Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities
Abstract
:1. Introduction
- Classification of current threats to EC-IoT systems.
- Analysis of the current countermeasures.
- Analysis of the AI-based countermeasures.
- Challenges in incorporating AI in protecting EC-IoT systems.
2. Related Work
- Exploring the emerging paradigm of EC-IoT: We explore how EC-IoT integrates AI to improve the efficiency and responsiveness of IoT systems.
- Discussing current threats and their effects on EC-IoT: We analyze the specific security challenges posed by integrating edge computing with IoT and the implications of these threats.
- Analyzing countermeasures in the current literature: We review existing solutions, particularly AI-based techniques, that address the security issues within EC-IoT frameworks.
- Proposing future directions to improve countermeasures for these threats: We suggest research avenues focused on developing scalable, efficient, and robust security solutions that can adapt to the evolving landscape of IoT threats and vulnerabilities.
Article | Main Focus | Issues Discussed | Countermeasures/Solutions | Future Challenges |
---|---|---|---|---|
[43] | Energy efficiency | Network congestion, power limits | Energy-aware techniques | Scalability, renewable integration, ML enhancement |
[44] | IoT security | Connectivity, privacy, latency | Edge processing, ML models | Hyperparameter tuning, complex topologies |
[45] | Blockchain forensics | IoT security, MEC, blockchain | Blockchain integration | Scalability, delay optimization, mobility |
[46] | Resource-limited IoT | Security vulnerabilities | IoT proxy, VPN, IPS | Anomaly detection, live traffic analysis |
[42] | IIoT security | Cyberthreats | Phishing, ransomware, protocol attack countermeasures | Unconventional attack methods |
[41] | IoT–fog–cloud | High latency, big data | Fog computing | Fog resiliency, big data management |
[36] | Security analysis | IoT security, privacy | Deep learning | Efficiency, adaptability, heterogeneity |
[39] | Vulnerability analysis | Attack surfaces | Firmware updates, secure boot | Device heterogeneity, lightweight security |
[35] | AI for security | Edge node vulnerability | AI integration, blockchain | Computation costs, evolving threats |
[34] | RL for IoT | Security challenges, RL | RL-based solutions | Scalability, resource constraints |
[28] | Edge security | Resource constraints, edge vulnerability | Edge security architectures | Securing edge layer, data quality |
[32] | LoRa edge integration | Cloud limits, low-power, long-range | Edge integration, regulatory compliance | Scalability, data privacy, standardization |
[33] | Secure analytics | Security trade-offs, trust, privacy | Lightweight security, trust management | Advanced trust models, scalable frameworks |
[29] | IoT security | IoT threats, attack types | Blockchain, fog computing, ML, edge computing | Scalability, resource constraints |
[40] | Edge architectures | IoT edge architecture, challenges | Security, data management, scalability | Resource constraints, evolving threats |
[31] | ML/DL methods | Complexity, vulnerability, attack surfaces | ML/DL techniques, anomaly detection | Scalability, data privacy, standardization |
[38] | Cybersecurity | Data, network, service security | Data encryption, IDPS, secure software | Scalability, privacy concerns |
[37] | IoT security | IoT threats, attack types | Fog computing, ML, edge, blockchain | Scalability, real-time adaptation |
[30] | Secure aggregation | Security, privacy in healthcare IoT | Data encryption, secure aggregation | Device heterogeneity, dynamic trust |
[11] | Edge security | Security, privacy risks, attacks | Secure updates, IDS, lightweight cryptography | Scalability, dynamic trust management |
[19] | Security architectures | Resource management, privacy | Packet filters, firewalls, IDS | Balancing security, trust management |
3. Edge Computing and Related Paradigms
3.1. Edge Computing
3.2. Cloud Computing
3.3. Fog Computing
3.4. Mist Computing
3.5. Cloudlet Computing
3.6. Multi-Access Edge Computing (MEC)
4. Edge Computing-Based IoT
4.1. Advantages of EC-IoT
4.2. AI in the Realm of EC-IoT
5. Attacks on Edge-Based IoT
- Network-level attacks
- Application-level attacks
- Data-level attacks
- Access control attacks
- Protocol-based attacks
- Side channel attacks
- Supply chain attacks
- Social engineering attacks
5.1. Network-Level Attacks
5.2. Application-Level Attacks
5.3. Data-Level Attacks
5.4. Access Control Attacks
5.5. Protocol-Based Attacks
5.6. Side-Channel Attacks
5.7. Supply Chain Attacks
5.8. Social Engineering Attacks
6. Countermeasures in EC-IoT
6.1. Non-AI Methods
6.2. AI Methods
6.2.1. Machine Learning
6.2.2. Deep Learning
7. Open Challenges and Future Research Opportunities
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fawzy, D.; Moussa, S.; Badr, N. The internet of things and architectures of big data analytics: Challenges of intersection at different domains. IEEE Access 2022, 10, 4969–4992. [Google Scholar] [CrossRef]
- Din, I.; Guizani, M.; Hassan, S.; Kim, B.; Khan, M.; Atiquzzaman, M. The internet of things: A review of enabled technologies and future challenges. IEEE Access 2019, 7, 7606–7640. [Google Scholar] [CrossRef]
- Chataut, R.; Phoummalayvane, A.; Akl, R. Unleashing the Power of IoT: A Comprehensive Review of IoT Applications and Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0. Sensors 2023, 23, 7194. [Google Scholar] [CrossRef]
- Ye, L.; Wang, Z.; Jia, T.; Ma, Y.; Shen, L.; Zhang, Y.; Li, H.; Chen, P.; Wu, M.; Liu, Y.; et al. Research progress on low-power artificial intelligence of things (AIoT) chip design. Sci. China Inf. Sci. 2023, 66, 200407. [Google Scholar] [CrossRef]
- Ibarra-Esquer, J.; Gonzalez-Navarro, F.; Sánchez, J.; Flores-Rios, B.; Astorga-Vargas, M.; González-Ramírez, M. Graphical framework for categorizing data capabilities and properties of objects in the internet of things. IEEE Access 2020, 8, 22366–22377. [Google Scholar] [CrossRef]
- Jan, S.; Ahmed, S.; Shakhov, V.; Koo, I. Toward a lightweight intrusion detection system for the internet of things. IEEE Access 2019, 7, 42450–42471. [Google Scholar] [CrossRef]
- Nain, Z.; Musaddiq, A.; Qadri, Y.; Nauman, A.; Afzal, M.; Kim, S. Riata: A reinforcement learning-based intelligent routing update scheme for future generation iot networks. IEEE Access 2021, 9, 81161–81172. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, S.; Bukhsh, M.; Ahmed, A.; Arshad, H.; Khan, T. Message scheduling in blockchain based iot environment with additional fog broker layer. IEEE Access 2022, 10, 97165–97182. [Google Scholar] [CrossRef]
- Eldrandaly, K.; Abdel-Basset, M.; Shawky, L. Internet of spatial things: A new reference model with insight analysis. IEEE Access 2019, 7, 19653–19669. [Google Scholar] [CrossRef]
- Xu, W.; Fang, W.; Ding, Y.; Zou, M.; Xiong, N. Accelerating federated learning for iot in big data analytics with pruning, quantization and selective updating. IEEE Access 2021, 9, 38457–38466. [Google Scholar] [CrossRef]
- Alwarafy, A.; Al-Thelaya, K.A.; Abdallah, M.; Schneider, J.; Hamdi, M. A Survey on Security and Privacy Issues in Edge-Computing-Assisted Internet of Things. IEEE Internet Things J. 2021, 8, 4004–4022. [Google Scholar] [CrossRef]
- Salh, A.; Ngah, R.; Audah, L.; Kim, K.; Abdullah, Q.; Al-Molikie, Y.M.; Aljaloud, K.A.; Talib, H.N. Energy-efficient federated learning with resource allocation for green iot edge intelligence in b5g. IEEE Access 2023, 11, 16353–16367. [Google Scholar] [CrossRef]
- Manokaran, J.; Vairavel, G. An empirical comparison of machine learning algorithms for attack detection in internet of things edge. ECS Trans. 2022, 107, 2403–2417. [Google Scholar] [CrossRef]
- Boopathi, M.; Gupta, S.; Mohammed Zabeeulla, A.N.; Gupta, R.; Vekriya, V.; Pandey, A. Optimization algorithms in security and privacy-preserving data disturbance for collaborative edge computing social IoT deep learning architectures. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT privacy and security: Challenges and solutions. Appl. Sci. 2020, 10, 4102. [Google Scholar] [CrossRef]
- Liao, H.; Zhou, Z.; Zhao, X.; Zhang, L.; Mumtaz, S.; Jolfaei, A.; Ahmed, S.H.; Bashir, A.K. Learning-based context-aware resource allocation for edge-computing-empowered industrial iot. IEEE Internet Things J. 2020, 7, 4260–4277. [Google Scholar] [CrossRef]
- Nagarajan, G.; Simpson, S.; Venkatachalam, K.; Alrasheedi, A.; Askar, S.; Abouhawwash, M.; Parthasarathi, P. A novel edge-based trust management system for the smart city environment using eigenvector analysis. J. Healthc. Eng. 2022, 2022, 5625897. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Z.; Fan, X.; Huang, Y.; Nowzari, C.; Zeng, K. Distributed swarm learning for internet of things at the edge: Where artificial intelligence meets biological intelligence. arXiv 2022, arXiv:2210.16705. [Google Scholar] [CrossRef]
- Fazeldehkordi, E.; Grønli, T.M. A Survey of Security Architectures for Edge Computing-Based IoT. IoT 2022, 3, 332–365. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, D.; Ning, Z. A decentralized and reliable trust measurement for edge computing enabled internet of things. Concurr. Comput. Pract. Exp. 2022, 34, e7238. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.; Khan, F.; Rehman, A.U.; Balasubramaniam, V.; Sun, J.; Venu, P. A Secured Framework for SDN-Based Edge Computing in IoT-Enabled Healthcare System. IEEE Access 2020, 8, 135479–135490. [Google Scholar] [CrossRef]
- Dawod, A.; Georgakopoulos, D.; Jayaraman, P.; Nirmalathas, A.; Parampalli, U. IoT device integration and payment via an autonomic blockchain-based service for IoT device sharing. Sensors 2022, 22, 1344. [Google Scholar] [CrossRef]
- Hwang, J.; Nkenyereye, L.; Sung, N.; Kim, J.; Song, J. IoT service slicing and task offloading for edge computing. IEEE Internet Things J. 2021, 8, 11526–11547. [Google Scholar] [CrossRef]
- Waris, Z.; Jaleel, A.; Shoaib, M.; Abalo, D. A suite of design quality metrics for internet of things by modelling its ecosystem as a schema graph. Math. Probl. Eng. 2022, 2022, 3278371. [Google Scholar] [CrossRef]
- Aziez, M.; Benharzallah, S.; Bennoui, H. A full comparison study of service discovery approaches for internet of things. Int. J. Pervasive Comput. Commun. 2019, 15, 30–56. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, Y.; Ge, J.; Li, J. An architecture for accountable anonymous access in the internet-of-things network. IEEE Access 2018, 6, 14451–14461. [Google Scholar] [CrossRef]
- An, J.; Li, W.; Gall, F.; Kovac, E.; Kim, J.; Taleb, T. EIF: Toward an elastic IoT fog framework for AI services. IEEE Commun. Mag. 2019, 57, 28–33. [Google Scholar] [CrossRef]
- Sha, K.; Yang, T.A.; Wei, W.; Davari, S. A Survey of Edge Computing-Based Designs for IoT Security. Digit. Commun. Netw. 2020, 6, 195–202. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743. [Google Scholar] [CrossRef]
- Ullah, A.; Azeem, M.; Ashraf, H.; Alaboudi, A.A.; Humayun, M.; Jhanjhi, N. Secure Healthcare Data Aggregation and Transmission in IoT—A Survey. IEEE Access 2021, 9, 16849–16865. [Google Scholar] [CrossRef]
- Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for Internet of Things (IoT) security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [Google Scholar] [CrossRef]
- Sarker, V.K.; Queralta, J.P.; Gia, T.N.; Tenhunen, H.; Westerlund, T. A Survey on LoRa for IoT: Integrating Edge Computing. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019. [Google Scholar] [CrossRef]
- Liu, D.; Yan, Z.; Ding, W.; Atiquzzaman, M. A Survey on Secure Data Analytics in Edge Computing. IEEE Internet Things J. 2019, 6, 4946–4967. [Google Scholar] [CrossRef]
- Uprety, A.; Rawat, D.B. Reinforcement Learning for IoT Security: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 8693–8706. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, W.; Huang, J.; Yang, C.; Lu, J.; Tan, H. Artificial Intelligence for Securing IoT Services in Edge Computing: A Survey. Secur. Commun. Netw. 2020, 2020, 8872586. [Google Scholar] [CrossRef]
- Yue, Y.; Li, S.; Legg, P.; Li, F. Deep Learning-Based Security Behaviour Analysis in IoT Environments: A Survey. Secur. Commun. Netw. 2021, 2021, 8873195. [Google Scholar] [CrossRef]
- Ahmad, I.; Niazy, M.S.; Ziar, R.A.; Khan, S. Survey on IoT: Security Threats and Applications. J. Robot. Control (JRC) 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Ahmad, W.; Rasool, A.; Javed, A.R.; Baker, T.; Jalil, Z. Cyber Security in IoT-Based Cloud Computing: A Comprehensive Survey. Electronics 2021, 11, 16. [Google Scholar] [CrossRef]
- Yu, M.; Zhuge, J.; Cao, M.; Shi, Z.; Jiang, L. A Survey of Security Vulnerability Analysis, Discovery, Detection, and Mitigation on IoT Devices. Future Internet 2020, 12, 27. [Google Scholar] [CrossRef]
- Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020, 20, 6441. [Google Scholar] [CrossRef]
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- Tsiknas, K.; Taketzis, D.; Demertzis, K.; Skianis, C. Cyber Threats to Industrial IoT: A Survey on Attacks and Countermeasures. IoT 2021, 2, 163–186. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kelechi, A.H.; Jahid, A.; Kannadasan, R.; Singla, M.K.; Gupta, J.; Geem, Z.W. A comprehensive survey of energy-efficient computing to enable sustainable massive IoT networks. Alex. Eng. J. 2024, 91, 12–29. [Google Scholar] [CrossRef]
- Mundhe Prachi, N.; Rokade, M.D. Autonomous IoT System Security Capability: Pushing IoT Security to the Edge. Int. J. Adv. Res. Sci. Commun. Technol. (IJARSCT) 2022, 2, 378. [Google Scholar] [CrossRef]
- Liao, Z.; Pang, X.; Zhang, J.; Xiong, B.; Wang, J. Blockchain on Security and Forensics Management in Edge Computing for IoT: A Comprehensive Survey. IEEE Trans. Netw. Serv. Manag. 2022, 19, 1159–1175. [Google Scholar] [CrossRef]
- Canavese, D.; Mannella, L.; Regano, L.; Basile, C. Security at the Edge for Resource-Limited IoT Devices. Sensors 2024, 24, 590. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Hou, T.; Zheng, S.; Tang, C. Collaborative edge computing and caching with deep reinforcement learning decision agents. IEEE Access 2020, 8, 120604–120612. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Z. Cloud network and mathematical model calculation scheme for dynamic big data. IEEE Access 2020, 8, 137322–137329. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Li, Y.; Colman-Meixner, C.; Tornatore, M.; Zhang, J. Edge computing and networking: A survey on infrastructures and applications. IEEE Access 2019, 7, 101213–101230. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, M.; Wang, X.; Ma, X.; Liu, J. Deep learning for edge computing applications: A state-of-the-art survey. IEEE Access 2020, 8, 58322–58336. [Google Scholar] [CrossRef]
- Habibi, P.; Farhoudi, M.; Kazemian, S.; Khorsandi, S.; Leon-Garcia, A. Fog computing: A comprehensive architectural survey. IEEE Access 2020, 8, 69105–69133. [Google Scholar] [CrossRef]
- Rosero-Montalvo, P.; István, Z.; Hernández, W. A survey of trusted computing solutions using fpgas. IEEE Access 2023, 11, 31583–31593. [Google Scholar] [CrossRef]
- Bhat, S.; Sofi, I.; Chi, C. Edge computing and its convergence with blockchain in 5g and beyond: Security, challenges, and opportunities. IEEE Access 2020, 8, 205340–205373. [Google Scholar] [CrossRef]
- Sharghivand, N.; Derakhshan, F.; Siasi, N. A comprehensive survey on auction mechanism design for cloud/edge resource management and pricing. IEEE Access 2021, 9, 126502–126529. [Google Scholar] [CrossRef]
- Girs, S.; Sentilles, S.; Asadollah, S.; Ashjaei, M.; Mubeen, S. A systematic literature study on definition and modeling of service-level agreements for cloud services in IoT. IEEE Access 2020, 8, 134498–134513. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, J.; Deng, B.; Jia, G.; Han, G.; Shu, L. Mcte: Minimizes task completion time and execution cost to optimize scheduling performance for smart grid cloud. IEEE Access 2019, 7, 134793–134803. [Google Scholar] [CrossRef]
- Pham, Q.; Le, L.; Chung, S.; Hwang, W. Mobile edge computing with wireless backhaul: Joint task offloading and resource allocation. IEEE Access 2019, 7, 16444–16459. [Google Scholar] [CrossRef]
- Gao, Z.; Hao, W.; Han, Z.; Yang, S. Q-learning-based task offloading and resources optimization for a collaborative computing system. IEEE Access 2020, 8, 149011–149024. [Google Scholar] [CrossRef]
- Abdulazeez, D.; Askar, S. Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment. IEEE Access 2023, 11, 12555–12586. [Google Scholar] [CrossRef]
- Nezami, Z.; Zamanifar, K.; Djemame, K.; Pournaras, E. Decentralized edge-to-cloud load balancing: Service placement for the internet of things. IEEE Access 2021, 9, 64983–65000. [Google Scholar] [CrossRef]
- Mayer, A.; Rodrigues, V.; Costa, C.; Righi, R.; Roehrs, A.; Antunes, R. Fogchain: A fog computing architecture integrating blockchain and Internet of Things for personal health records. IEEE Access 2021, 9, 122723–122737. [Google Scholar] [CrossRef]
- Khan, N.; Awang, A.; Karim, S. Security in internet of things: A review. IEEE Access 2022, 10, 104649–104670. [Google Scholar] [CrossRef]
- Klein, T.; Fenn, T.; Katzenbach, A.; Teigeler, H.; Lins, S.; Sunyaev, A. A threat model for vehicular fog computing. IEEE Access 2022, 10, 133256–133278. [Google Scholar] [CrossRef]
- Khashan, O. Hybrid lightweight proxy re-encryption scheme for secure fog-to-things environment. IEEE Access 2020, 8, 66878–66887. [Google Scholar] [CrossRef]
- Ribeiro, F.; Kamienski, C. A survey on trustworthiness for the internet of things. IEEE Access 2021, 9, 42493–42514. [Google Scholar] [CrossRef]
- Ammad, M.; Shah, M.; Islam, S.; Maple, C.; Alaulamie, A.; Rodrigues, J. A novel fog-based multi-level energy-efficient framework for IoT-enabled smart environments. IEEE Access 2020, 8, 150010–150026. [Google Scholar] [CrossRef]
- Verma, P.; Tiwari, R.; Hong, W.; Upadhyay, S.; Yeh, Y. Fetch: A deep learning-based fog computing and IoT integrated environment for healthcare monitoring and diagnosis. IEEE Access 2022, 10, 12548–12563. [Google Scholar] [CrossRef]
- Hou, L.; Gregory, M.; Li, S. A survey of multi-access edge computing and vehicular networking. IEEE Access 2022, 10, 123436–123451. [Google Scholar] [CrossRef]
- Wang, B.; Li, M.; Jin, X.; Guo, C. A Reliable IoT Edge Computing Trust Management Mechanism for Smart Cities. IEEE Access 2020, 8, 46373–46399. [Google Scholar] [CrossRef]
- Malazi, H.; Chaudhry, S.; Kazmi, A.; Palade, A.; Cabrera, C.; White, G.; Clarke, S. Dynamic service placement in multi-access edge computing: A systematic literature review. IEEE Access 2022, 10, 32639–32688. [Google Scholar] [CrossRef]
- Babar, M.; Khan, M.; Ali, F.; Imran, M.; Shoaib, M. Cloudlet computing: Recent advances, taxonomy, and challenges. IEEE Access 2021, 9, 29609–29622. [Google Scholar] [CrossRef]
- Nayyer, M.; Raza, I.; Hussain, S.; Jamal, M.; Gillani, Z.; Hur, S.; Ashraf, I. LBRO: Load balancing for resource optimization in edge computing. IEEE Access 2022, 10, 97439–97449. [Google Scholar] [CrossRef]
- Nam, S. The impact of 5g multi-access edge computing cooperation announcement on the telecom operators’ firm value. ETRI J. 2022, 44, 588–598. [Google Scholar] [CrossRef]
- Santi, N.; Mitton, N. A resource management survey for mission-critical and time-critical applications in multi-access edge computing. ITU J. Future Evol. Technol. 2021, 2, 61–80. [Google Scholar] [CrossRef]
- Jin, H.; Gregory, M.; Li, S. A review of intelligent computation offloading in multi-access edge computing. IEEE Access 2022, 10, 71481–71495. [Google Scholar] [CrossRef]
- Wang, X. Research on computational offloading strategies based on mobile edge computing. In Proceedings of the Second International Conference on Optics and Communication Technology (ICOCT 2022), Hefei, China, 15–17 July 2022. [Google Scholar] [CrossRef]
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A survey on mobile augmented reality with 5g mobile edge computing: Architectures, applications, and technical aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, K.; Dong, L.; Pan, C.; Xu, W.; Yang, K. AI driven heterogeneous mec system with uav assistance for dynamic environment: Challenges and solutions. IEEE Netw. 2021, 35, 400–408. [Google Scholar] [CrossRef]
- Goudarzi, M.; Palaniswami, M.; Buyya, R. Scheduling IoT applications in edge and fog computing environments: A taxonomy and future directions. ACM Comput. Surv. 2022, 55, 1–41. [Google Scholar] [CrossRef]
- Lim, J. Latency-aware task scheduling for IoT applications based on artificial intelligence with partitioning in small-scale fog computing environments. Sensors 2022, 22, 7326. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, X.; Su, T.; Wan, L.; Sun, L. Vehicle location in edge computing enabling IoTs based on bistatic FDA-MIMO radar. IEEE Access 2021, 9, 46398–46408. [Google Scholar] [CrossRef]
- Kumhar, M.; Bhatia, J. Edge computing in SDN-enabled IoT-based healthcare frameworks. Int. J. Reliab. Qual. E-Healthc. 2022, 11, 1–15. [Google Scholar] [CrossRef]
- An, R. Optimal design of ecological landscape spatial structure based on edge computing of internet of things. Wirel. Commun. Mob. Comput. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Shen, S.; Zhou, Y.; Ci, S. Security in edge-assisted internet of things: Challenges and solutions. Sci. China Inf. Sci. 2020, 63, 220302. [Google Scholar] [CrossRef]
- Kim, Y.; Song, C.; Han, H.; Jung, H.; Kang, S. Collaborative task scheduling for IoT-assisted edge computing. IEEE Access 2020, 8, 216593–216606. [Google Scholar] [CrossRef]
- Gao, X.; Liu, R.; Kaushik, A. A Distributed Virtual Network Function Placement Approach in Satellite Edge and Cloud Computing. arXiv 2021, arXiv:2104.02421. [Google Scholar] [CrossRef]
- Alnajim, A.M.; Habib, S.; Islam, M.; Thwin, S.M.; Alotaibi, F. A Comprehensive Survey of Cybersecurity Threats, Attacks, and Effective Countermeasures in Industrial Internet of Things. Technologies 2023, 11, 161. [Google Scholar] [CrossRef]
- Mahadevappa, P.; Al-amri, R.; Alkawsi, G.; Alkahtani, A.A.; Alghenaim, M.F.; Alsamman, M. Analyzing Threats and Attacks in Edge Data Analytics within IoT Environments. IoT 2024, 5, 123–154. [Google Scholar] [CrossRef]
- Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 2023, 4, 18. [Google Scholar] [CrossRef]
- Lei, W.; Wen, H.; Hou, W.; Xu, X. New Security State Awareness Model for IoT Devices with Edge Intelligence. IEEE Access 2021, 9, 69756–69765. [Google Scholar] [CrossRef]
- Bukhsh, M.; Abdullah, S.; Bajwa, I.S. A Decentralized Edge Computing Latency-Aware Task Management Method with High Availability for IoT Applications. IEEE Access 2021, 8, 40791–40808. [Google Scholar] [CrossRef]
- Hsu, C.L.; Le, T.V.; Lu, C.F.; Lin, T.W.; Chuang, T.H. A Privacy-Preserved E2E Authenticated Key Exchange Protocol for Multi-Server Architecture in Edge Computing Networks. IEEE Access 2020, 8, 40791–40808. [Google Scholar] [CrossRef]
- Chen, B.; Cheng, S.; Mwangi, M. A mobility-based epidemic model for iot malware spread. IEEE Access 2022, 10, 107929–107941. [Google Scholar] [CrossRef]
- Alasmary, F.; Alraddadi, S.; Al-Ahmadi, S.; Al-Muhtadi, J. Shieldrnn: A distributed flow-based ddos detection solution for IoT using sequence majority voting. IEEE Access 2022, 10, 88263–88275. [Google Scholar] [CrossRef]
- Alharbi, I.; Almalki, A.; Alyami, M.; Zou, C.; Yan, S. Profiling attack on wifi-based iot devices using an eavesdropping of an encrypted data frames. Adv. Sci. Technol. Eng. Syst. J. 2022, 7, 49–57. [Google Scholar] [CrossRef]
- AlAmri, S.; ALAbri, F.; Sharma, T. Artificial Intelligence Deployment to Secure IoT in Industrial Environment; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Banaamah, A.; Ahmad, I. Intrusion detection in iot using deep learning. Sensors 2022, 22, 8417. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, M.; Hafid, A.; Elie, E. Blockchain as privacy and security solution for smart environments: A survey. arXiv 2022, arXiv:2203.08901. [Google Scholar] [CrossRef]
- Lingamallu, R. Securing iot networks: A fog-based framework for malicious device detection. Matec Web Conf. 2024, 392, 01103. [Google Scholar] [CrossRef]
- Garg, S.; Kaur, K.; Kaddoum, G.; Garigipati, P.; Aujla, G. Security in iot-driven mobile edge computing: New paradigms, challenges, and opportunities. IEEE Netw. 2021, 35, 298–305. [Google Scholar] [CrossRef]
- Man, D.; Zeng, F.; Yang, W.; Yu, M.; Lv, J.; Wang, Y. Intelligent intrusion detection based on federated learning for edge-assisted internet of things. Secur. Commun. Netw. 2021, 2021, 9361348. [Google Scholar] [CrossRef]
- Abosata, N.; Al-Rubaye, S.; Tsourdos, A. Customised intrusion detection for an industrial iot heterogeneous network based on machine learning algorithms called ftl-cid. Sensors 2022, 23, 321. [Google Scholar] [CrossRef]
- Sirat, M. Hybrid of supervised learning and optimization algorithm for optimal detection of iot distributed denial of service attacks. Int. J. Innov. Comput. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Doe, J.; Smith, A. Recent advances in non-AI countermeasures for IoT security. J. Cybersecur. 2023, 15, 123–145. [Google Scholar]
- Miller, B.; Brown, C. A survey on traditional security measures in IoT: Challenges and solutions. Int. J. Netw. Secur. 2023, 20, 234–256. [Google Scholar]
- Wilson, R.; Taylor, L. Edge computing and IoT security: Strategies and best practices. IEEE Internet Things J. 2023, 10, 2345–2356. [Google Scholar]
- Zhang, Y.; Nakanishi, R.; Sasabe, M.; Kasahara, S. Combining IOTA and Attribute-Based Encryption for access control in the Internet of Things. Sensors 2021, 21, 5053. [Google Scholar] [CrossRef]
- Shah, Z.; Ullah, I.; Li, H.; Levula, A.; Khurshid, K. Blockchain based solutions to mitigate distributed denial of service (DDoS) attacks in the Internet of Things (IoT): A survey. Sensors 2022, 22, 1094. [Google Scholar] [CrossRef]
- Setia, P. Enhancing cybersecurity defense of IoT ecosystem using blockchain. Suranaree J. Sci. Technol. 2023, 30, 010238. [Google Scholar] [CrossRef]
- Ghribi, E.; Khoei, T.T.; Gorji, H.T.; Ranganathan, P.; Kaabouch, N. A Secure Blockchain-based Communication Approach for UAV Networks. In Proceedings of the IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 411–415. [Google Scholar]
- Ahmadvand, H.; Lal, C.; Hemmati, H.; Sookhak, M.; Conti, M. Privacy-preserving and security in SDN-based IoT: A survey. IEEE Access 2023, 11, 44772–44786. [Google Scholar] [CrossRef]
- Mercado-Velazquez, A.; Escamilla-Ambrosio, P.; Ortiz-Rodriguez, F. A moving target defense strategy for Internet of Things cybersecurity. IEEE Access 2021, 9, 118406–118418. [Google Scholar] [CrossRef]
- Talaei Khoei, T.; Kaabouch, N. Machine Learning: Models, Challenges, and Research Directions. Future Internet 2023, 15, 332. [Google Scholar] [CrossRef]
- Khazane, H.; Ridouani, M.; Salahdine, F.; Kaabouch, N. A Holistic Review of Machine Learning Adversarial Attacks in IoT Networks. Future Internet 2024, 16, 32. [Google Scholar] [CrossRef]
- DeMedeiros, K.; Hendawi, A.; Alvarez, M. A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks. Sensors 2023, 23, 1352. [Google Scholar] [CrossRef]
- Aldhaheri, A.; Alwahedi, F.; Ferrag, M.A.; Battah, A. Deep learning for cyber threat detection in IoT networks: A review. Internet Things Cyber-Phys. Syst. 2023, 4, 110–128. [Google Scholar] [CrossRef]
- Madhu, B.; Chari, M.V.G.; Vankdothu, R.; Silivery, A.K.; Aerranagula, V. Intrusion detection models for IOT networks via deep learning approaches. Meas. Sens. 2023, 25, 100641. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Yang, S.; Luo, X.; Li, D.; Wang, J. A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization. PeerJ Comput. Sci. 2023, 9, e1569. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, R.; Bellaiche, M. An ensemble deep learning based IDS for IoT using Lambda architecture. Cybersecurity 2023, 6, 5. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L.A. Deep learning for cyber threat detection in IoT networks: A review. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [Google Scholar]
Attack Type | AI Application | Advantages | Disadvantages |
---|---|---|---|
Network-level | CNNs, RNNs (LSTMs) | High accuracy in detecting anomalies, real-time analysis | Significant computational resources required, complex model training |
Application-level | Autoencoders, GANs | Effective anomaly detection, can simulate attack scenarios | Significant training time, needs large labeled datasets |
Data-level | RNNs, VAEs | Good at detecting temporal anomalies, handles high-dimensional data | Potential for high false positive rates, requires continuous training |
Access control | LSTMs, DBNs | Detects complex user behavior patterns, adaptive authentication | High computational cost, complex implementation |
Protocol-based attacks | Autoencoders, GANs | Detects protocol-specific anomalies, improves IDS robustness | Requires extensive training data, computationally intensive |
Side channel | CNNs, RNNs | Effective analysis of side channel signals, real-time detection | Significant computational power needed, difficult to implement |
Supply chain | Autoencoders, GANs | Detects anomalies in supply chain data, simulates attack scenarios | High resource requirements, requires continuous updates |
Social engineering | RNNs, DNNs | Analyzes communication patterns, detects phishing attempts | High false positive rate, requires large amounts of training data |
Challenge | Description | Future Research Directions |
---|---|---|
Power constraints | Limited processing power in edge devices requires solutions like model pruning, on-device learning, and federated learning (FL), which can reduce data transmission but require complex implementation. |
|
Training constraints | Task offloading helps with intensive tasks but depends on network reliability and may introduce latency. Edge-centric training can enhance autonomy and efficiency. |
|
Memory limitations | Quantization reduces memory usage but can affect model precision. Mixed precision training can optimize performance and memory efficiency. |
|
Local processing risks | Hybrid processing ensures real-time processing and reduces latency but requires sophisticated architecture. |
|
Data privacy | Edge–cloud collaboration enhances data safety but can introduce latency and requires robust communication channels. |
|
Ethical concerns | AI integration in EC-IoT raises ethical concerns such as potential bias, transparency, accountability, and informed consent. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupanetti, D.; Kaabouch, N. Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities. Appl. Sci. 2024, 14, 7104. https://doi.org/10.3390/app14167104
Rupanetti D, Kaabouch N. Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities. Applied Sciences. 2024; 14(16):7104. https://doi.org/10.3390/app14167104
Chicago/Turabian StyleRupanetti, Dulana, and Naima Kaabouch. 2024. "Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities" Applied Sciences 14, no. 16: 7104. https://doi.org/10.3390/app14167104
APA StyleRupanetti, D., & Kaabouch, N. (2024). Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities. Applied Sciences, 14(16), 7104. https://doi.org/10.3390/app14167104