Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the DRS System
- It must have one dripper in the form of a hypodermic needle;
- It must be relatively cheap:
- It must be simple to use;
- It must have a precise water flow-regulating system and must endure a hydraulic pressure in the system lower than 0.5 bar.
- -
- Structural support:
- -
- Water tank;
- -
- Water-moving mechanism;
- -
- Mechanism for water flow regulation and simulator operation;
- -
- Water tank with a dripper;
- -
- Dripper.
2.2. Drop Size Measurement
2.3. Assessment of the Kinetic Energy of Drops
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farres, P.J.; Cousen, S.M. An improved method of aggregate stability measurement. Earth Surf. Process. Landf. 1985, 10, 321–329. [Google Scholar] [CrossRef]
- Sharma, P.P.; Gupta, S.C. Sand detachment by single raindrops of varying kinetic energy and momentum. Soil Sci. Soc. Am. J. 1989, 53, 1005–1010. [Google Scholar] [CrossRef]
- Živanović, N.; Rončević, V.; Spasić, M.; Ćorluka, S.; Polovina, S. Construction and calibration of a portable rain simulator designed for the in situ research of soil resistance to erosion. Soil Water Res. 2022, 17, 158–169. [Google Scholar] [CrossRef]
- Koch, T.; Chifflard, P.; Aartsma, P.; Panten, K. A review of the characteristics of rainfall simulators in soil erosion research studies. MethodsX 2023, 12, 102506. [Google Scholar] [CrossRef] [PubMed]
- Mutchler, C.K.; Moldenhauer, W.C. Applicator for laboratory rainfall simulator. Trans. ASAE 1963, 6, 220–222. [Google Scholar]
- Walker, P.H.; Kinnell, P.I.A.; Green, P. Transport of a noncohesive sandy mixture in rainfall and runoff experiments. Soil Sci. Soc. Am. J. 1978, 42, 793–801. [Google Scholar] [CrossRef]
- Kinnell, P.I. Sediment transport by medium to large drops impacting flows at subterminal velocity. Soil Sci. Soc. Am. J. 2005, 69, 902–905. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Ferreira, A.J.D.; Pato, R.L.; Magalhães, M.C.; Coelho, C.O.; Santos, C. Rainfall-runoff-erosion relationships study for different land uses, in a sub-urban area. Z. Geomorphol. 2012, 56, 5–20. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Moruzzi, R.; Isidoro, J.M.G.P.; Tudor, M.; Vargas, M.; Ferreira, A.J.D.; de Lima, J.L.M.P. Impacts of distinct spatial arrangements of impervious surfaces on runoff and sediment fluxes from laboratory experiments. Anthropocene 2019, 28, 100219. [Google Scholar] [CrossRef]
- Mhaske, S.N.; Pathak, K.; Basak, A. A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena 2019, 172, 408–420. [Google Scholar] [CrossRef]
- Rončević, V.; Živanović, N.; Ristić, R.; Van Boxel, J.H.; Kašanin-Grubin, M. Dripping Rainfall Simulators for Soil Research—Design Review. Water 2022, 14, 3309. [Google Scholar] [CrossRef]
- Clarke, M.A.; Walsh, R.P. A portable rainfall simulator for field assessment of splash and slopewash in remote locations. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 2052–2069. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Cerdà, A.; Echeverría, M.T.; Fister, W.; Geißler, C.; Kuhn, N.J.; León, F.J.; Peters, P.; Schindewolf, M.; et al. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Z. Geomorphol. 2012, 57, 11–26. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fernández-Gálvez, J.; Geißler, C.; et al. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef]
- Wang, L.; Fang, N.F.; Yue, Z.J.; Shi, Z.H.; Hua, L. Raindrop size and flow depth control sediment sorting in shallow flows on steep slopes. Water Resour. Res. 2018, 54, 9978–9995. [Google Scholar] [CrossRef]
- Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci. 1949, 6, 243–248. [Google Scholar] [CrossRef]
- Cousen, S.M.; Farres, P.J. The role of moisture content in the stability of soil aggregates from a temperate silty soil to raindrop impact. Catena 1984, 11, 313–320. [Google Scholar] [CrossRef]
- Yu, C.K.; Hsieh, P.R.; Yuter, S.E.; Cheng, L.W.; Tsai, C.L.; Lin, C.Y.; Chen, Y. Measuring droplet fall speed with a high-speed camera: Indoor accuracy and potential outdoor applications. Atmos. Meas. Tech. 2016, 9, 1755–1766. [Google Scholar] [CrossRef]
- Yakubu, M.L.; Yusop, Z. Adaptability of rainfall simulators as a research tool on urban sealed surfaces–A review. Hydrol. Sci. J. 2017, 62, 996–1012. [Google Scholar] [CrossRef]
- Nifuku, M.; Vonnegut, B. Detachment of Pendant Water Drops by High Voltage Pulses. J. Appl. Meteorol. 1975, 14, 1617–1619. [Google Scholar] [CrossRef]
- Davidson, M.R.; Cooper-White, J.J. Pendant drop formation of shear-thinning and yield stress fluids. Appl. Math. Model. 2006, 30, 1392–1405. [Google Scholar] [CrossRef]
- Portuguez, E.; Alzina, A.; Michaud, P.; Oudjedi, M.; Smith, A. Evolution of a water pendant droplet: Effect of temperature and relative humidity. Nat. Sci. 1962, 9, 1–20. [Google Scholar] [CrossRef]
- Van Boxel, J.H. Numerical model for the fall speed of rain drops in a rain fall simulator. In Proceedings of the Workshop on Wind and Water Erosion, Ghent, Belgium, 17–18 November 1997; Volume 5, pp. 77–85. [Google Scholar]
- Yentis, S.; Hirsch, N.P.; Ip, J. Anaesthesia and Intensive Care Az-Print & E-Book: An Encyclopedia of Principles and Practice; Elsevier Health Sciences: Gainesville, FL, USA, 2013. [Google Scholar]
- ISO 6009:2016; Hypodermic Needles for Single Use Colour Coding for Identification. ISO: Geneva, Switzerland, 2016.
- ISO 9626:2014(E); Stainless Steel Needle Tubing for the Manufacture of Medical Devices Requirements and Test Methods. ISO: Geneva, Switzerland, 2014.
- Kucklick, T.R. Introduction to Needles and Cannulae. In The Medical Device R&D Handbook; CRS Press: Boca Raton, FL, USA, 2013; pp. 89–112. [Google Scholar]
- Ao, C.; Yang, P.; Zeng, W.; Chen, W.; Xu, Y.; Xu, H.; Zha, Y.; Wu, J.; Huang, J. Impact of raindrop diameter and polyacrylamide application on runoff, soil and nitrogen loss via raindrop splashing. Geoderma 2019, 353, 372–381. [Google Scholar] [CrossRef]
- Hu, F.; Liu, J.; Xu, C.; Du, W.; Yang, Z.; Liu, X.; Liu, G.; Zhao, S. Soil internal forces contribute more than raindrop impact force to rainfall splash erosion. Geoderma 2018, 330, 91–98. [Google Scholar] [CrossRef]
- Rončević, V.; Živanović, N.; Van Boxel, J.H.; Iserloh, T.; Štrbac, S. Dripping Rainfall Simulators for Soil Research—Performance Review. Water 2023, 15, 1314. [Google Scholar] [CrossRef]
- Palmer, R.S. An Apparatus for Forming Waterdrops; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1962; Volume 61.
- Epema, G.F.; Riezebos, H.T. Drop shape and erosivity Part I: Experimental set up, theory, and measurements of drop shape. Earth Surf. Process. Landf. 1984, 9, 567–572. [Google Scholar] [CrossRef]
- Mouzai, L.; Bouhadef, M. Water drop erosivity: Effects on soil splash. J. Hydraul. Res. 2003, 41, 61–68. [Google Scholar] [CrossRef]
- Furbish, D.J.; Hamner, K.K.; Schmeeckle, M.; Borosund, M.N.; Mudd, S.M. Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Ryżak, M.; Bieganowski, A.; Polakowski, C. Effect of soil moisture content on the splash phenomenon reproducibility. PLoS ONE 2015, 10, e0119269. [Google Scholar] [CrossRef]
- Te Chow, V.; Harbaugh, T.E. Raindrop production for laboratory watershed experimentation. J. Geophys. Res. 1965, 70, 6111–6119. [Google Scholar] [CrossRef]
- Meeuwig, R.O. Infiltration and Water Repellency in Granitic Soils; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Washington, DC, USA, 1971; Volume 111.
- Steinhardt, R.; Hillel, D. A Portable Low-Intensity Rain Simulator for Field and Laboratory Use. Soil Sci. Soc. Am. J. 1966, 30, 661–663. [Google Scholar] [CrossRef]
- Boucher, E.A.; Evans, M.J.B. Pendent drop profiles and related capillary phenomena. Proc. R. Soc. Lond. A Math. Phys. Sci. 1975, 346, 349–374. [Google Scholar]
- Gavrilović, S. Inženjering O Bujičnim Tokovima I Eroziji; Izgradnja: Beograd, Serbia, 1972. [Google Scholar]
- Blanchard, D.C. The behavior of water drops at terminal velocity in air. Eos Trans. Am. Geophys. Union 1950, 31, 836–842. [Google Scholar]
- Cerdà, A. Simuladores de lluvia y su aplicatión a la Geomorfologia; Estado de la cuestión. Cuad. Investig. Geográfica 1999, 25, 45–89. [Google Scholar] [CrossRef]
- Ristić, R.; Malošević, D. Hidrologija Bujičnih Tokova; Univerzitet u Beogradu, Šumarski fakultet: Beograd, Serbia, 2011. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation: Reprinted 1980; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Eos Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar]
- Hudson, N.W. Soil Conservation; Batsford: London, UK, 1971. [Google Scholar]
- Carter, C.E.; Greer, J.D.; Braud, H.J.; Floyd, J.M. Raindrop characteristics in south central United States. Trans. ASAE 1974, 17, 1033–1037. [Google Scholar] [CrossRef]
- Laws, J.O.; Parsons, D.A. The relation of raindrop-size to intensity. Eos Trans. Am. Geophys. Union 1943, 24, 452–460. [Google Scholar]
- Lee, B.B.; Ravindra, P.; Chan, E.S. A critical review: Surface and interfacial tension measurement by the drop weight method. Chem. Eng. Commun. 2008, 195, 889–924. [Google Scholar] [CrossRef]
- Johannsen, L.L.; Zambon, N.; Strauss, P.; Dostal, T.; Neumann, M.; Zumr, D.; Cochrane, T.A.; Blöschl, G.; Klik, A. Comparison of three types of laser optical disdrometers under natural rainfall conditions. Hydrol. Sci. J. 2020, 65, 524–535. [Google Scholar] [CrossRef]
- Jevtić, L.J. Hidrologija bujičnih tokova (Hydrology of Torrential Streams); Šumarski Fakultet Univerziteta u Beogradu: Belgrade, Serbia, 1978. [Google Scholar]
Gauge Number | Nom OD | Min OD | Max OD | Needle Wall Thickness | Length | ||
---|---|---|---|---|---|---|---|
Type | Min | Max | |||||
/ | mm | mm | mm | / | mm | mm | mm |
10G | 3.400 | 3.300 | 3.500 | TW | 0.241 | 0.341 | 38 |
11G | 3.000 | 2.950 | 3.150 | TW | 0.243 | 0.343 | 38 |
12G | 2.700 | 2.650 | 2.850 | TW | 0.208 | 0.208 | 38 |
13G | 2.400 | 2.300 | 2.500 | TW | 0.172 | 0.272 | 38 |
14G | 2.100 | 1.950 | 2.150 | TW | 0.175 | 0.275 | 38 |
15G | 1.800 | 1.750 | 1.900 | TW | 0.145 | 0.220 | 38 |
16G | 1.600 | 1.600 | 1.690 | TW | 0.159 | 0.204 | 38 |
17G | 1.400 | 1.400 | 1.510 | TW | 0.122 | 0.177 | 38 |
18G | 1.200 | 1.200 | 1.300 | TW | 0.145 | 0.195 | 38 |
19G | 1.100 | 1.030 | 1.100 | TW | 0.140 | 0.175 | 38 |
20G | 0.900 | 0.860 | 0.920 | TW | 0.113 | 0.143 | 38 |
21G | 0.800 | 0.800 | 0.830 | TW | 0.127 | 0.142 | 38 |
22G | 0.700 | 0.698 | 0.730 | TW | 0.129 | 0.145 | 38 |
23G | 0.600 | 0.600 | 0.673 | TW | 0.115 | 0.152 | 32 |
24G | 0.550 | 0.550 | 0.580 | TW | 0.104 | 0.119 | 16 |
25G | 0.500 | 0.500 | 0.530 | TW | 0.104 | 0.119 | 16 |
26G | 0.450 | 0.440 | 0.470 | RW | 0.104 | 0.119 | 16 |
27G | 0.400 | 0.400 | 0.420 | RW | 0.108 | 0.118 | 13 |
28G | 0.360 | 0.349 | 0.370 | RW | 0.108 | 0.119 | 13 |
29G | 0.330 | 0.324 | 0.351 | RW | 0.096 | 0.109 | 13 |
30G | 0.300 | 0.298 | 0.320 | RW | 0.083 | 0.094 | 6 |
31G | 0.250 | 0.254 | 0.267 | RW | 0.070 | 0.077 | 6 |
32G | 0.230 | 0.229 | 0.241 | RW | 0.070 | 0.076 | 4 |
33G | 0.200 | 0.203 | 0.216 | RW | 0.057 | 0.064 | 4 |
34G | 0.180 | 0.178 | 0.191 | RW | 0.057 | 0.064 | 4 |
Gauge Number | d 10 | d Max | d Avr | R2 | Equation y = a · x3 + b · x2 + c · x + 0 |
---|---|---|---|---|---|
/ | mm | mm | mm | / | mm |
16G | 3.48 | 3.69 | 3.59 | 0.90 | y = 1.95 × 10−9 × x3 − 3.56 × 10−6 × x2 + 1.68 × 10−3 × x + 3.46 |
18G | 3.15 | 3.34 | 3.24 | 0.87 | y = 2.30 × 10−9 × x3 − 3.90 × 10−6 × x2 + 1.68 × 10−3 × x + 3.13 |
19G | 2.98 | 3.19 | 3.08 | 0.82 | y = 5.09 × 10−9 × x3 − 6.31 × 10−6 × x2 + 2.16 × 10−3 × x + 2.96 |
20G | 2.79 | 2.98 | 2.89 | 0.85 | y = 4.96 × 10−9 × x3 − 5.65 × 10−6 × x2 + 1.96 × 10−3 × x + 2.77 |
21G | 2.69 | 2.85 | 2.77 | 0.85 | y = 2.51 × 10−9 × x3 − 3.83 × 10−6 × x2 + 1.49 × 10−3 × x + 2.68 |
22G | 2.57 | 2.74 | 2.65 | 0.87 | y = 9.14 × 10−9 × x3 − 8.57 × 10−6 × x2 + 2.24 × 10−3 × x + 2.55 |
23G | 2.45 | 2.61 | 2.53 | 0.88 | y = 8.66 × 10−9 × x3 − 8.53 × 10−6 × x2 + 2.31 × 10−3 × x + 2.41 |
25G | 2.26 | 2.37 | 2.31 | 0.84 | y = 5.28 × 10−9 × x3 − 6.00 × 10−6 × x2 + 1.65 × 10−3 × x + 2.24 |
27G | 2.09 | 2.18 | 2.14 | 0.85 | y = 1.94 × 10−8 × x3 − 1.38 × 10−5 × x2 + 2.32 × 10−3 × x + 2.07 |
30G | 1.70 | 1.94 | 1.82 | 0.76 | y = 5.23 × 10−8 × x3 − 3.17 × 10−5 × x2 + 5.50 × 10−3 × x + 1.65 |
32G | 1.42 | 1.74 | 1.58 | 0.74 | y = 9.55 × 10−8 × x3 − 5.01 × 10−5 × x2 + 7.88 × 10−3 × x + 1.35 |
Gauge Number | h 10 | h Max | R2 | Equation |
---|---|---|---|---|
/ | mm | mm | / | mm |
16G | 14 | 29 | 0.98 | y = 0.04x + 14.45 |
18G | 15 | 42 | 0.99 | y = 0.08x + 13.66 |
19G | 17 | 43 | 1.00 | y = 0.11x + 16.17 |
20G | 25 | 82 | 1.00 | y = 0.22x + 23.39 |
21G | 34 | 112 | 0.99 | y = 0.30x + 33.32 |
22G | 39 | 141 | 1.00 | y = 0.52x + 32.08 |
23G | 47 | 209 | 1.00 | y = 0.83x + 38.82 |
25G | 56 | 202 | 0.99 | y = 0.84x + 50.28 |
27G | 77 | 507 | 1.00 | y = 4.34x + 33.99 |
30G | 631 | 1516 | 0.99 | y = 7.62x + 554.63 |
32G | >1970 | >1970 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rončević, V.; Živanović, N.; Boxel, J.H.v.; Iserloh, T.; Antić, N.; Ferreira, C.S.S.; Spasić, M. Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles. Appl. Sci. 2024, 14, 6969. https://doi.org/10.3390/app14166969
Rončević V, Živanović N, Boxel JHv, Iserloh T, Antić N, Ferreira CSS, Spasić M. Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles. Applied Sciences. 2024; 14(16):6969. https://doi.org/10.3390/app14166969
Chicago/Turabian StyleRončević, Vukašin, Nikola Živanović, John H. van Boxel, Thomas Iserloh, Nevena Antić, Carla Sofia Santos Ferreira, and Marko Spasić. 2024. "Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles" Applied Sciences 14, no. 16: 6969. https://doi.org/10.3390/app14166969
APA StyleRončević, V., Živanović, N., Boxel, J. H. v., Iserloh, T., Antić, N., Ferreira, C. S. S., & Spasić, M. (2024). Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles. Applied Sciences, 14(16), 6969. https://doi.org/10.3390/app14166969