Assessment of Soil Horizons and Their Matric Potential from Ground-Penetrating Radar Signal Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Signal Attributes
2.2. Spectral Analysis of Field Data
2.2.1. Wavelet Transform
2.2.2. Power Spectral Density
3. Results
3.1. Instantaneous Phase Attribute Result
3.2. Signal Spectral Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Limited, Prentice Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- Jones, E.J.; McBratney, A.B. What Is Digital Soil Morphometrics and Where Might It Be Going? In Digital Soil Morphometrics, Progress in Soil Science; Hartemink, A.E., Minasny, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 89–110. [Google Scholar] [CrossRef]
- Hirmas, D.R.; Giménez, D.; Mome Filho, E.A.; Patterson, M.; Drager, K.; Platt, B.F.; Eck, D.V. Quantifying soil structure and porosity using three-dimensional laser scanning. In Digital Soil Morphometrics; Springer: Cham, Switzerland, 2016; pp. 19–35. [Google Scholar]
- Whalley, W.R.; Ober, E.S.; Jenkins, M. Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Bot. 2013, 64, 3951–3963. [Google Scholar] [CrossRef] [PubMed]
- Kiełbasa, P.; Zagórda, M.; Juliszewski, T.; Akinsunmade, A.; Tomecka, S.; Karczewski, J.; Pysz, P. Assessment of the possibility of using GPR to determine the working resistance force of tools for subsoil reclamation. J. Phys. Conf. Ser. 2021, 1782, 012013. [Google Scholar] [CrossRef]
- Akinsunmade, A.; Tomecka-Suchoń, S.; Pysz, P.; Karczewski, J.; Juliszewski, T.; Zagórda, M.; Kiełbasa, P. The use of conductometric and GPR methods to identify the extent of upper-range compaction. Prz. Elektrotech. 2020, 96, 137–141. [Google Scholar]
- Galagedara, L.W.; Parkin, G.W.; Redman, J.D.; Von Bertoldi, P.; Endres, A.L. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. J. Hydrol. 2005, 301, 182–197. [Google Scholar] [CrossRef]
- Jadoon, K.Z.; Weihermüller, L.; Scharnagl, B.; Kowalsky, M.B.; Bechtold, M.; Hubbard, S.S.; Vereecken, H.; Lambot, S. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of Time-Lapse Ground-Penetrating Radar Data. Vadose Zone J. 2012, 11, vzj2011-0177. [Google Scholar] [CrossRef]
- Dumont, G.; Robert, T.; Marck, N.; Nguyen, F. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. J. Appl. Geophys. 2017, 145, 74–83. [Google Scholar] [CrossRef]
- Kiełbasa, P.; Zagórda, M.; Juliszewski, T.; Akinsunmade, A.; Tomecka-Suchoń, S.; Karczewski, J.; Pysz, P. Identification of the resistive force of the tool based on radar measurements. Przegląd Elektrotech. 2022, 98, 213–216. [Google Scholar]
- Abd Karim, N.I.; Kamaruddin, S.A.; Hasan, R.C. Soil water content estimation at peat soil using GPR common-offset measurements. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012072. [Google Scholar] [CrossRef]
- Mangel, A.R.; Moysey SM, J.; Ryan, J.C.; Tarbutton, J.A. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test. Hydrol. Earth Syst. Sci. 2012, 16, 4009–4022. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring soil water content with ground penetrating radar: A decade of progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Lombardi, F.; Ortuani, B.; Facchi, A.; Lualdi, M. Assessing the Perspectives of Ground Penetrating Radar for Precision Farming. Remote Sens. 2022, 14, 6066. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Leskovar, D.I. Ground penetrating radar for underground sensing in agriculture: A review. Int. Agrophys. 2016, 30, 533–543. [Google Scholar] [CrossRef]
- Zajícováa, K.; Chumana, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 2019, 343, 116–129. [Google Scholar] [CrossRef]
- Jonard, F.; Mahmoudzadeh, M.; Roisin, C.; Weihermüller, L.; André, F.; Minet, J.; Vereecken, H.; Lambot, S. Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and electromagnetic induction. Geoderma 2013, 207, 310–322. [Google Scholar] [CrossRef]
- Hubbard, S.; Grote, K.; Rubin, Y. Mapping the volumetric soil water content of a California vineyard using high-frequency GPR ground wave data. Lead. Edge 2002, 21, 552–559. [Google Scholar] [CrossRef]
- Jol, H.M. (Ed.) Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Annan, A. Ground penetrating radar principles, procedures, and applications. Sens. Softw. 2003, 278, 84–87. [Google Scholar]
- André, F.; van Leeuwen, C.; Saussez, S.; Van Durmen, R.; Bogaert, P.; Moghadas, D.; de Rességuier, L.; Delvaux, B.; Vereecken, H.; Lambot, S. High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography. J. Appl. Geophys. 2012, 78, 113–122. [Google Scholar] [CrossRef]
- Salat, C.; Junge, A. Dielectric permittivity of fine-grained fractions of soil samples from eastern Spain at 200 MHz. Geophysics 2010, 75, J1–J9. [Google Scholar] [CrossRef]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Forte, E.; Dossi, M.; Pipan, M.; Colucci, R.R. Velocity analysis from common offset GPR data inversion: Theory and application to synthetic and real data. Geophys. J. Int. 2014, 197, 1471–1483. [Google Scholar] [CrossRef]
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; The Institution of Electrical Engineers: London, UK, 2004. [Google Scholar]
- Sandmeier, K.J. Reflexw Version 8.5 Program for the Processing of Seismic, Acoustic, and Electromagnetic Reflection and Transmission Data. 2017. Available online: https://pdfcoffee.com/reflexw-manual-a4-booklet-pdf-free.html (accessed on 3 June 2024).
- Ofuyah, W.; Orji, O.; Eze, S. The Application of Spectral Decomposition to 3-D Seismic Data over ‘X’-Oil Field, Niger Delta. Geosciences 2015, 5, 86–99. [Google Scholar]
- Othman, A.; Fathy, M.; Ali, A.S. Geophysical Evaluation for Wadi Rayan Field, Western Desert, Egypt. Egypt. J. Pet. 2016, 25, 125–132. [Google Scholar] [CrossRef]
- Akinsunmade, A.; Tomecka-Suchoń, S.; Pysz, P. Complex analysis of GPR signals for the delineation of subsurface subtle features. Geol. Geophys. Environ. 2019, 45, 257–267. [Google Scholar] [CrossRef]
- Liu, L.; Oristaglio, M. GPR signal analysis: Instantaneous parameter estimation using the wavelet transform. In Proceedings of the 7th International Conference on Ground Penetrating Radar, Lawrence, KS, USA, 27–30 May 1998. [Google Scholar]
- Barnes, A.E. Seismic attributes in your facies. CSEG Rec. 2001, 26, 41–47. [Google Scholar]
- Barnes, A.E. Instantaneous frequency and amplitude at the envelope peak of a constant-phase wavelet. Geophysics 1991, 56, 1058–1060. [Google Scholar] [CrossRef]
- Barnes, A.E. A tutorial on complex seismic trace analysis. Geophysics 2007, 72, W33–W43. [Google Scholar] [CrossRef]
- Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data; Society of Exploration Geophysicists: Houston, TX, USA, 2001. [Google Scholar]
- Tomecka-Suchoń, S.; Marcak, H. Interpretation of Ground Penetrating Radar Attributes in identifying the risk of Mining Subsidence. Arch. Min. Sci. 2015, 60, 645–656. [Google Scholar] [CrossRef]
- Taner, T. Attributes Revisited; published 2000; Rock Solid Images: Houston, TX, USA, 1992. [Google Scholar]
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography; Newnes: Sydney, Australia, 2014. [Google Scholar]
- Lin, T.; Zhang, B.; Guo, S.; Marfurt, K.; Wan, Z.; Guo, Y. Spectral decomposition of time- versus depth-migrated data. In SEG Technical Program Expanded Abstracts 2013; SEG: Houston, TX, USA, 2013; pp. 1384–1388. [Google Scholar] [CrossRef]
- Rioul, O.; Vetterli, M. Wavelets and signal processing. IEEE Signal Process. Mag. 1991, 8, 14–38. [Google Scholar] [CrossRef]
- Kehtarnavaz, N.; Kim, N. Digital Signal Processing System-Level Design Using LabVIEW; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Merry, R.J.E.; Steinbuch, M. Wavelet Theory and Applications: Literature Study; Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology Group: Eindhoven, The Netherlands, 2005. [Google Scholar]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Patient Hall Inc.: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Stein, J.Y. Digital Signal Processing: A Computer Science Perspective; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- MathWorks, Inc. MATLAB: The Language of Technical Computing. Getting started with MATLAB, version 7; MathWorks, Incorporated: Natick, MA, USA, 2023; Volume 1. [Google Scholar]
- Maral, G. VSAT Networks; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Grey, J.M.; Gordon, J.W. Perceptual effects of spectral modifications on musical timbres. J. Acoust. Soc. Am. 1978, 63, 1493–1500. [Google Scholar] [CrossRef]
- Peeters, G. A large set of audio features for sound description (similarity and classification) in the CUIDADO project. CUIDADO IST Proj. Rep. 2004, 54, 1–25. [Google Scholar]
S/N | Field Measurement Input Parameters | Title 3 |
---|---|---|
1 | Antenna frequency | 800 MHz |
2 | Trace interval/station spacing | 0.010 m |
3 | Sampling frequency | 8000 MHz |
4 | Number of samples | 500 |
5 | Stacking times | 16 |
6 | Time window | 60 nS |
7 | Antenna spacing | 0.14 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinsunmade, A.; Pysz, P.; Zagórda, M.; Miernik, A.; Tomecka-Suchoń, S. Assessment of Soil Horizons and Their Matric Potential from Ground-Penetrating Radar Signal Attributes. Appl. Sci. 2024, 14, 7328. https://doi.org/10.3390/app14167328
Akinsunmade A, Pysz P, Zagórda M, Miernik A, Tomecka-Suchoń S. Assessment of Soil Horizons and Their Matric Potential from Ground-Penetrating Radar Signal Attributes. Applied Sciences. 2024; 14(16):7328. https://doi.org/10.3390/app14167328
Chicago/Turabian StyleAkinsunmade, Akinniyi, Paweł Pysz, Mirosław Zagórda, Anna Miernik, and Sylwia Tomecka-Suchoń. 2024. "Assessment of Soil Horizons and Their Matric Potential from Ground-Penetrating Radar Signal Attributes" Applied Sciences 14, no. 16: 7328. https://doi.org/10.3390/app14167328
APA StyleAkinsunmade, A., Pysz, P., Zagórda, M., Miernik, A., & Tomecka-Suchoń, S. (2024). Assessment of Soil Horizons and Their Matric Potential from Ground-Penetrating Radar Signal Attributes. Applied Sciences, 14(16), 7328. https://doi.org/10.3390/app14167328