Assessment of Feldkamp-Davis-Kress Reconstruction Parameters in Overall Image Quality in Cone Beam Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Reconstruction
2.2. Reconstruction Parameters
2.3. Image Quality Evaluations
3. Results
3.1. Visual Evaluation
3.2. Noise Level Evaluation Results
3.3. Similarity Evaluation Results
3.4. No-Reference Evaluation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veiga, C.; McClelland, J.; Moinuddin, S.; Lourenço, A.; Ricketts, K.; Annkah, J.; Modat, M.; Ourselin, D.; D’Souza, D.; Royle, G. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations. Med. Phys. 2014, 41, 031703. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, A.; Conover, D.L.; Zhang, Y.; Seifert, P.; Logan-Young, W.; Lin, C.F.L.; Sahler, L.; Ning, R. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality. Am. J. Roentgenol. 2010, 195, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, L.; Weidlich, G.A. Cone beam CT vs. fan beam CT: A comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus 2016, 8, e778. [Google Scholar] [CrossRef] [PubMed]
- Scarfe, W.C.; Farman, A.G. What is cone-beam CT and how does it work? Dent. Clin. N. Am. 2008, 52, 707–730. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Purdie, T.G.; Norrlinger, B.D.; Alasti, H.; Moseley, D.J.; Sharpe, M.B.; Siewerdsen, J.H.; Jaffray, D.A. Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med. Phys. 2006, 33, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Solberg, T.; Wang, J. Effects of the penalty on the penalized weighted least-squares image reconstruction for low-dose CBCT. Phys. Med. Biol. 2011, 56, 5535. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Lee, T.; Shin, S.; Lee, R.; Cho, S. Effects of sparse sampling schemes on image quality in low-dose CT. Med. Phys. 2013, 40, 111915. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, W.; Zhang, H.; Wang, Q.; Xiao, Q.; Li, Z.; Wie, X.; Lai, J.; Wang, X.; Li, W.; et al. Low-dose cone-beam CT (LD-CBCT) reconstruction for image-guided radiation therapy (IGRT) by three-dimensional dual-dictionary learning. Radiat. Oncol. 2020, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.S.; Stayman, J.W.; Otake, Y.; Vogt, S.; Kleinszig, G.; Khanna, A.J.; Gallia, G.L.; Siewerdsen, J.H. Low-dose preview for patient-specific, task-specific technique selection in cone-beam CT. Med. Phys. 2014, 41, 071915. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Jia, X.; Yuan, K.; Pan, T.; Jiang, S.B. Low-dose CT reconstruction via edge-preserving total variation regularization. Phys. Med. Biol. 2011, 56, 5949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zeng, D.; Zhang, H.; Wang, J.; Liang, Z.; Ma, J. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: A review. Med. Phys. 2017, 44, 1168–1185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Geng, G.; Zhao, J. Fast parallel image reconstruction for cone-beam FDK algorithm. Concurr. Comput. Pract. Exp. 2019, 31, e4697. [Google Scholar] [CrossRef]
- Hsieh, J.; Nett, B.; Yu, Z.; Sauer, K.; Thibault, J.B.; Bouman, C.A. Recent advances in CT image reconstruction. Curr. Radiol. Rep. 2013, 1, 39–51. [Google Scholar] [CrossRef]
- Turbell, H. Cone-Beam Reconstruction Using Filtered Backprojection. Doctoral Dissertation, Linköping University Electronic Press, Linköping, Sweden, 2001. [Google Scholar]
- Guo, J.; Zeng, L.; Zou, X. An improved half-covered helical cone-beam CT reconstruction algorithm based on localized reconstruction filter. J. X-ray Sci. Technol. 2011, 19, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Soimu, D.; Buliev, I.; Pallikarakis, N. Studies on circular isocentric cone-beam trajectories for 3D image reconstructions using FDK algorithm. Comput. Med. Imaging Graph. 2008, 32, 210–220. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, C.L.; Cho, H.M.; Park, H.S.; Kim, D.H.; Choi, Y.N.; Kim, H.J. Effects of reconstruction parameters on image noise and spatial resolution in cone-beam computed tomography. J. Korean Phys. Soc. 2011, 59, 2825–2832. [Google Scholar] [CrossRef]
- Lagerwerf, M.J.; Palenstijn, W.J.; Kohr, H.; Batenburg, K.J. Automated FDK-filter selection for Cone-beam CT in research environments. IEEE Trans. Comput. Imaging 2020, 6, 739–748. [Google Scholar] [CrossRef]
- Gayou, O. Influence of acquisition parameters on MV-CBCT image quality. J. Appl. Clin. Med. Phys. 2012, 13, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef]
- Grass, M.; Köhler, T.; Proksa, R. 3D cone-beam CT reconstruction for circular trajectories. Phys. Med. Biol. 2000, 45, 329. [Google Scholar] [CrossRef] [PubMed]
- Biguri, A.; Dosanjh, M.; Hancock, S.; Soleimani, M. TIGRE: A MATLAB-GPU toolbox for CBCT image reconstruction. Biomed. Phys. Eng. Express 2016, 2, 055010. [Google Scholar] [CrossRef]
- Lu, H.; Hsiao, T.; Li, X.; Liang, Z. Noise properties of low-dose CT projections and noise treatment by scale transformations. In Proceedings of the IEEE Nuclear Science Symposium Conference Record (Cat. No. 01CH37310), San Diego, CA, USA, 4–10 November 2001; Volume 3, pp. 1662–1666. [Google Scholar]
- Lu, H.; Li, X.; Hsiao, T.; Liang, Z. Analytical noise treatment for low-dose CT projection data by penalized weighted least-square smoothing in the KL domain. In Proceedings of the Medical Imaging 2002: Physics of Medical Imaging, San Diego, CA, USA, 23–28 February 2002; Volume 4682, pp. 146–152. [Google Scholar]
- Shechtman, O. The coefficient of variation as an index of measurement reliability. In Methods of Clinical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–49. [Google Scholar]
- Germann, M.; Shim, S.; Angst, F.; Saltybaeva, N.; Boss, A. Spiral breast computed tomography (CT): Signal-to-noise and dose optimization using 3D-printed phantoms. Eur. Radiol. 2021, 31, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Oh, J.E.; Cho, H.S.; Hong, D.K.; Lee, M.S.; Park, Y.O.; Je, U.K.; Kim, H.J.; Lee, S.H.; Choi, S.I.; Koo, Y.S.; et al. Compressed-sensing (CS)-based micro-DTS reconstruction for applications of fast, low-dose X-ray imaging. J. Korean Phys. Soc. 2012, 61, 1120–1124. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, S. A no reference image quality assessment metric based on visual perception. Algorithms 2016, 9, 87. [Google Scholar] [CrossRef]
- Daly, M.J.; Siewerdsen, J.H.; Moseley, D.J.; Jaffray, D.A.; Irish, J.C. Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype. Med. Phys. 2006, 33, 3767–3780. [Google Scholar] [CrossRef]
- Iskanderani, D.; Nilsson, M.; Alstergren, P.; Shi, X.Q.; Hellen-Halme, K. Evaluation of a low-dose protocol for cone beam computed tomography of the temporomandibular joint. Dentomaxillofacial Radiol. 2020, 49, 20190495. [Google Scholar] [CrossRef] [PubMed]
- Schwindling, F.S.; Hilgenfeld, T.; Weber, D.; Kosinski, M.A.; Rammelsberg, P.; Tasaka, A. In vitro diagnostic accuracy of low-dose CBCT for evaluation of peri-implant bone lesions. Clin. Oral Implant. Res. 2019, 30, 1200–1208. [Google Scholar] [CrossRef]
- Zhang, H.; Ouyang, L.; Ma, J.; Huang, J.; Chen, W.; Wang, J. Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT. Med. Phys. 2014, 41, 031906. [Google Scholar]
- Zhang, Z.; Han, X.; Pearson, E.; Pelizzari, C.; Sidky, E.Y.; Pan, X. Artifact reduction in short-scan CBCT by use of optimization-based reconstruction. Phys. Med. Biol. 2016, 61, 3387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, B.; Yang, Z.; Kang, W. A novel reconstruction of the sparse-view CBCT algorithm for correcting artifacts and reducing noise. Mathematics 2023, 11, 2127. [Google Scholar] [CrossRef]
- Rodet, T.; Noo, F.; Defrise, M. The cone-beam algorithm of Feldkamp, Davis, and Kress preserves oblique line integrals. Med. Phys. 2004, 31, 1972–1975. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Tam, K.; Qi, J. An approximate short scan helical FDK cone beam algorithm based on nutating curved surfaces satisfying the Tuy’s condition. Med. Phys. 2005, 32, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Pelc, N.J. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits. Med. Phys. 2010, 37, 5351–5360. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, H.J. Noise properties of reconstructed images in a kilo-voltage on-board imaging system with iterative reconstruction techniques: A phantom study. Phys. Medica 2014, 30, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.W.; Karellas, A.; Vedantham, S. Cone-beam breast CT using an offset detector: Effect of detector offset and image reconstruction algorithm. Phys. Med. Biol. 2022, 67, 085008. [Google Scholar] [CrossRef] [PubMed]
- Nagarajappa, A.K.; Dwivedi, N.; Tiwari, R. Artifacts: The downturn of CBCT image. J. Int. Soc. Prev. Community Dent. 2015, 5, 440–445. [Google Scholar] [PubMed]
- Yan, H.; Cervino, L.; Jia, X.; Jiang, S.B. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT. Phys. Med. Biol. 2012, 57, 2063. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xing, Y.; Chen, Z.; Zhang, L.; Kang, K. A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT. J. X-ray Sci. Technol. 2011, 19, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Choong, M.K.; Logeswaran, R.; Bister, M. Improving diagnostic quality of MR images through controlled lossy compression using SPIHT. J. Med. Syst. 2006, 30, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Kumar, A. Nonlocal means image denoising using orthogonal moments. Appl. Opt. 2015, 54, 8156–8165. [Google Scholar] [CrossRef] [PubMed]
- Klink, T.; Obmann, V.; Heverhagen, J.; Stork, A.; Adam, G.; Begemann, P. Reducing CT radiation dose with iterative reconstruction algorithms: The influence of scan and reconstruction parameters on image quality and CTDIvol. Eur. J. Radiol. 2014, 83, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Paramesran, R. Review of medical image quality assessment. Biomed. Signal Process. Control. 2016, 27, 145–154. [Google Scholar] [CrossRef]
- Oszust, M.; Piórkowski, A.; Obuchowicz, R. No-reference image quality assessment of magnetic resonance images with high-boost filtering and local features. Magn. Reson. Med. 2020, 84, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
- Bjelopera, A.; Dumic, E.; Grgic, S. Evaluation of blur and Gaussian noise degradation in images using statistical model of natural scene and perceptual image quality measure. Radioengineering 2017, 26, 930–937. [Google Scholar] [CrossRef]
- Lee, M.H.; Yun, C.S.; Kim, K.; Lee, Y. Image restoration algorithm incorporating methods to remove noise and blurring from positron emission tomography imaging for Alzheimer’s disease diagnosis. Phys. Medica 2022, 103, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, A.K.; Bovik, A.C. A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 2010, 17, 513–516. [Google Scholar] [CrossRef]
- Mittal, A.; Muralidhar, G.S.; Ghosh, J.; Bovik, A.C. Blind image quality assessment without human training using latent quality factors. IEEE Signal Process. Lett. 2011, 19, 75–78. [Google Scholar] [CrossRef]
- Mori, S.; Endo, M.; Komatsu, S.; Kandatsu, S.; Yashiro, T.; Baba, M. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Phys. Med. Biol. 2006, 51, 3953. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, T.; Huang, W. Limited-angle computed tomography reconstruction using combined FDK-based neural network and U-Net. In Proceedings of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1572–1575. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Choi, J.-S.; Lee, Y. Assessment of Feldkamp-Davis-Kress Reconstruction Parameters in Overall Image Quality in Cone Beam Computed Tomography. Appl. Sci. 2024, 14, 7058. https://doi.org/10.3390/app14167058
Kim H, Choi J-S, Lee Y. Assessment of Feldkamp-Davis-Kress Reconstruction Parameters in Overall Image Quality in Cone Beam Computed Tomography. Applied Sciences. 2024; 14(16):7058. https://doi.org/10.3390/app14167058
Chicago/Turabian StyleKim, Hajin, Jun-Seon Choi, and Youngjin Lee. 2024. "Assessment of Feldkamp-Davis-Kress Reconstruction Parameters in Overall Image Quality in Cone Beam Computed Tomography" Applied Sciences 14, no. 16: 7058. https://doi.org/10.3390/app14167058
APA StyleKim, H., Choi, J.-S., & Lee, Y. (2024). Assessment of Feldkamp-Davis-Kress Reconstruction Parameters in Overall Image Quality in Cone Beam Computed Tomography. Applied Sciences, 14(16), 7058. https://doi.org/10.3390/app14167058