P.; Pusch, K.; Frey, C.; Murray, S.P.; Torbet, C.J.; Smith, S.; Daly, S.; Pollock, T.M. Bayesian inference of elastic constants and texture coefficients in additively manufactured cobalt-nickel superalloys using resonant ultrasound spectroscopy. Acta Mater. 2021, 220, 117287. [Google Scholar] [CrossRef]
- Bourdais, F.L.; Rathore, J.S.; Ly, C.; Pellat, M.; Vienne, C.; Bonnefoy, V.; Bergeaud, V.; Garandet, J.-P. On the potential of Resonant Ultrasound Spectroscopy applied to the non-destructive characterization of the density of (LPBF) additively manufactured materials. Addit. Manuf. 2022, 58, 103037. [Google Scholar] [CrossRef]
- Lopez, A.B.; Santos, J.; Sousa, J.P.; Santos, T.G.; Quintino, L. Phased array ultrasonic inspection of metal additive manufacturing parts. J. Nondestruct. Eval. 2019, 38, 62. [Google Scholar] [CrossRef]
- Allam, A.; Alfahmi, O.; Sugino, C.; Harding, M.; Ruzzene, M.; Erturk, A. Ultrasonic testing of thick and thin Inconel 625 alloys manufactured by laser powder bed fusion. Ultrasonics 2022, 125, 106780. [Google Scholar] [CrossRef]
- Stratoudaki, T.; Javadi, Y.; Kerr, W.; Wilcox, P. Laser induced phased arrays for remote ultrasonic imaging of additive manufactured components. In Proceedings of the 57th Annual Conference of the British Institute of Non-Destructive Testing, Nottingham, UK, 10–12 September 2018. [Google Scholar]
- Du, W.; Bai, Q.; Wang, Y.; Zhang, B. Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing. Int. J. Adv. Manuf. Technol. 2018, 95, 3185–3195. [Google Scholar] [CrossRef]
- Goodall, A.D.; Yiannakou, G.; Chechik, L.; Mitchell, R.L.; Jewell, G.W.; Todd, I. Geometrical control of eddy currents in additively manufactured Fe-Si. Mater. Des. 2023, 230, 112002. [Google Scholar] [CrossRef]
- Smith, W.L.; Roehling, J.D.; Strantza, M.; Ganeriwala, R.K.; Ashby, A.S.; Vrancken, B.; Clausen, B.; Guss, G.M.; Brown, D.W.; McKeown, J.T.; et al. Residual stress analysis of in situ surface layer heating effects on laser powder bed fusion of 316L stainless steel. Addit. Manuf. 2021, 47, 102252. [Google Scholar] [CrossRef]
- Zadeh, M.K.; Yeganeh, M.; Shoushtari, M.T.; Ramezanalizadeh, H.; Seidi, F. Microstructure, corrosion behavior, and biocompatibility of Ti-6Al-4 V alloy fabricated by LPBF and EBM techniques. Mater. Today Commun. 2022, 31, 103502. [Google Scholar] [CrossRef]
- Ghosh, A.; Kumar, A.; Wang, X.; Kietzig, A.-M.; Brochu, M. Analysis of the effect of surface morphology on tensile behavior of LPBF SS316L microstruts. Mater. Sci. Eng. A 2022, 831, 142226. [Google Scholar] [CrossRef]
- Ewald, F.C.; Brenne, F.; Gustmann, T.; Vollmer, M.; Krooß, P.; Niendorf, T. Laser Powder Bed Fusion Processing of Fe-Mn-Al-Ni Shape Memory Alloy—On the Effect of Elevated Platform Temperatures. Metals 2021, 11, 185. [Google Scholar] [CrossRef]
- Jiang, C.-P.; Maidhah, A.A.; Wang, S.-H.; Wang, Y.-R.; Pasang, T.; Ramezani, M. Laser Powder Bed Fusion of Inconel 718 Tools for Cold Deep Drawing Applications: Optimization of Printing and Post-Processing Parameters. Materials 2023, 16, 4707. [Google Scholar] [CrossRef]
- Sprouster, D.J.; Cunningham, W.S.; Halada, G.P.; Yan, H.; Pattammattel, A.; Huang, X.; Olds, D.; Tilton, M.; Chu, Y.S.; Dooryhee, E.; et al. Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel. Addit. Manuf. 2021, 47, 102263. [Google Scholar] [CrossRef]
- Heifetz, A.; Zhang, X.; Saniie, J.; Cleary, W. Detection of Defects in Additively Manufactured Metallic Materials with Machine Learning of Pulsed Thermography Images; Argonne National Laboratory: Argonne, IL, USA; Illinois Institute of Technology: Chicago, IL, USA; Westinghouse Electric Company: Columbia, SC, USA, 2020; ANL-20/57. [Google Scholar]
- Simmons, J.C.; Chen, X.; Azizi, A.; Daeumer, M.A.; Zavalij, P.Y.; Zhou, G.; Schiffres, S.N. Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel. Addit. Manuf. 2020, 32, 100996. [Google Scholar] [CrossRef]
- Yang, X.; Yagodzinskyy, Y.; Ge, Y.; Lu, E.; Lehtonen, J.; Kollo, L.; Hannula, S.-P. Hydrogen Effects in Equiatomic CrFeNiMn Alloy Fabricated by Laser Powder Bed Fusion. Metals 2021, 11, 872. [Google Scholar] [CrossRef]
- Ramakrishnan, T.; Kumar, A.; Kumar, T.S.; Kwon, S.; Muniz-Lerma, J.A.; Gauvin, R.; Brochu, M. Crack-Free Tungsten Fabricated via Laser Powder Bed Fusion Additive Manufacturing. Adv. Func. Mater. 2023, 34, 2309304. [Google Scholar] [CrossRef]
- Smith, R.J.; Hirsch, M.; Patel, R.; Li, W.; Clare, A.T.; Sharples, S.D. Spatially resolved acoustic spectroscopy for selective laser melting. J. Mater. Process. Technol. 2016, 236, 93–102. [Google Scholar] [CrossRef]
- Shishkovsky, I.V.; Sheng, B.; Kanfoud, J.; Gan, T.-H. Advanced Additive Manufacturing-Ch 8: Quality Control of Metal Additive Manufacturing; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Oliveira, J.P.; He, J.; Guan, X. Spatial and directional characterization of wire and arc additive manufactured aluminum alloy using phased array ultrasonic backscattering method. Ultrasonic 2023, 132, 107024. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, L.; Wang, L.; Cheng, J.; Zhang, L. Response of the Metastable Pitting Corrosion of Laser Powder Bed Fusion Produced Ti–6Al–4V to H+ Concentration Changes. Metals 2023, 13, 514. [Google Scholar] [CrossRef]
- Marola, S.; Bosia, S.; Veltro, A.; Fiore, G.; Manfredi, D.; Lombardi, M.; Amato, G.; Baricco, M.; Battezzati, L. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis. Mater. Des. 2021, 202, 109550. [Google Scholar] [CrossRef]
- Mukherjee, S.; Benavidez, E.; Crumb, M.; Calta, N.P. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion. Sensors 2024, 24, 523. [Google Scholar] [CrossRef]
- Sen-Britain, S.T.; Keilbart, N.D.; Kweon, K.E.; Pham, T.A.; Orme, C.A.; Wood, B.C.; Nelson, A.J. Chapter 5. Characterization of Surface Oxide Chemistry of New and Recycled Ti-Al Alloy Powders Used in Laser Powder Bed Fusion Additive Manufacturing; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2020; LLNL-TH-812982. [Google Scholar]
- Freitas, B.J.M.; Koga, G.Y.; Arneitz, S.; Bolfarini, C.; Amancio-Filho, S.d.T. Optimizing LPBF-parameters by Box-Behnken design for printing crack-free and dense high-boron alloyed stainless steel parts. Addit. Manuf. Lett. 2024, 9, 100206. [Google Scholar] [CrossRef]
- Ghauri, H.; Tafreshi, R.; Mansoor, B. Toward automated microstructure characterization of stainless steels through machine learning-based analysis of replication micrographs. J. Mater. Sci. Mater. Eng. 2024, 19, 4. [Google Scholar] [CrossRef]
- Bai, Q.; Wu, B.; Qiu, X.; Zhang, B.; Chen, J. Experimental study on additive/subtractive hybrid manufacturing of 6511 steel: Process optimization and machining characteristics. Int. J. Adv. Manuf. Technol. 2020, 108, 1389–1398. [Google Scholar] [CrossRef]
- Escalante-Quiceno, A.T.; Novotný, O.; Neuman, J.; Magén, C.; De Teresa, J.M. Long-Term Performance of Magnetic Force Microscopy Tips Grown by Focused Electron Beam Induced Deposition. Sensors 2023, 23, 2879. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.; Houbertz, R.; Hartmann, U. Eddy current microscopy. Appl. Phys. A. 1998, 66, S409–S413. [Google Scholar] [CrossRef]
- Sophian, A.; Tian, G.Y.; Taylor, D.; Rudlin, J. Flaw detection and quantification for ferromagnetic steels using pulsed eddy current techniques and magnetization. WIT Trans. Eng. Sci. 2003, 44, 10. [Google Scholar] [CrossRef]
- Staub, A.; Scherer, M.; Zehnder, P.; Spierings, A.B.; Wegener, K. Residual Stresses Measurements in Laser Powder Bed Fusion Using Barkhausen Noise Analysis. Materials 2022, 15, 2676. [Google Scholar] [CrossRef] [PubMed]
- Plessis, A.D.; MacDonald, E.; Waller, J.M.; Berto, F. Non-destructive testing of parts produced by laser powder bed fusion. In Fundamentals of Laser Powder Bed Fusion of Metals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 277–300. [Google Scholar] [CrossRef]
- Silva, M.I.; Malitckii, E.; Santos, T.G.; Vilaça, P. Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects. Prog. Mater. Sci. 2023, 138, 101155. [Google Scholar] [CrossRef]
- Jeong, S.G.; Ahn, S.Y.; Kim, E.S.; Kang, S.H.; Yoo, S.H.; Ryu, J.Y.; Chun, J.H.; Karthik, G.M.; Kim, H.S. Liquation cracking in laser powder bed fusion-fabricated Inconel718 of as-built, stress-relieved, and hot isostatic pressed conditions. Mater. Sci. Eng. A. 2023, 88, 145797. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillen, D.; Wahlquist, S.; Ali, A. Critical Review of LPBF Metal Print Defects Detection: Roles of Selective Sensing Technology. Appl. Sci. 2024, 14, 6718. https://doi.org/10.3390/app14156718
Guillen D, Wahlquist S, Ali A. Critical Review of LPBF Metal Print Defects Detection: Roles of Selective Sensing Technology. Applied Sciences. 2024; 14(15):6718. https://doi.org/10.3390/app14156718
Chicago/Turabian StyleGuillen, Donna, Scott Wahlquist, and Amir Ali. 2024. "Critical Review of LPBF Metal Print Defects Detection: Roles of Selective Sensing Technology" Applied Sciences 14, no. 15: 6718. https://doi.org/10.3390/app14156718
APA StyleGuillen, D., Wahlquist, S., & Ali, A. (2024). Critical Review of LPBF Metal Print Defects Detection: Roles of Selective Sensing Technology. Applied Sciences, 14(15), 6718. https://doi.org/10.3390/app14156718